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Abstract. We consider smooth maps on compact Riemannian
manifolds. We prove that under some mild condition of eventual
volume expansion Lebesgue almost everywhere we have uniform
backward volume contraction on every pre-orbit for Lebesgue al-
most every point.

1. Statement of results

Let M be a compact Riemannian manifold and let Leb be a volume

form on M that we call Lebesgue measure. We take f : M → M any

smooth map. Let 0 < a1 ≤ a2 ≤ a3 ≤ . . . be a sequence converging to

infinity. We define

h(x) = min{n > 0: | det Dfn(x)| ≥ an}, (1)

if this minimum exists, and h(x) = ∞, otherwise. For n ≥ 1, we take

Γn = {x ∈ M : h(x) ≥ n}. (2)

Theorem 1.1. Assume that h ∈ Lp(Leb), for some p > 3, and take

γ < (p− 3)/(p− 1). Choose any sequence 0 < b1 ≤ b2 ≤ b3 ≤ . . . such

that bkbn ≥ bk+n for every k, n ∈ N, and assume that there is n0 ∈ N
such that bn ≤ min {an, Leb(Γn)−γ} for every n ≥ n0. Then, for Leb

almost every x ∈ M , there exists Cx > 0 such that | det Dfn(y)| > Cxbn

for every y ∈ f−n(x).
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We say that f : M → M is eventually volume expanding if there

exists λ > 0 such that for Lebesgue almost every x ∈ M

sup
n≥1

1

n
log | det Dfn(x)| > λ. (3)

Let h and Γn be defined as in (1) and (2), associated to the sequence

an = eλn.

Corollary 1.2. If f is eventually volume expanding, then for Lebesgue

almost every point x ∈ M there are Cx > 0 and σn → ∞ such that

| det Dfn(y)| > Cxσn for every y ∈ f−n(x). Moreover, given α > 0

there is β > 0 such that

(1) if Leb(Γn) ≤ O(e−αn), then we may take σn ≥ eβn;

(2) if Leb(Γn) ≤ O(e−αnτ
) for some τ > 0, then we may take

σn ≥ eβnτ
;

(3) if Leb(Γn) ≤ O(n−α) and α > 2, then we may take σn ≥ nβ.

Specific rates will be obtained in Section 4 for some eventually vol-

ume expanding endomorphisms. In particular, non-uniformly expand-

ing maps such as quadratic maps and Viana maps will be considered.

2. Concatenated collections

Let (Un)n be a collection of measurable subsets of M whose union

covers a full Lebesgue measure subset of M . We say that (Un)n is a

concatenated collection if:

x ∈ Un and fn(x) ∈ Um ⇒ x ∈ Un+m.

Given x ∈ ⋃
n≥1 Un, we define u(x) as the minimum n ∈ N for which

x ∈ Un. Note that by definition we have x ∈ Uu(x). We define the chain

generated by x ∈ ⋃
n≥1 Un as C(x) = {x, f(x), . . . , fu(x)−1(x)}.

Lemma 2.1. Let (Un)n be a concatenated collection. If

∑
n≥1

n−1∑
j=0

Leb(f j(u−1(n))) < ∞,

then we have sup
{

u(y) : y ∈ ⋃
n≥1 Un and x ∈ C(y)

}
< ∞ for Leb-

esgue almost every x ∈ M .
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Proof. Assume that for a given x ∈ M there exists an infinite num-

ber of chains Cj = {yj, f(yj), . . . , f
sj−1(yj)}, j ≥ 1, containing x

with sj → ∞. For each j ≥ 1 let 1 ≤ rj < sj be such that x =

f rj(yj). First we verify that lim rj = ∞. If not, then replacing

by a subsequence, we may assume that there is N > 0 such that

rj < N for every j ≥ 1. This implies that yj ∈
⋃N

i=1 f−i(x) for ev-

ery j ≥ 1. Since #(
⋃N

i=1 f−i(x)) < ∞ and the number of chains is

infinite, we have a contradiction. Since rj → ∞ and x = f rj(yj) ∈
f rj(u−1(sj)), then we have x ∈ ⋃

n≥k

⋃n−1
j=0 f j(u−1(n)) for every k ≥ 1.

Since we are assuming
∑

n≥1

∑n−1
j=0 Leb(f j(u−1(n))) < ∞, we have

Leb
( ⋃

n≥k

⋃n−1
j=0 f j(u−1(n))

) → 0, when k → ∞. This completes the

proof of Lemma 2.1. ¤

Lemma 2.2. Let (Un)n be a concatenated collection. If

sup {u(y) : y ∈ ∪n≥1Un and x ∈ C(y) } ≤ N,

then f−n(x) ⊂ Un ∪ · · · ∪ Un+N for all n ≥ 1.

Proof. Assume that sup {u(y) : y ∈ ∪n≥1Un and x ∈ C(y) } ≤ N , and

take z ∈ f−n(x). Let zj = f j(z) for each j ≥ 0. We distinguish the

cases x ∈ C(z) and x /∈ C(z). If x ∈ C(z), then n ≤ u(z) ≤ n + N .

Hence z ∈ Uu(z) ⊂ Un ∪ · · · ∪Un+N . If x /∈ C(z), then letting u0 = u(z)

we must have u0 < n. Let u1 = u(zu0). If u0 + u1 < n we take

u2 = u(zu0+u1). We proceed in this way until we find the first s ≤ n

such that n ≤ u0 + · · ·+ us. Note that us = u(zu0+···+us−1), and by the

choice of s we must have x ∈ C(zu0+···+us−1). Our assumption implies

that u(zu0+···+us−1) ≤ N , and so u0 + · · ·+us ≤ n+N . By construction

we have

z ∈ Uu0

fu0(z) = zu0 ∈ Uu1

fu0+u1(z) = zu0+u1 ∈ Uu2

...

fu0+···us−1(z) = zu0+···us−1 ∈ Uus

By the definition of a concatenated collection we conclude that z ∈
Uu0+u1+···+us . ¤
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3. Proofs of main results

Let us now prove Theorem 1.2. Suppose that h ∈ Lp(Leb), for some

p > 3. This implies that
∑

n≥1 np Leb(h−1(n)) < ∞, and so there exists

some constant K > 0 such that

Leb(h−1(n)) ≤ Kn−p, for every n ≥ 1.

Now, taking 0 < γ < (p− 3)/(p− 1) we have for some K ′ > 0

∞∑
n=1

n

( ∞∑

k=n

Leb(h−1(k))

)1−γ

≤
∞∑

n=1

n(K ′/np−1)1−γ < ∞.

Defining

Un = {x ∈ M : | det Dfn(x)| ≥ bn},

then we have that (Un)n is a concatenated collection with respect to

the Lebesgue measure. Moreover, setting

U∗
n = Un \ (U1 ∪ ... ∪ Un−1)

one has U∗
n ⊂

⋃
m≥n h−1(m), for otherwise there would be x ∈ U∗

n ∩
h−1(m) with m < n, and so am ≥ bm > | det Dfm(x)| ≥ am, which is

not possible. As | det Df j(x)| < bj for every x ∈ U∗
n and j < n, we get

Leb(f j(U∗
n)) ≤ bj Leb(U∗

n) for each j < n. Hence

∞∑
n=n0+1

n−1∑
j=0

Leb(f j(U∗
n)) ≤

∞∑
n=n0+1

n−1∑
j=0

bj Leb(U∗
n)

≤
∞∑

n=n0+1

n0−1∑
j=0

bj Leb(U∗
n) +

∞∑
n=n0+1

n−1∑
j=n0

bj Leb(U∗
n)

≤
n0−1∑
j=0

bj +
∞∑

n=n0+1

n−1∑
j=n0

bj Leb(U∗
n)
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Now we just have to check that the last term in the sum above is finite.

Indeed,

∞∑
n=n0+1

n−1∑
j=n0

bj Leb(U∗
n) ≤

∞∑
n=n0+1

n−1∑
j=n0

bj

∞∑

k=n

Leb(h−1(k))

≤
∞∑

n=n0+1

nbn

∞∑

k=n

Leb(h−1(k))

≤
∞∑

n=n0+1

n

( ∞∑

k=n

Leb(h−1(k)

)−γ ∞∑

k=n

Leb(h−1(k))

=
∞∑

n=n0+1

n

( ∞∑

k=n

Leb(h−1(k))

)1−γ

< ∞.

Applying Lemmas 2.1 and 2.2, we get for each generic point x ∈ M

a positive integer number Nx such that if y ∈ f−n(x) then y ∈ Un+s

for some 0 ≤ s ≤ Nx. Therefore, | det Dfn+s(y)| > bn+s ≥ bn. Then,

taking Cx = K−Nx , where K = sup{| det Df(z)| : z ∈ M}, we obtain

the conclusion of Theorem 1.1:

| det Dfn(y)| = | det Dfn+s(y)|
| det Df s(x)| > Cxbn.

Now we explain how we use Theorem 1.1 to prove Corollary 1.2.

Recall that in Corollary 1.2 we have an = eλn for each n ∈ N. Assume

first that Leb(Γn) ≤ O(e−c′n) for some c′ > 0. Then it is possible to

choose c > 0 such that bn = ecn, for n ≥ n0. The other two cases are

obtained under similar considerations.

4. Examples: non-uniformly expanding maps

An important class of dynamical systems where we can immediately

apply our results are the non-uniformly expanding dynamical maps

introduced in [2]. As particular examples of this kind of systems we

present below quadratic maps and the higher dimensional Viana maps.

Quadratic maps. Let fa : [−1, 1] → [−1, 1] be given by fa(x) = 1−ax2,

for 0 < a ≤ 2. Results in [3, 8] give that for a positive Lebesgue

measure set of parameters fa in non-uniformly expanding. Ongoing
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work [5] gives that for a positive Lebesgue measure set of parameters

there are C, c > 0 such that Leb(Γn) ≤ Ce−cn for every n ≥ 1.

Thus, it follows from Corollary 1.2 that we may find β > 0 such for

Lebesgue almost every x ∈ I there is Cx > 0 such that |(fn)′(y)| >

Cxe
βn for every y ∈ f−n(x).

Viana maps. Let a0 ∈ (1, 2) be such that the critical point x = 0 is

pre-periodic for the quadratic map Q(x) = a0− x2. Let S1 = R/Z and

b : S1 → R given by b(s) = sin(2πs). For fixed small α > 0, consider

the map f̂ from S1 × R into itself given by f̂(s, x) =
(
ĝ(s), q̂(s, x)

)
,

where q̂(s, x) = a(s)−x2 with a(s) = a0 +αb(s), and ĝ is the uniformly

expanding map of S1 defined by ĝ(s) = ds (mod Z) for some integer

d ≥ 2. For α > 0 small enough there is an interval I ⊂ (−2, 2) for

which f̂(S1 × I) is contained in the interior of S1 × I. Thus, any map

f sufficiently close to f̂ in the C0 topology has S1 × I as a forward

invariant region. Moreover, there are C, c > 0 such that Leb(Γn) ≤
Ce−c

√
n for every n ≥ 1; see [1, 4, 9].

Thus, it follows from Corollary 1.2 that we may find β > 0 such for

Lebesgue almost every X ∈ S1×I there is a constant CX > 0 such that

| det Dfn(Y )| > CXeβ
√

n for every Y ∈ f−n(X).
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