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ABSTRACT. Some connected components of a moduli space are mundane in the sense that they
are distinguished only by obvious topological invariants or have no special characteristics. Others are
more alluring and unusual either because they are not detected by primary invariants, or because they
have special geometric significance, or both. In this paper we describe new examples of such ‘exotic’
components in moduli spaces of SO(p, ¢)-Higgs bundles on closed Riemann surfaces or, equivalently,
moduli spaces of surface group representations into the Lie group SO(p, ¢). Furthermore, we discuss
how these exotic components are related to the notion of positive Anosov representations recently
developed by Guichard and Wienhard. We also provide a complete count of the connected components
of these moduli spaces (except for SO(2, q), with ¢ > 4).
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1. INTRODUCTION

For a closed surface S and a Lie group G, the representation variety R (S, G) parameterizes conjugacy
classes of group homomorphisms from the fundamental group of S into G. For each Riemann surface
structure X on S, the Non-Abelian Hodge (NAH) correspondence defines a homeomorphism between
R(S,G) and M(X,G), the moduli space of polystable G-Higgs bundles on X. In general these moduli
spaces have multiple connected components. Some of the components are mundane in the sense that
they are distinguished by obvious topological invariants and have no known special characteristics.
Others are more alluring and unusual, either because they are not detected by the primary invariants
or because they parameterize objects of special significance, or both.

Instances of such ‘exotic’ components are well understood in two situations. The first is the case
where G is the split real form of a complex semisimple Lie group, in which case the exotic components
are known as Hitchin components (see [28]). The second occurs when G is the isometry group of a
non-compact Hermitian symmetric space, in which case the subspace with so-called maximal Toledo
invariant has exotic components (see [7]). In [11], both of these classes of exotic components of rep-
resentation varieties have been called higher Teichmiiller components since they enjoy many of the

geometric features of Teichmiiller space.

One distinguishing feature common to all higher Teichmiiller components is that every representation
in them is an Anosov representation, a concept introduced by Labourie [31]. Anosov representations
have many interesting dynamical and geometric properties which generalize convex cocompact rep-
resentations into rank one Lie groups. In particular, higher Teichmiiller components consist entirely
of discrete and faithful representations [31] which are holonomies of geometric structures on certain
closed manifolds [24]. In general, the Anosov condition is open in the representation variety and so
does not by itself distinguish connected components. More recently, in [25], Guichard and Wienhard
defined a notion of positivity which refines the Anosov property and is still an open condition. They
conjecture that such positivity for Anosov representations is also a closed condition, and hence should
detect connected components of a representation variety. They showed, moreover, that apart from the
split real forms and the real forms of Hermitian type, the only other non-exceptional groups which
allow positive representations are the disconnected groups SO(p,q) for 1 < p < ¢, i.e. the special
orthogonal groups with signature (p,¢). This leads directly to the conjecture that R(S,SO(p, ¢)) and
hence M(X,SO(p, q)) should have ‘exotic’ connected components.

In this paper we establish the existence of such exotic components, count them, and show that each
exotic component contains positive Anosov representations. Our methods lie on the Higgs bundle side
of the NAH correspondence, so our results actually address the connected components of M (SO(p, q))
(where we drop the X from the notation unless explicitly needed for clarity or emphasis). Except for
the special cases p =2, ¢ = p or ¢ = p+ 1, the group SO(p, ¢) is neither split nor of Hermitian type, so
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the relation between topological invariants and connected components in the representation varieties
or related moduli spaces cannot be inferred from previously known mechanisms.

Our main theorem' has two parts — one is an existence result and one is a non-existence result.
Namely we prove

(1) the existence of a class of explicitly described exotic components of M (SO(p, q)) for 1 < p < g,
and
(2) the non-existence of any other exotic components of M(SO(p, q)) for bothp=1and 2 < p < q.

Combining these two results and including the 229+2 ‘mundane’ components yields a complete count of
the connected components for the moduli spaces of SO(p, ¢)-Higgs bundles M(X,SO(p, q)) or, equiv-
alently, the representation varieties R(S,SO(p, q)), for 2 < p < g.

Theorem 6.1. Let X be a compact Riemann surface of genus g > 2 and denote the moduli space of
SO(p, q)-Higgs bundles on X by M(SO(p,q)). For 2 < p < q, we have

2% ifg=p
|0 (M(SO(p,q)))| = 22972 + ¢ 229F £ 2p(g—1) =1 ifqg=p+1
229+1 ifg>p+1.

Remark 1.2. In fact, our methods also show that M(SO(1,q)) does not have exotic components for
g > 2, yielding 229%! connected components. We also give a precise count of the components of
M(S0(2,2)) and M(SO(2,3)) (the latter case basically follows from previously known results), but
for ¢ > 4 our techniques fall short of a component count of M(SO(2, q)). However, we expect no new
exotic components to exist (see Section 6.2 for details).

The primary topological invariants are apparent from the structure of the Higgs bundles. In the
case of SO(p, ¢)-Higgs bundles on X, the objects are described by a triple (V, W, n), where V and W
are holomorphic orthogonal bundles of rank p and ¢ respectively, such that APV = AW, and 7 is
a holomorphic section of the bundle Hom(W,V) ® K, where K is the canonical bundle of X. The
topological invariants are then the first and second Stiefel-Whitney classes of V' and W subject to the
constraint that swy (V) = swy(W). These invariants provide a primary decomposition of the moduli
space M(SO(p, q)) into (not necessarily connected) components labeled by triples (a, b, c) € H'(S, Z2) x
H?2(S,Z2) x H?(S,Z3). Using the notation M%*¢(SO(p, q)) to denote the union of components labeled
by (a,b,c), we can thus write

(1.1) M(SO(p, q)) = 11 M“*4(S0(p,q)) -

(a,b,¢) €Z29 X Lo X L

Each space M%"¢(SO(p, ¢q)) has one connected component characterized entirely by the topological
invariants (a,b,c¢). This is the connected component which contains the moduli space of polystable
orthogonal bundles with these invariants, which correspond to Higgs bundles for the maximal com-
pact subgroup of SO(p,q). Denoted by M**¢(SO(p,q))iop, these comprise the 2292 ‘mundane’
components for 2 < p < g. Our existence result identifies additional components disjoint from the
M®¥¢(SO(p, q))top components. Identifying the topological invariants of each component of Theorem
6.1 gives the following precise component count.

Corollary 6.3. For 2 <p < q—1 and (a,b,c) € H(S,Zy) x H?(S,Zs) x H?(S,Zs)

2 if pis odd and b= 0
|0 (M®YC(SO(p,q)))| =< 229 +1 ifpis even,a=0 and b=0
1 otherwise .

Remark 1.4. For p =1 and p = 2, the primary topological invariants are slightly different. For p = ¢
and p = ¢ — 1, the connected component count of M%%¢(SO(p, q)) is different (see Corollaries 6.4 and

LThis result was announced, without details, in [1]. We now provide the details of the proof.
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6.5). For p = g and p = ¢—1, all components had been previously detected in [28] and [12] respectively.
Nevertheless, the nonexistence of additional components is new.

Another advantage of working on the Higgs bundle side of the NAH correspondence is that the
Higgs bundles and their moduli spaces possess a rich structure that provides tools which are not
readily available in the representation varieties. Two of these tools, which we exploit, are a real-valued
proper function defined by the L?-norm of the Higgs field, called the Hitchin function, and a natural
holomorphic C*-action. These two tools are related since the critical points of the Hitchin function
occur at fixed points of the C*-action. When the moduli space is smooth the Hitchin function is
a perfect Morse-Bott function. While this is not the case in general, the properness of the Hitchin
function nevertheless allows one to extract useful information about 7y from the loci of local minima
which, in turn, can be described using information about the corresponding C*-fixed points.

For many groups G the Hitchin function has no local minima other than those defining the mundane
components (see for example [19, 32, 18]). In these cases, this approach yields enough information to
completely count the components of M(G). Interestingly, this is not the case for SO(p, q); neverthe-
less, we are able to classify all the local minima. Even though the singularities in the space render
this insufficient for completely determining the number of connected components of M(SO(p, q)), the
classification of local minima plays a crucial role in the non-existence part of our main result, and the
C*-fixed points are helpful in the proof of the main existence theorem. The new exotic components
are detected by a more direct approach.

To show that the components exist, we first describe a model for the supposed components. We
then construct a map from the model to M(SO(p, q)) and show that the map is open and closed. The
description of the model invokes a variant of Higgs bundles in which the canonical bundle K is replaced
by the p*" power of K.

Theorem 4.1. Let X be a compact Riemann surface with genus g > 2 and canonical bundle K. Denote
the moduli space of KP-twisted SO(1,q— p+ 1)-Higgs bundles on X by Mg»(SO(1,q—p+1)) and the
moduli space of K -twisted SO(p, q)-Higgs bundles on X by M(SO(p,q)). For 1 < p < g, there is a well
defined map

p—1
(1.2) U Mg (SO(1,qg—p+1)) x P HO(X, K*) —— M(SO(p, q))

j=1

which is an isomorphism onto its image and has an open and closed image. Furthermore, if p > 1,
then every Higgs bundle in the image of ¥ has a nowhere vanishing Higgs field.

In the case p = 2, the model described in this theorem coincides exactly with the description of
the ‘exotic’ maximal components of M(SO(2,q)) (see [7, 5]), where the objects parameterized by the
components are described by K2-twisted Higgs bundles referred to as Cayley partners. In that setting,
the emergence of the Cayley partners is a consequence of the fact that SO(2, ¢) is a group of Hermitian
type; our new results for SO(p,q) with p > 2 show that the phenomenon has a more fundamental
origin. In this regard, we note that our new components generalize both the afore-mentioned Cayley
partners in the Hermitian case (i.e. for p = 2) and also the Hitchin components for the split real forms
SO(p, p) and SO(p,p + 1) (see Section 7.3 for more details).

A key technical detail required to show that the map (1.2) is open, is the fact that the spaces
(both the model and its image under the map) are essentially smooth. This means that all points are
either smooth points or mildly singular, thus allowing the use of Kuranishi’s methods to describe open
neighborhoods of all points. The proof of this key technical detail uses the relation between the tangent
spaces for points in M(SO(p, ¢)) and hypercohomology spaces computed from a deformation complex.
The deformation complex has three terms, with the first term coming from infinitesimal automorphisms
and the third term encoding integrability obstructions. The crucial lemma establishes the vanishing
of the second hypercohomology, i.e. of integrability obstructions for infinitesimal deformations. This
is the first place where we exploit the natural C*-action on the moduli space. More precisely, it is the
special structure of the fixed points of the action which allows us to prove the vanishing results for
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the deformation complexes at those points. We then use an upper-semicontinuity argument to extend
the result to all points where it is needed. To show that the image of the map (1.2) is closed, the
properness of the Hitchin fibration is exploited.

The non-existence result also relies heavily on the fixed points of the C*-action and on their relation
to the critical points of the Hitchin function on M(SO(p, ¢q)). The properness of this function implies
that it attains its minimum on each connected component. The non-existence result thus follows from
a careful analysis of all the C*-fixed points, most of which is devoted to identifying which fixed points
correspond to local minima of the function. We show that these are of two types, namely those where
the Higgs field is identically zero, and those which lie in the new exotic components. Since the former
label the known ‘mundane’ components, this proves that we have not missed any components.

We now discuss a few consequences of our work for the SO(p, ¢)-representation variety R (.S, SO(p, q)).
Recall that a representation p : m1(S) — SO¢(2,1) is called Fuchsian if it is discrete and faithful and
that, since SOg(p — 1,p) is a split group of adjoint type, there is a unique principal embedding

(1.3) t:50¢(2,1) = SOg(p — 1,p) .

One consequence of our techniques is a dichotomy for polystable SO(p, ¢)-Higgs bundles (see Corollary
6.2). Translating this statement across the NAH correspondence leads to the following dichotomy for
surface group representations into SO(p, q).

Theorem 7.6. Let S be a closed surface of genus g > 2. For 2 < p < q— 1, the representation variety
R(SO(p,q)) of S is a disjoint union of two sets,

(1.4) R(SO(p,q)) = R (SO(p,q)) L R*(SO(p,q)) ,

where
e [p] € R’*(SO(p, q)) if and only if p can be continuously deformed to a compact representation,
e [p] € R(SO(p,q)) if and only if p can be continuously deformed to a representation

(1.5) p'=a® (Lo pruch) ® det(a) ,

where « is a representation of w1(S) into the compact group O(q —p+ 1), pruch is a Fuchsian
representation of w1 (S) into SOg(2,1), and ¢ is the principal embedding from (1.3).

Remark 1.7. For 2 < p = ¢ — 1, the above theorem does not hold. Namely, there are exactly 2p(g — 1)
exotic components of R(S,SO(p,p + 1)) for which the result fails. With the exception of the Hitchin
component, in [12] it is conjectured that all representations in these components are Zariski dense.

It is Theorem 7.6 which connects our work on the Higgs bundle side of the NAH correspondence
to the theory of Anosov representations. For a fixed parabolic subgroup P C G, a representation
p:m(S) — G is P-Anosov if there is an equivariant boundary curve

&y Osomi(S) = G/P

from the Gromov boundary of m1(S) to the flag variety G/P with certain dynamical properties (see
Definition 7.7). The set of P-Anosov representations defines an open set in the representation variety
consisting of representations with desirable dynamic and geometric properties. In [25], Guichard and
Wienhard show that for certain pairs (G, P), triples of transverse points in G/P admit a notion of being
positively ordered. For such pairs (G,P), an Anosov representation is called positive if the boundary
curve &, takes positively oriented triples in 71 (S) to positively ordered triples in G/P.

The set of positive Anosov representations is open in R(S,G) and conjectured by Guichard and
Wienhard to also be closed [25]. For the classical groups, the pairs (G,P) which admit a notion of
positivity come in three families: G a split real form and P is the minimal parabolic subgroup, G a
Hermitian group of tube type and G/P the Shilov boundary of the symmetric space, and G = SO(p, q)
with p < ¢ and P the stabilizer of the partial flag Vi C V5 C -+ C V,,_1, where V; C RP14 is an isotropic
j-plane. For the first two families the set of positive Anosov representations corresponds exactly to the
connected components of Hitchin representations and maximal representations respectively; thus, for
these families, positivity is indeed a closed condition. For the group SO(p, q), the conjecture is open.
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However, it follows from the work of Guichard and Wienhard that the model representation (1.5) is a
positive Anosov representation. Thus, as a corollary to Theorem 7.6 we have:

Proposition 7.13. Let P C SO(p, q) be the stabilizer of the partial flag Vi C Vo C --- C V,_1, where
V; C RPTY 4s an isotropic j-plane. If 2 < p < q — 1, then each connected component of R (SO(p,q))
from (1.4) contains a nonempty open set of positive P-Anosov representations.

For the group SO(p, q), we expect the exotic components described in this paper to correspond
exactly to the positive Anosov SO(p, ¢)-representations. Indeed, this would follow from Proposition
7.13 and a positive answer to the conjecture of Guichard and Wienhard.

Though our main results prove the existence of the first exotic components outside the realm of
higher Teichmiiller theory, evidence has been building for some time. The first indication came from
the local minima of the Hitchin function described above. While the absolute minimum, i.e. the zero
level, is attained on the components M®%¢(SO(p, q))top, in [3] the first author described additional
smooth local minima at non-zero values, thus opening up the possibility that further components exist.

The special case ¢ = p+ 1 provided a further early indication of the phenomenon which we see more
generally for any g > p, i.e. for the existence of additional exotic components. Hitchin components
were known to exist in M(SO(p,p + 1)) by virtue of the fact that the group SO(p,p + 1) is the split
real form of SO(2p + 1,C). The results in [12] show that these are not the only exotic components.
With the luxury of hindsight, we now see that the additional components in M(SO(p,p + 1)) coincide
exactly with the exotic components described by our main results for the case ¢ = p + 1.

We note finally that additional features of the connected components of M(SO(p, q)) have recently
been detected by Baraglia and Schaposnik (in [4]) by examining spectral data on generic fibers of
the Hitchin fibration for M(SO(p 4 ¢, C)). Their methods cannot distinguish connected components
because of the genericity assumption on the fibers, but, where they apply, their methods provide an
intriguing alternative perspective.

2. HIGGS BUNDLE BACKGROUND

In this section we recall the necessary background on G-Higgs bundles on a compact Riemann surface
and their deformation theory. Special attention is then placed on the group SO(p, q). Higgs bundles
were introduced by Hitchin in [26] and Simpson in [38], and have been studied extensively by many
authors. For real groups we will mostly follow [17]. For the rest of the paper, let X be a compact
Riemann surface of genus g > 2 and with canonical bundle K — X.

2.1. General Definitions. Let G be a real reductive Lie group with Lie algebra g and choose a
maximal compact subgroup H C G with Lie algebra h C g. Fix a Cartan splitting g = h & m, where m
is the orthogonal complement of j C g with respect to a nondegenerate Ad(G)-invariant bilinear form
(which is taken to be the Killing form when G is semisimple). In particular, [h, m] C m and [m, m] C b,
thus such a splitting is preserved by the adjoint action of H on g, giving a linear representation
H — GL(m). Complexifying everything yields an Ad(H®)-invariant splitting g© = h @ mC.

For any group G, if P is a principal G-bundle and a : G — GL(V) is a linear representation, denote
the associated vector bundle P xg V by P[V].

Definition 2.1. Fiz a C* principal HC-bundle P — X and a holomorphic line bundle L — X. An
L-twisted G-Higgs bundle structure on P is a pair (£,¢) where & is a holomorphic principal H®-bundle
with underlying smooth bundle P and ¢ € H°(X,Em% ® L) is a holomorphic section of the associated
mC-bundle twisted by L. The section ¢ is called the Higgs field.

Remark 2.2. As usual, when the line bundle L is the canonical bundle K of the Riemann surface, we
refer to a K-twisted Higgs bundle as a Higgs bundle. We are mainly interested in the case L = K,
however, taking L = K? will also play an important role.
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Ezample 2.3. Note that when G is a compact group, we have G® = H® and m® = 0, so a G-Higgs
bundle is just a holomorphic G®bundle on X. When G is a complex group, we have G = H® and
m® 2 g. In this case, the Higgs field is just an L-twisted section of the adjoint bundle.

Recall that a holomorphic structure on a C* principal HC-bundle P is equivalent to a Dolbeault
operator Jp, and that the space of such operators is an affine space modelled on Q%'(X, P[h%]). We
denote the space of L-twisted Higgs bundle structures on P by

(2.1) Hi (G, P)={(0p,p) | Opyp = 0},

where ¢ € Q°(X, P[m®|®L) is the Higgs field. The set of Dolbeault operators is an affine space modelled
on Q%1 (X, P[h€]) so Hz(G, P) can be identified with a subvariety of the vector space Q*!(X, P[h%]) x
QO(X, Pm%) @ L).

Since we are concerned with classical groups, rather than dealing with principal bundles, we will use a
linear representation a : H® — GL(V) and work with vector bundles and sections of associated bundles.
The standard representations of GL(n, C), SL(n, C) and O(n,C) on C" give the following vector bundle
definitions, which are of course equivalent to their corresponding principal bundle formulations given
by Definition 2.1.

Definition 2.4. An L-twisted GL(n, C)-Higgs bundle on X is a pair (E,®) where E — X is a rankn
holomorphic vector bundle and ® : E — E® L is a holomorphic L-twisted endomorphism. If A"E = O
and tr(®) = 0, then (E,®) is an L-twisted SL(n, C)-Higgs bundle.

Definition 2.5. An L-twisted O(n, C)-Higgs bundle is a triple (E,Q,®) where (E,®) is an L-twisted
GL(n, C)-Higgs bundle, Q is an everywhere nondegenerate holomorphic section of Sym?E* such that
OTQ + Q® = 0, where we are considering Q as a symmetric isomorphism Q : E — E*. If A"E = O,
then (E,Q,®) defines an L-twisted SO(n, C)-Higgs bundle.

The group O(p,q) is the group of linear automorphisms of RPT? which preserve a nondegenerate
symmetric quadratic form of signature (p, ¢). We are mainly interested in the subgroup G = SO(p, q) of
O(p, q) which also preserves an orientation of RP™%. The group SO(p, q) has two connected components
and the connected component of the identity is denoted by SOg(p, q).

If @, and @, are positive definite symmetric p X p and ¢ x ¢ matrices, then the Lie algebra so(p, ¢)
is defined by the matrices

~ T
o) = {(28) | (2B (¥ o)+ (¥ —0,) (2 B) =0},
where A is a p X p matrix, B is a p X ¢ matrix, C' is a ¢ X p matrix and D is a ¢ X ¢ matrix. Thus,

(2.2) ATQ,+Q,A=0, DTQ,+Q,D=0 and C=-Q;'BTQ,.

The maximal compact subgroup of O(p,q) is O(p) x O(g) and the maximal compact subgroup of
SO(p, q) is S(O(p) x O(q)). Using (2.2), the complexified Cartan decomposition of so(p, q) is

s0(p + q,C) = (so(p,C) ® so(q,C)) & Hom(W, V),

where V' and W are the standard representations of O(p,C) and O(g, C). Using these representations,
we have the following vector bundle definition of an SO(p, q)-Higgs bundle.

Definition 2.6. An L-twisted O(p, ¢)-Higgs bundle on X is a tuple (V,Qv, W, Qw,n) where

o V and W are respectively rank p and q holomorphic vector bundles on X, Qv and Qw are
respectively everywhere nondegenerate holomorphic section of Sym*V* and Sym?W*,
e n: W — V®& L is a holomorphic section of Hom(W,V) ® L.

An L-twisted SO(p, ¢)-Higgs bundle is an L-twisted O(p, q)-Higgs bundle (V,Qv,W,Qw,n) with the
extra condition AP(V') 2 AY(W). Finally, an L-twisted SOg(p, ¢)-Higgs bundle is an L-twisted SO(p, q)-
Higgs bundle (V,Qv, W, Qw,n) such that AP(V) = O = AY(W).
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Remark 2.7. We will usually interpret the orthogonal structures as symmetric isomorphisms:
Qv:V ——V* and Qw W —— W* .
Moreover, when the orthogonal structures are clear, we will omit them from the notation.

Ezample 2.8. For p = 1, an L-twisted SO(1, ¢)-Higgs bundle is a tuple (V,W,n) where V is a holo-
morphic line bundle I = AW with I? = O and n € H°(Hom(W,I) ® L). In particular, an L-twisted
SO(1, n)-Higgs bundle is determined by (W, 7).

Given an SO(p, ¢)-Higgs bundle (V, Qv , W, Qw,n), let

= Qun' Qv
The L-twisted SO(p + ¢, C)-Higgs bundle associated to (V, Qv, W, Qw,n) is given by
(2.3) EQo)=(vew (% 8,).(23))-

In subsequent sections, we will also need to the notions of U(p, ¢)-Higgs bundles and GL(n, R)-Higgs
bundles. The complexified Cartan decompositions for these groups are given by

u(p,9)° = (gl(p, C)  gl(q, C)) @ (Hom(E, F') & Hom(F, E))
gl(n,R)C = o(n, C) @ sym(C"),
where E and F are respectively the standard representations of GL(p,C) and GL(g, C) and sym(C™)

denotes the set of symmetric endomorphisms of C™. As above, we have the following vector bundle
definitions of the associated Higgs bundles.

Definition 2.9. An L-twisted U(p, ¢)-Higgs bundle on X is a tuple (E, F, 3,v) where

e E and F are holomorphic vector bundles on X, of rank p and q respectively;
e 3 € H'(Hom(F,FE) ® L) and v € H*(Hom(E, F) ® L).

An L-twisted GL(n,R)-Higgs bundle on X is a tuple (E,Q, ®) where

e FE is a rank n holomorphic vector bundle on X and Q is a everywhere nondegenerate holomor-
phic section of Sym?E*;
e ® c H'(End(E) ® L) such that ®1Q = Q®.

If A"E 2 O and tr(®) = 0, then (E,Q,®) is an L-twisted SL(n,R)-Higgs bundle.

2.2. The Higgs bundle moduli space and deformation theory. To form a moduli space of G-
Higgs bundles we need a notion of stability for these objects. In general, these stability notions involve
the interaction of the Higgs field with certain parabolic reductions of structure group (see [17]). For
the above groups stability can be simplified and expressed in vector bundle terms in the following way

(see [17]).
Proposition 2.10. An L-twisted SL(n,C)-Higgs bundle (E,®) is

o semistable if for every holomorphic subbundle F C E with ®(F) C F® L we have deg(F') <0,

e stable if for every proper holomorphic subbundle F C E with ®(F) C F®L we have deg(F) < 0,

e polystable if it is semistable and for every degree zero subbundle F C E with ®(F) C F ® L,
there is a subbundle F" with ®(F') C F' @ L so that E = F @ F'. That is,

B2 = (For, (s )).

Remark 2.11. For the notions of stability, semistability and polystability for an L-twisted O(n,C)-
Higgs bundles (E, Q, ®), one only needs to consider isotropic subbundles F C E with ®(F) C F @ K
(see for example [17]). Here a subbundle F' C E is isotropic if F C F* where F* is the perpendicular
subbundle defined by Q. For a polystable L-twisted O(n,C)-Higgs bundle, if F C F is a zero degree
isotropic subbundle with ®(F) C F ® L, then E = F @ F’ where F’ is a degree zero coisotropic
subbundle satisfying ®(F’) C F’ ® L. We note also that the polystability of (E, Q) as an orthogonal
vector bundle is equivalent to the polystability of W as a vector bundle [34].
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For real groups, the notions of semistability, stability and polystability are a bit more involved.
However, to define the moduli spaces we are interested in we may use the following result of [17].

Proposition 2.12. Let G be a real form of a simple subgroup of SL(n,C). An L-twisted G-Higgs
bundle (€, ) is polystable if and only if the induced SL(n,C)-Higgs bundle is polystable in the sense of
Proposition 2.10.

The gauge group Gye of C™ bundle automorphisms of a smooth HS-bundle Pyc acts on the space
H1(G, P) of L-twisted Higgs bundle structures from (2.1). Moreover, this action preserves the subspace
Hi (G, P)P* C HL(G,P) of polystable L-twisted Higgs bundles and the orbits of the Gyc-action on
Hr(G, P)P® are closed.

If (V,Qv) and (W, Qw) are respectively rank p and rank ¢ orthogonal vector bundles with APV =
AW, then the S(O(p,C) x O(g,C))-gauge group consists of pairs (gv,gw), where gy and gy are
smooth automorphisms of V' and W such that

9 Qvyy = Qv , 9w Qwaw = Qw and det(gv) @ det(gw) = 1d .
Such a gauge transformation acts on the data (V, W, n) by
(9v,gw) - (Ov, 0w, n) = (gvOvey', gwdwayw' gvngw') -

Definition 2.13. Fiz a smooth principal HC-bundle Pgc and a holomorphic line bundle L on X. The
moduli space M (Pyc,G) of L-twisted G-Higgs bundle structures on Pyc consists of isomorphism
classes of polystable L-twisted Higgs bundles with underlying smooth bundle Pyc,

ML(PHC,G) - HL(PHC,G)pS/gHC .

The union over the set of isomorphism classes of smooth principal HC-bundles on X of the spaces
M (Pye, G) will be referred to as the moduli space of L-twisted G-Higgs bundles and denoted by
Mp(G).

In the case L = K, we shall denote the corresponding moduli space just by M(G).

Remark 2.14. The moduli space Mr(G) of L-twisted G-Higgs bundles can also be constructed as
the set of S-equivalence classes of semistable G-Higgs bundles. Such a construction is a particular
case of a construction of Schmitt [36] using geometric invariant theory. In particular, My (G) is
naturally a complex algebraic variety. Suppose G is such that its maximal compact subgroup H C G
is semisimple. Then, for L = K, the expected dimension of M(G) is dim(G)(g — 1), while for L such
that deg(L) > 2g — 2, the expected dimension of M (G) is dim(h)(g — 1) + dim(m)(deg(L) +1 — g),
where we recall that h ®m is a Cartan decomposition of the Lie algebra of G. If the maximal compact
H C G is only reductive, then the expected dimension is obtained by adding dim(Z () Nker ad) to both
formulas, where ad : h — End(m) is the map induced by the linear representation Ad : H — GL(m).
See [26, 39, 36, 33, 17].

Remark 2.15. The moduli space of L-twisted G-Higgs bundles is homeomorphic to the moduli space of
solutions to the Hitchin self-duality equations. These are equations for a reduction of structure group
of the bundle to a maximal compact subgroup (see [17]). When L = K, this solution is sometimes
referred as a harmonic metric.

The automorphism group Aut(€, ¢) of a G-Higgs bundle (&£, ¢) is defined by
(24) Aut(€,¢) = {g € Gne| (Ady Ig, Adg @) = (Oe, )}
The center Z(G®) of G is the intersection of the center of H® and the kernel of the representation
Ad : H® — GL(m®). Thus, we always have Z(G®) C Aut(dg, ).

Remark 2.16. If G is semisimple, then a G-Higgs bundle is stable if it is polystable with finite au-
tomorphism group. In particular, if Hj (P,G) C HY7*(P,G) denotes the subset of stable Higgs bundle
structures, then H3 (P, G) is open in H7* (P, G).
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Given a polystable G-Higgs bundle (€, ¢), consider the complex of sheaves

(2.5) C*(E,¢) s EHY] 25 emS) @ L.

This gives a long exact sequence in hypercohomology:

(2.6) 0—H(C*(&,¢)) —— H(E[HY)]) e, HO(Em® ® L) — HY(C* (&, ga)))

L> H'(E[HC)) e H' (EmC]® L) — H2(C* (€, p)) ———— 0.

Remark 2.17. When the group G is complex, Serre duality implies that the second hypercohomology
group in this deformation complex is isomorphic to the dual of the zeroth hypercohomology group
[17, Proposition 3.17]. In particular, this implies that for, complex semisimple groups, H2(C* (&, ¢))
vanishes if and only if the Higgs bundle (&, ) is stable.

Note that the automorphism group Aut(€, ) acts on HY(C*®(€,¢)). Using standard slice meth-
ods of Kuranishi (see [30, Chapter 7.3] for details for the moduli space of holomorphic bundles), a
neighborhood of the isomorphism class of a polystable Higgs bundle (€, ¢) in M (G) is given by

K7H0) / Aut(€, 9)
where r : HY(C*(E€, ¢)) — H2(C*(E,¢)) is the so called Kuranishi map.

When H?(C*(&,¢)) = 0, this simplifies considerably. Namely, in this case, a neighborhood of the
isomorphism class of a polystable Higgs bundle (£, ¢) in M (G) is isomorphic to

H'Y(C*(E,¢)) /| Aut(E, ¢) .

When the automorphism group Aut(€,¢) is finite, the GIT quotient above simplifies to a regular
quotient, and the isomorphism class (€, ¢) defines at most an orbifold point of M (G).

Remark 2.18. For all of the SO(p, q)-Higgs bundles considered in the subsequent sections we will prove
that the relevant H? always vanishes. Thus, we will not recall the construction of the Kuranishi map.

2.3. Stability and deformation complex for G = SO(p,q). We shall need the precise notion of
stability SO(p, ¢)-Higgs bundles. The derivation of the following simplification of the stability notion
for SO(p, ¢)-Higgs bundles is very similar to many cases treated in the literature. For example, see [19]
for the case G = Sp(2p, 2q).

Proposition 2.19. Let (V,Qv, W, Qw,n) be an L-twisted SO(p, q)-Higgs bundle and let n* = Q' n* Qv .
Then it is

e semistable if for any pair of isotropic subbundles V4 C'V and Wy C W such that n(Wy) C V1®L
and n*(V1) C Wi @ L we have deg(V1) + deg(W7) < 0,

o stable if for any pair of isotropic subbundles Vi C V and Wy C W such that n(W;) C V1 ® L
and n* (V1) C W1 ® L we have deg(V7) + deg(W7) < 0,

e polystable if it is semistable and whenever Vi C V and W1 C W are isotropic subbundles of
with n(W1) € Vi @ L, n* (V1) € W1 ® L and deg(V1) + deg(W1) = 0, there are coisotropic
bundles Vo CV and Wo C W so that n(W2) C Vo ® L and n*(Va) C W ® L. That is,

(V,W,n) = (V1 @& Vo, Wy @ Wa, () 1?2)

We now give a recursive classification of strictly polystable SO(p, ¢)-Higgs bundles, which will be
important in the following sections of the paper.

Given a U(p, q)-Higgs bundle (E, F, 3,7) with deg(FE & F) = 0, consider the associated SO(2p, 2¢)-
Higgs bundle

(VuQV7VV7QW777): (EEBE*7(IOd161)7F®F*7(I%Ig)7(§VOT)) .
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If (E, F, 8,7) is a polystable U(p, q)-Higgs bundle, then this SO(2p, 2¢)-Higgs bundle is strictly polystable.
Indeed, E, E*, F and F* are all isotropic subbundles with deg(E) + deg(F') = 0 and
nF)CE®K, nF)CE*®K, nE)CF®K, and n*(E*)CF*®XK.

Proposition 2.20. An SO(p, q)-Higgs bundle (V,Qv,W,Qw,n) is polystable if and only if it is iso-
morphic to

2.7 EaE aV, (146 0 )\ Fearaw, (16 0 by
() @ @05 00 Qu ) S S2) 05 0 0 Qw, ’ 8’)’00 )

o

where (E,F,B,v) is a polystable U(p1, q1)-Higgs bundle and (Vy, Qv,, Wo, Qw,, m0) is a stable SO(p —
2p1,q — 2q1)-Higgs bundle.

Proof. Let (V,W,n) be a strictly polystable SO(p, q)-Higgs bundle and suppose E C V and FF C W
are isotropic subbundles of rank p; and ¢; respectively, such that deg(F) + deg(F) = 0 and

nF)CE®K and n"(E) CFK .

Since (V, W,n) is polystable, the bundles V and W split as V = FE ® V' and W = F & W' where V'
and W' are both coisotropic subbundles with the property

nWHcV' @K and 7(V)YcW e K.
Since the bundles E and F are isotropic, the bundles V' and W' are extensions of the form:

0—-FE+/E—V' —E*—0 and O0—FY/F—=W —F*—0.

We claim that the above extension classes vanish. For the bundle V' we have a holomorphic splitting
E @V’ and a smooth splitting £ @ E+/E @ E*. In this smooth splitting, the orthogonal structure Qv
and the d-operator on V' are isomorphic to

0 0 1Id _ om0 0
Qv | 0QpLp0 and Oy = 0 Op1,p « )

d o 0 0 0 Op«

where o € Q%! (Hom(E*, E*/E)). However, since the orthogonal structure Qy is holomorphic, we have
« = 0. By applying the same argument to the bundle W, we have the following holomorphic splitting

0 0 Id
(W, Qw) = (F@FL/F@F*, ( 0 Qpi,p 0))
Id 0 0

The conditions n(F) C E® K, n*(E) C F® K and n(W’) C V' @ K imply that n is given by

B0 0

n= (0 0 0T> :FOF+*/FOoF* — E®E-/EoE*.
00 ~

The tuple (E, F, 3,v) defines a polystable U(p1, ¢1)-Higgs bundle and

(V()vQVanOaQWoanO) = (EJ_/Ea QEL/EaFJ_/Fa QFL/FWTIO)

defines a polystable SO(p — 2p1, ¢ — 2¢1)-Higgs bundle. By iterating this process if necessary, we may
assume (Vo, Wy, no) is a stable SO(p — 2p1, ¢ — 2¢1 )-Higgs bundle. O

For the group SO(p, ¢) we have that the complexified Lie algebra of its maximal compact subgroup
is b = s0(p,C) @ s0(q,C). If (£, ) is an L-twisted SO(p, ¢)-Higgs bundle in the sense of Definition
2.1, let (V,Qv, W, Qw,n) denote the associated L-twisted SO(p, ¢) in the sense of Definition 2.6. Write

so(V)={a €End(V) | o Qv +Qva =0} and so(W)={8€End(W) | B"Qw + Qw3 = 0}.
Then the bundles £[h%] and E[m®] ® L are given by
Elso(p, C) @ s0(q,C)] = s50(V) @ s0(W) and Em® ® L = Hom(W,V) ® L.
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The deformation complex (2.5) is given by

(2.8) C*(V, W) : so(V) @ so(W) — s Hom(W, V) @ L ,
(,f)———n@B—(a®ld)®n

and the long exact sequence (2.6) is given by

(2.9) 0— HY(C*(V,W,n)) — H (s0(V) @ s0(W)) ad—; H°(Hom(W, V) ® L) — HY(C*(V, W, 77)))

Q H'(s0(V) EBso(W))ad—;]Hl(Hom(VV, V)® L) — H2(C*(V,W,n)) ———— 0 .

We will use the above complex and long exact sequence extensively throughout the paper.

2.4. The Hitchin fibration and Hitchin component. Let G® be a complex semisimple Lie group
of rank ¢ and let py,...,p; be a basis of GC-invariant homogeneous polynomials on g€ with deg(p;) =
m;+1. Given an L-twisted GC-Higgs bundle (€, ¢), the tensor p; (i) is a holomorphic section of L™+,
The map (£, ¢) — (p1(®),...,pe(p)) descends to a map

4
(2.10) h: Mp(GE) —— @@ H (L™

Jj=1

known as the Hitchin fibration. In [27], Hitchin showed that h is a proper map for L = K, and for
general L properness was shown by Nitsure in [33]. The properness of the Hitchin fibration will play
a key role in Section 4.

Another important aspect of the Hitchin fibration for this paper is the Hitchin section.

Theorem 2.21. (Hitchin [28]) Let G be the split real form of a complex semisimple Lie group G of
rank . There is a section sy of the fibration (2.10) with L = K, such that the image of sy consists of
G-Higgs bundles. Moreover, the map

4
sg: @ HO(K™ ) — M(G)

J=1

‘
maps the vector space @ HC(K™i*Y) homeomorphically onto a connected component of M(G).
j=1

Remark 2.22. For a split real group G, a connected component of M (G) described by Theorem 2.21
is called a Hitchin component. When GC is an adjoint group, their is exactly one Hitchin component.
Since the Hitchin component is smooth, the automorphism group of a Higgs bundle in a Hitchin
component is as small as possible. For O(p,p — 1), it is given by +(Idy, Idw).

We now describe an explicit construction of such sections for G€ = O(2p — 1,C). This construction
will be used in Section 4. We will construct one such section si; for each choice of a holomorphic line
bundle I with 12 = O. In this case, the rank is p — 1, the integers m; + 1 equal to 2j and the split real
form is isomorphic to O(p,p — 1). Therefore the Hitchin section is given by

sk @HO(KQj) — M(O(2p—1,0C)).

j=1

For each n, consider the holomorphic orthogonal bundle

(2.11) (K, Qn) = <K”@K"2 o OoK*"o K", ( 1) >
1
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p—1 )
For (g2,...,q2p—2) € @ H°(K?%), the O(p,p — 1)-Higgs bundle (V,Qv, W, Qw,n) in the image of a

Jj=1

Hitchin section sk is given by
(212) 51111((]27 e 7q2p—2) = (I & ICp—la Qp—17 I & ICp—27 Qp—?u U(Q% e 7q2p—2))7
where 7(g2,...,q2p—2) depends on a choice of the basis of invariant polynomials. Notice that, in

particular, the holomorphic structures on V=1 ® K,—1 and W = I ® KC,_2 are fixed. One choice for
77(an s aq2p72) is given by

a2 q4 - G2p-2
1 g - qop-u
(213) ’I](QQ,...,QQP,Q): : I®ICP,2—>I®ICP,1 ® K .
1 qz
1

For example, when p = 3 we have
(VuQV7VV7QW777(q27q4)) = (IKQ@IEBIK?{ (1 1 1) 7IK@IK717(1 1),((112 gz)) .

Using (2.3), the associated O(5, C)-Higgs bundle is given by
1 00
00
(E,Q,@)—(IKQGBI@IKQ@IK@IK1,<11 1), 00
- q2
-1 01

One computes that tr(®?) = 8¢z and tr(®?) = 20¢3 + 8q4, so the above description describes the
Hitchin section for the basis pi(®) = £ tr(®?) and py = £ tr(®*) — 2 (tr(9?))%.

2.5. Topological invariants. Since HC and G are both homotopy equivalent to H, the set of equiva-
lence classes of topological HC-bundles on X is the same as the set of equivalence classes of topological
G-bundles on X. Denote this set by Buny (G). This gives a decomposition of the Higgs bundle moduli
space:

MG = [ Mi@G),

a€Bunx (G)

where a € Buny(G) is the topological type of the underlying H®-bundle of the Higgs bundles in

In general, the number of connected components of the moduli space of K-twisted G-Higgs for a
simple Lie group G has not been established. However, there have been many partial results. For
instance, when G is compact and semisimple, the spaces M?(G) are connected and nonempty [35].
Using Example 2.3, this implies the following proposition.

Proposition 2.23. If G is a connected real semisimple Lie group such that the mazimal compact
subgroup H is semisimple, then, for each a € Bunx(G), the space M*(G) is nonempty. Moreover,
each component M*(G) contains a unique connected component with the property that every Higgs
bundle in it can be continuously deformed to a Higgs bundle with zero Higgs field.

The above proposition implies that, when G is a semisimple complex Lie group, the space M%(G)
is nonempty for each a € Bunx (G). In fact, each of the spaces M%(G) is connected. This was proven
for connected groups by Li [32] and in general in [18]. In particular, we have the following;:

Corollary 2.24. If G is a semisimple complex Lie group, then every Higgs bundle (€, ) € Mk (QG)
can be continuously deformed to Higgs bundle with vanishing Higgs field. In particular,

[mo(M(G))| = [Bunx (G)].
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A semisimple Lie group G whose maximal compact subgroup is not semisimple but only reductive
is called a group of Hermitian type. We will discuss this case in more detail in Section 6.2.

For p = 1, O(1) & Zy and O(1)-bundles are classified by their first Stiefel-Whitney class swy €
HY(X,Zs). For p > 2, topological O(p)-bundles have two characteristic classes, a first Stiefel-Whitney
class and a second Stiefel-Whitney class swy € H?(X,Z2). When the first Stiefel-Whitney class van-
ishes, the structure group can be reduced to SO(p). Since SO(2) is a circle, the second Stiefel-Whitney
class of an O(2)-bundle lifts to the degree of a circle bundle when sw; = 0. However, as an O(2)-
bundle, it is only the absolute value of the degree which is a topological invariant. For p > 2, the
Steifel-Whitney classes classify topological O(p)-bundles over X.

We will be particularly interested in the case of KP-twisted SO(1,n)-Higgs bundles and K-twisted
SO(p, q)-Higgs bundles. Since the maximal compact subgroup of SO(p, q) is S(O(p) x O(q)), the Higgs
bundles are determined by two orthogonal bundles which have the same first Stiefel-Whitney class.
Let M$"(SO(p, q)) denote the subset of SO(p, ¢)-Higgs bundles (V, Qv, W, Qv,7) so that

a = swi(V,Qv) = swi (W, Qw) b= swa(V,Qv) and c = swa(W, Qw ).
These invariants are constant on connected components, thus we have a decomposition
(2.14) M(SO(p.q)) = [T M7"“(SO(p.q)) -

Note that when p = 1 the invariant b is zero and when ¢ = 1, the invariant ¢ = 0.

We now focus on the special case of KP-twisted Higgs bundles, with p > 1, for the group SO(2,q)
with ¢ > 1, and with vanishing first Stiefel-Whitney class. Let (V,W,n) be a polystable KP-twisted
SO(2, q)-Higgs bundle with sw; (V) = 0. Then there is a line bundle L so that the SO(2,C)-bundle
(V, Qv ) is isomorphic to

(V,Qv) = (Lo L7 (95)) -

With respect to this splitting, the Higgs field  : W — V ® KP decomposes as
n=(4):W—=(LaL")® K"
When ¢ = 2 then W also splits as W = M @ M ~!. With respect to these splittings we have
n=(35) MoM ' (LeoL ) e KP.

Moreover, as described in Section 6.2, polystability puts constraints on the degree of L (and also on
the degree of M if ¢ = 2).

3. THE C*-ACTION AND ITS FIXED POINTS

In this section we recall the definition of the C*-action on the Higgs bundle moduli space and discuss
its importance. The action of C* on the L-twisted Higgs bundle moduli space is defined by scaling
the Higgs field. Namely, if (£, ) is an L-twisted G-Higgs bundle, then, for A € C*, (£, )\ - ) is also
an L-twisted G-Higgs bundle. Since this action clearly preserves notions of (poly)stability, we have a
holomorphic action on the moduli space. Using the properness of the Hitchin fibration, it can be shown
that if (£, ) is the isomorphism class of a polystable L-twisted G-Higgs bundle, then, for A € C*, the
limit )1\imo(8, A - ) exists and is a polystable fixed point of the C*-action [38].

—

Notation 3.1. Note that we have denoted the isomorphism class of a Higgs bundle and the Higgs bundle
itself with the same symbol. The context will always clarify which object we are referring to.

Consider the function on the moduli space of K-twisted G-Higgs bundles which assigns the L2-norm
of the Higgs field with respect to the harmonic metric solving the self-duality equations:

(3.1) [ M@G) - R, @wwéwm
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Note that f is non-negative and zero if and only if ¢ = 0. Using Uhlenbeck compactness, Hitchin
showed that the map f is proper [27]. Moreover, the critical points of f correspond exactly to the fixed
points of the C*-action.

We will refer to the function f as the Hitchin function. Since it is a proper function, it attains its
local minima on each closed subset of M(G). In particular, if Min(M(G)) C M(G) denotes the subset
where f attains a local minimum, we have

7m0 (M(G))] < [mo(Min(M(G)))].

Thus, the Hitchin function can be used to study the connected components of the moduli space of
G-Higgs bundles.

We now describe the structure of the L-twisted Higgs bundles at the fixed points of the C*-action.
A detailed understanding of this structure is used extensively in the proofs of our main results. If
(€,0) € ML(G) is such a fixed point, there is a one parameter family g, of holomorphic gauge
transformations of £ which realize the C*-action: Adg, -¢ = Ap. For each point x € X the gauge

e
g;(-: by M -1d. Since gy(z) € HE, this grading respects the Cartan decomposition, namely, g;(-: = h?@m?

M
transformation gy gives a weight space grading on the Lie algebra g© = @ gg-:, where g)(z) acts on
M

The holomorphicity of gx defines a weight space splitting of the Lie algebra bundles
M M
Ep°I= P &b and EmEl@ L= @ EmfleL.
j=—M j=—M

Moreover, the Higgs field takes values in the weight one space: ¢ € H(€[m$] ® L). Thus, for such a
ad, . .
fixed point (&, ¢), the complex C* = C*(&,p) : E[HY] —= E[m®] ® L defined in (2.5) splits as

(3.2) Cr e ES) s gme, @ L,

yielding a corresponding splitting of the long exact sequence in cohomology from (2.6):

(33) 00— HOCD) —— HOEBE]) — > HO(E[mE, ] ® L) —— Hl(C,;))

L HY(E[BE)) —= BV (E[m,,] ® L) —— H2(C) ————— 0,

When L = K and (€, ¢) is a smooth or orbifold point of M(G), the spaces H'(C}) can be interpreted
as the eigendirections (for eigenvalue —k) of the Hessian of the Hitchin function f. In particular, when
such a fixed point is a local minimum of f, we have H'(Cp) = 0 for all £ > 0. In fact, we have the
following criterion for such local minima of f (see [3, Section 3.4]).

Proposition 3.2. If (£, ) is a K-twisted G-Higgs bundle which is a fized point of the C*-action such
that HO(C*®) = 0 and H2(C®) = 0, then (€, ) is a local minimum of the Hitchin function f if and only
if either ¢ = 0 or the map (3.2) is an isomorphism of sheaves for every k > 0.

The following result will help us show the vanishing H?(C*®) for relevant Higgs bundles.
Lemma 3.3. If (£, ) is a polystable L-twisted Higgs bundle and (&',¢") = iirr%)(é', Ap), then
—

dim (H*(C*(£,¢))) < dim (H*(C*(£',¢'))).

Proof. If (€, ) is fixed by the C*-action then we are done. If (€, ¢) is not fixed by C*, then consider
the C*-family (&, Ap). Since ;in% (€, \n) exists, we can extend this to a family over A!, hence the result
—

follows by semi-continuity of H?Z. O
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Ezample 3.4. The above minima criterion was used in [28] to classify all local minima for the group
SL(n,R) and in [6] to classify all local minima for the group U(p, q) (cf. Definition 2.9). For SL(n,R),
the only local minima (F, @, ®) with nonzero Higgs field are the ones defining the Hitchin components.
More precisely, they are given by

. 0
E— K02 g .. g g1-n/2, Q_< >and <I>—<1.(? . )
1 10

For the group U(p, q), all minima (F, F, 8, ) have either § =0 or v = 0.

3.1. SO(p, q)-fixed points. We now focus on the details of fixed points of the C*-action on the L-
twisted SO(p, ¢)-Higgs bundle moduli space. Let (V, W, n) be a polystable SO(p, ¢)-Higgs bundle with
(V,W,n) = (V,W,An) for all A € C*. If n # 0, then for each A there are holomorphic orthogonal gauge
transformations g;/ and gKV of V and W such that (g/‘\/)_l K g}\’V = A\n.

Let V.= @ V, and W = @ W, denote the eigenbundle decompositions of gY and g¥ respectively,
veR neER

so that g/‘\/|vu = A\ -Idy, and gKV|WM = M Idw, . Since the gauge transformations g/‘\/ and gKV are
orthogonal, two eigenbundles V,, and V,, or W, and W, are orthogonal if v + v/ # 0 or u+ p/ # 0.

For all weights p and v, we have n(W,) C V41 ® L and n*(V,)) C W41 ® L. Thus, n = >_1, and
n* =3 nk, where

(3.4) N =nlw, : W, — V1 ®L and =0, :V, — W41 QL.

In particular, the eigenvalues of g) and g}V are related via n and *, and each set of eigenvalues is of
the form {A\=% A=% .. . A*=1 A%} Thus the eigenbundle decompositions of V' and W are of the form

(3.5) V=V,oVi,® -3V, 1DV, and W_ e ®dWi_e® - D We_1 & W,
for some half-integers r and s. Notice that Qun = —n7Qy and (3.4) imply that 2r and 2s have the
same parity, i.e. the number of summands in (3.5) are either both even or both odd.

We summarize the above characterization of C*-fixed points in the following proposition.
Proposition 3.5. If (V,W,n) is a polystable L-twisted SO(p, q)-Higgs bundle which is a fixed point of
the C*-action with 1 # 0, then there are half-integers r and s with 2r = 2s (mod 2) such that

V=8V and W= wW;.
j==r j

j==s

Moreover, the corresponding quadratic forms define isomorphisms V; = V=, and W; = WX, and the
Higgs field n: W — V @ K splits as a sum n =Y. 1n; with n; : W; — Vj11 ® L.

Notation 3.6. By the preceding proposition, a Higgs bundle (V, W, n) which is a C*-fixed point can be
represented by one of the following holomorphic chains:

* * *

- _ n* n-;
(3.6) VL s W T Ve W Y
: . @ .
T2 W_2 n-2 V—l Mo WO Ul Vl -2 W2 72
or
N-5/2 77I/2 N-1/2 nis/z n3/2
(3.7) = Vg ——= W) Vijo W39
"§/2 n-3/2 77’11/2 /2 77’:5/2
Wi g ——V_1,9 W12 Vs /o

where each chain ends with a subbundle of V' or W depending on the parity of r and s. For simplicity
of notation, we have suppressed the twisting by L from the Higgs field. This will be done every time
we use these chain representations.
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Proposition 3.5 provides a characterization of polystable C*-fixed points with non-vanishing Higgs
field. The next result shows that stability imposes further conditions on such fixed points.

Proposition 3.7. If (V,W,n) is a stable L-twisted SO(p, q)-Higgs bundle which is a C*-fized point,
then each component of the Higgs field is nonzero and the maximal weights r and s in Proposition 3.5
are integers (i.e. it is represented by a chain of type (3.6)).

Proof. Suppose (V,W,n) is represented by (3.7), i.e., 2r =2s =1 (mod 2). Consider the subbundles
V/:"'@V_3/QEBV1/2@"'CV and W/:"'@W_l/g@W3/2@"'CW.

The bundles V' and V'* define non-trivial isotropic subbundles of V', and the bundles W’ and W'*
define non-trivial isotropic subbundles of W. Since deg(V"’) + deg(W') = — deg(V"*) — deg(W’*), such
an SO(p, ¢)-Higgs bundle is not stable. If one of the maps in (3.6) is identically zero, then the chain
splits as A® B @® A* where A is a subchain consisting of isotropic subbundles and A* is the dual chain.
This again contradicts stability. 0

3.2. Fixed points on M(SO(2,2)). Fixed points of the C*-action in M (SO(2, 2)) are particularly easy
to describe using (3.6) and (3.7). Let (V, W, n) be an SO(2, 2)-Higgs bundle. If swy (V) = swy (W) #£ 0,
then neither V' nor W have holomorphic isotropic subbundles, thus (V, W, n) is a fixed point if and
only if n = 0. If swy (V) = swi (W) =0,then V=L& L' and W = M & M~! where L and M are
isotropic line bundles. Up to switching the roles of L, M, L~! and M !, the holomorphic chains are
given by

(3.8) RN PRIV

Polystability of the associated Higgs bundle puts certain constraints on the degrees of L and M,
depending on the shapeof n: M @ M~' - LK ® L™ 'K.

Proposition 3.8. FEvery fized point in M(SO(2,2)) is a local minimum.

Proof. Take a fixed point (V, W, n) in M(SO(2,2)) with non-vanishing Higgs field. Up to switching the
roles of V and W, it must be of the form (3.8). Hence we see that V = L @ L~! has weight 0, while
M C W has weight —1 and M~ C W has weight 1. It follows that the corresponding positive weight
subcomplexes C§ and C§ are both zero, and hence so are H!(C?) and H*(C§). This implies that (3.8)
is a local minimum because any non-trivial deformation of (V, W, n) in M(SO(2,2)) which decreases
the value of the Hitchin function must correspond to a non-trivial direction in H*(C?) & HY(Cs). O

3.3. SO(1,n)-fixed points and local structure of Mg»(SO(1,n)). We now focus on KP-twisted
SO(1, n)-Higgs bundles which are fixed by the C*-action. These results will be used in the next section
to describe the exotic connected components of M(SO(p,q)). Recall from Example 2.8 that a KP-
twisted SO(1, n)-Higgs bundle is a triple (I, W, n) where W is a rank n holomorphic vector bundle with
an orthogonal structure Qyw, I = A"W and n € H°(Hom(W,I) ® KP).

Lemma 3.9. If (I,W,n) is a polystable KP-twisted SO(1,n)-Higgs bundle which is a C*-action fized
point with n # 0, then it decomposes as

(LW = (LW eWeaW, (1 0 0)),

where Wy is a polystable orthogonal bundle and W1 = WX, . Furthermore, (I, W_ie Wi, (77,1 O)) 15 a
stable KP-twisted O(1,n')-Higgs bundle which is stable as a KP-twisted O(n’ + 1, C)-Higgs bundle. In
the notation of (3.6), such a (I,W,n) is given by the chain
wo, s
@
Wo
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Proof. The first part of the statement follows directly from Proposition 3.5. Since the bundles W and
W_y are isotropic, if W7 has a degree zero subbundle U, then W_; has U* as a subbundle contained
in the kernel of n_; by polystability. We may thus assume that the invariant polystable orthogonal
subbundle U* ® U is a summand of Wy. Now since (W_q @ W1, 1, (n-10)) is a stable O(1,n’)-Higgs
bundle, the associated O(n’ + 1, C)-Higgs bundle is stable by Proposition 2.7 of [2]. O

2
At a C*-fixed point, we have so(I) = 0 and End(W_, & Wy & W1) = @ End;(W), where

j=—2
EndQ(W)* = End,Q(W) = HOHl(Wl, Wfl),
End; (W)* = End_1 (W) = Hom(W1, Wy) @ Hom(Wy, W_1),
Endy(W) = End(W_,) & End(Wo) & End(W).
2
This gives a grading on so(W) = @ so;(W), where
j=—2
s02(W)* = s0_o(W) = {8 € Hom(W1,W_1) | B+ " =0},
501(W)* = 50_1(W) = {(ﬁ, —B*) S End_l(W)},
s00(W) = {(B-1, 80, =B1) € Endo(W) | Bo + 5 = 0}
Also, Hom(W, I) ® K? = Hom_1 (W, I) ® K? @ Homo(W, I) ® K? @ Hom; (W, I) ® KP, where
Homy (W, I) ® K?» = Hom(W+1,I) @ K? and Homo(W, I) ® K? = Hom(Wy,I) ® KP.
Corresponding to each subcomplex C}, the above splittings give ad,, : s0;,(W) — Homy 1 (W, )@ K?

for k = —2,...,2. Note that C} is defined by composing with n_;. For each such k, this yields the
long exact sequence in cohomology

(3.9) 0 —— HO(CP) —— HO(s04(W)) ——— HO(Homy1 (W, IKP)) — Hl(C,;))

Q H(s0,(W)) Sy H'(Homg (W, IK?)) ——— H*(C}) ———— 0.

Lemma 3.10. Forp > 1, if (I, W, n) is a polystable KP-twisted SO(1,n)-Higgs bundle, then the second
hypercohomology group H2(C*®(I,W,n)) vanishes.

Proof. By Lemma 3.3, to show that H?(C*®(I, W, n)) vanishes it suffices to show the vanishing of each
graded piece of (3.9) at a fixed point of the C*-action. Such fixed points are given by Lemma 3.9.

First note that H?(Cg) = 0 for k > 1 since Homy1(W,I) = 0 for k > 1. Stability implies W; and
W have no positive degree subbundles, and, by Serre duality, we have
HY(Hom(IKP~1 Wh))* k= -2
HY(Hom(IKP~', Wy))* k=—1.
Thus, since p > 1, H*(Homy1 (W, IKP?)) =0 for k < —1.

Finally, the form of the Higgs field implies the kernel of ad, : soq(W) — Homy(W,I) @ K? is
s0(Wp). Hence, H?(Cg) injects into the second hypercohomology group of the stable O(1,n’)-Higgs

bundle (I, W_1 & Wy, (17,1 O)) The associated O(n’ 4 1, C)-Higgs bundle is stable by Lemma 3.9, so
this hypercohomology group vanishes by Remark 2.17. O

Lemma 3.11. Ifp > 1 and (I,W,n) = (I, W_i & Wy Wy, (77_1 0 O)) 18 a polystable KP-twisted
SO(1, n)-Higgs bundle which is fized by the C*-action, then

H'(Homy, (W, IK?)) = {

HO(C*) = HO(so(Wp)) and HN(C*) = @D HY(C}),

where s0(Wy) is the bundle of skew-symmetric endomorphisms of Wy with respect to Qu. Moreover,
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H'(C3) = H'(s02(W)) = {8 € Hom(W_1, W1)|8 + 8* = 0},
e H'(C?) = H'(Hom(W_1,Wy)),
H'(C8) = H'(so(Wp)) @ H}, where H is defined by the sequence

0 —— HOY(End(W_1)) —— HO(Hom(W_,, IK?)) — ]HI}))

L HY(End(W_1)) — H(Hom(W_1, IK?)) —— 0 |,
e H!(C*,) is defined by the sequence
0 — HO(Hom(Wo, W_1)) == H°(Hom(Wo, IK?)) — H(C® ) — H' (Hom(Wo, W_1)) — 0 ,
e H!(C*,) is defined by the sequence
0 — H(s0_o(W)) = HO(Hom(Wy, IKP)) — H(C*,) — H'(s0_o(W)) — 0 ,
where so_o(W) = {8 € Hom(Wr,W_41)|8 + 8* = 0}.

Proof. By Lemma 3.9, a C*-fixed point is given by (I, W,n) = (I, W_1 e Wy e Wh, (n_1 0 O)), where
W) is a polystable orthogonal bundle and (I, W_1 @ W1, (n-10)) is a stable O(1, n’)-Higgs bundle such
that the associated O(n’ + 1,C)-Higgs bundle is also stable. In particular, W; has no non-negative
degree subbundles and Wy has no positive degree subbundles. Recall that in the proof of Lemma 3.10
it was shown that H*(Homy1(W,IKP?)) =0 for k < —1.

For k = 2, we have C§ : s0o(W) — 0, thus, HY(C$) = H%(s02(W)) and H(C3) = H'(s02(W)). In
particular, H°(C$) injects into the zeroth hypercohomology group of the deformation complex of the
O(1,n')-Higgs bundle (I, W_1 @ Wy, (n-10)), which vanishes by stability.

For k = 1, so; (W) = Hom(W_1, Wy) and C} : s01(W) — 0 imply H(C?) = H°(Hom(W_1, Wp))
and H'(C?) = H'(Hom(W_1,Wy)). The vanishing of H°(Hom(W_1,Wy)) = H°(Hom(Wy, W1)) fol-
lows from stability. Namely, any nonzero homomorphism f : Wy — W3 defines a non-negative degree
subbundle of W7, contradicting the stability of (I, W_q @ Wy, (n-10)).

For k =0, C§ : s00(W) — Homy (W, I) ® K? is given by

OO. : End(Wfl) @EO(Wo) — HOm(Wfl, I) X Kp, (ﬂfl, ﬂo) — 77,1['371.

Thus, we can split C§ as C§ = C3' @ C" with € : End(W_;) =% Hom(W_,,I) ® K? and
Cy" : s0(Wy) — 0. The hypercohomology groups split accordingly, hence

HO(Cy") = HO(so(Wy)) and HY(Cy") = H (so(Wy)) .
For Cy', HY(C3") = 0 by stability of (I, W_1 & W1, (n—1 0)). Thus, if Hj = H*(Cy""), we have

0 —— HOY(End(W_1)) — HO(Hom(W_,, IK?)) — H}))

C_m (End(W_1)) —— H'(Hom(W_y,IK?)) ——0 .

For k = —1, we have H'(Homo(W, IK?)) = 0 and C*, : Hom(Wy, W_;) = Hom(Wo, I) ® K?.
Thus,

0 —— HO(C*® ) —— HO(Hom(Wo, W_1)) —— HO(Hom (W, IKP)))

L H'(C®,) —— H'(Hom(Wy, W_4)) ———— 0.

It remains to show that H°(C®;) = 0. If N is the kernel of n_1 : W_; — IKP, then H°(C®,) =
H°(Hom(Wy, N)). If N = 0 we are done so suppose N # 0. Stability of (I, W_1 & W, (17,1 O))
implies deg(N) < 0 and moreover N has no non-negative degree subbundles. A non-zero section
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B € H°(Hom(Wy, N)) must have a non-trivial kernel since otherwise 8(Wy) C N would define a non-
negative degree subbundle. However, this implies that deg(ker(S)) > 0, contradicting the polystability
of Wy. We conclude that H°(Hom(Wp, N)) = 0, and thus H°(C*®;) =0

Finally consider the case of C'®, : s0_o(W) 2dn, Hom(Wh,I)® KP. As in the case k = 2, stability of
the O(1,n’)-Higgs bundle (I, W_; & W1, (n-10)) implies H°(C*®,) = 0. The group H'(C*,) is defined
by the exact sequence in the statement of the lemma since H!(Hom(W;,IK?)) = 0. O

4. EXISTENCE OF EXOTIC COMPONENTS OF M (SO(p, q))

In this section we will prove the following theorem exhibiting connected components of M (SO(p, q))
which are not distinguished by primary characteristic classes for p > 2.

Theorem 4.1. Let X be a compact Riemann surface with genus g > 2 and canonical bundle K.
Denote the moduli space of KP-twisted SO(1,q— p+ 1)-Higgs bundles on X by Mg»(SO(1,q—p+1))
and the moduli space of K -twisted SO(p, q)-Higgs bundles on X by M(SO(p,q)). For 1 < p < q, there
is a well defined map

(4.1) U Mgr(SO(1,q—p+1)) x T H(K?) —— M(SO(p, q))

S

<.
Il

which is an isomorphism onto its image and has an open and closed image. Furthermore, if p > 2
then every Higgs bundle in the image of ¥ has a nowhere vanishing Higgs field.

Remark 4.2. As a direct corollary of the above theorem, we have that, for p > 2,
|70 (M(SO(p.q)))| = 22972 + |mo (Mxk»(SO(1,q — p+1)))]|.

In particular, there are connected components of M(SO(p,q)) which are not distinguished by the
Stiefel-Whitney classes of the underlying orthogonal bundles. In Theorem 6.1 we will show that the
above inequality is in fact an equality.

Remark 4.3. The space of holomorphic differentials H°(K?/) can be identified with the moduli space
M2 (SOg(1,1)) = Mgo; (RT). In Section 7.3, this identification will be used to interpret the compo-
nents from Theorem 4.1 as a generalized Cayley correspondence.

4.1. Defining the map ¥. Recall that a KP-twisted SO(1, n)-Higgs bundle is a triple (I, W , 1), where
W is a rank n vector bundle with an orthogonal structure Qw I = A"W and §) € HO (Hom(W IQKP).

Let Hg»(SO(1,q — p + 1)) denote the configuration space of all KP-twisted SO(1,q — p + 1)-
Higgs bundles and let H(SO(p, ¢)) denote the configuration space of all SO(p, q)-Higgs bundles. That

is, Hi»(SO(1,¢ — p + 1)) consists of pairs (5A 7)) where 8A is a Dolbeault operator on W, N €

Ql’O(Hom(W,Aq_p"’lW)) such that 07 = 0 and 95Q = 0. The space H(SO(p,q)) is defined
analogously.

p—1 .
Recall that the Hitchin section s, : @ HO(K?) — M(SO(p,p — 1)) is given by (2.12), and that
j=1

1
1
Recall that the Higgs field in the image of si; is given by n(q2,...,q2p—2) 1 I ®Kp2 > @K, 1 @ K,
as in (2.13).
Define the map

p—1
(4.2) U Hir(SO(L,q —p+1)) x ) H(K*) —— H(SO(p, q))
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by

(4.3) (L, W,0),q2s- -, Gop2) = (I®/Cp—1,ﬁ/\®f®’€p—2, (776;7 n(qz; - - -viJprz)))

where

n
N = <0> W —— I (KPeKP 23 aK*?P)=10K,1 9K .
0

It is clear that the map ¥ is continuous.

—~ p—1 )
Lemma 4.4. For (I, W,1,q2,...,q2p—2) € Hrr(SO(1,q —p+1)) x @ H(K?), the SO(p, q)-Higgs

j=1
bundle \T!(I, W, 1,2, ... ,qop—2) is (poly)stable if and only if the KP-twisted SO(1, ¢—p+1)-Higgs bundle
(I, W,7) is (poly)stable.

Proof. Fix (I, W.hqs, ..., Gap—2) € Hir(SO(1,g—p+1))x @ HY(K?7). Recall that an SO(p, q)-Higgs

bundle is polystable if and only if the associated SL(p+ g, (C) nggs bundle is polystable Suppose first

that go; = 0 for all j. Then the SL(p+g¢, C)-Higgs bundle associated to the image of \I/(I W ,17,0,...,0)
is represented by

Jau iy § e sn N N § (e
i ii; U

To check (poly)stability for such a “cyclic” Higgs bundle, it suffices to show that each of the bundles in
the above cycle do not contain an invariant destabilizing subbundle (see Proposition 6. 3 of [37]). Thus

(I, W,7,0,...,0)is polystable if and only if there are no destabilizing subbundles of W in the kernel
of 7, that is, 1f and only if (1, W ,7) is polystable. Furthermore, since \IJ(I W ,1,0,...,0) is strictly
polysgable if and only if W contains a degree zero isotropic subbundle in the kernel of 7, we conclude
that ¥(I,W,7,0,...,0) is stable if and only if (I, W,7) is stable.

Now suppose (g2, ..., q2p—2) # (0,...,0) and let (V,W,n) = \TJ(I, W, 0,q2,...,q2p—2) be given by
(4.3). For A € C*, consider the following holomorphic orthogonal gauge transformations of V- and W

e Idg
AP
gv = . and gw =

Ap—1t

\2TP
At

. -

Using the description of si; from (2.12) and (2.13), a straightforward computation shows that
(44) (gv.gw) - (V. W, ) = U(LW, N3, X2, Mg, NP g2y 0).

Assume (I,W,ﬁ) is stable. In particular, (I, W /\pn) 1s a stable KP-twisted SO(1,q — p + 1)-Higgs
bundle for all A € C*. By the above argument, \IJ(I W AP7,0,...,0) is also stable for all A € C*.
Hence, by the continuity of ¥ and since stability is an open condition (cf. Remark 2.16), there is a

p—1 . ~ —~
neighborhood U of (0, ...,0) € @ H°(K?%) such that W(I, W, NP7, \2q2, \*qu, ..., A\?P"2qo, o) is stable
j=1
for (A%qa, ..., A?P72qa, o) € U i.e. for small \. From (4.4), (V, W, \n) is stable, and thus, (V,W,n) is
also stable. This argument is reversible, so (V, W, ) is stable if and only if (I, W,7) is stable.

Assume now that (7, W, 7)) is strictly polystable. By Proposition 2.20, there is ¢’ satisfying p — 1 <
¢’ < g, such that

(I,W, i) = (W’ oW, (i o)) ,
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where (I, /V[7’, 7)) is a stable KP-twisted O(1, ¢’ —p+1)-Higgs bundle and W is a polystable orthogonal
bundle of rank g — ¢’. In this case, we have

V(LW g,y azp2) = (VI @ W, (7 0))
where
(45) (VW) = WL W o, azpea),
and the map U in (4.5) is defined as in (4.2) and (4.3), but with ¢ replaced by ¢’. By the above argument,

\T/(I w’ g2, .. G2p— 2) is a stable O(p, ¢’)-Higgs bundle. Since W"isa polystable orthogonal bundle,

we conclude that \IJ(I W .1,G2, ..., q2p—2) is a strictly polystable SO(p, ¢)-Higgs bundle. Again, the
argument is reversible, hence the converse also holds. O

The next lemma shows that ¥ both respects isomorphism classes of the corresponding objects and
is injective on such classes.

Lemma 4.5. Two SO(p, q)-Higgs bundles \T!(I, W, 0,42, - -, q2p—2) and EI(I’, W’, 0oy Q5p_o) are
in the same S(O(p,C) x O(q,C))-gauge orbit if and only if (I,W,n) and (I')W' #) are in the same
S(O(1,C) x O(q — p + 1,C))-gauge orbit and g2; = gy, for all 1 < j < p— 1. Furthermore, each
S(O(1,C)x O(g—p+1,C))-gauge transformation between (I, W ,m) and (I', w, A’) uniquely determines
an S(O(p,C) x O(q, C))-gauge transformation between the Higgs bundles \IJ(I W 1,42,y Qap—2) and
\AI}(Ilv ﬁ/\/v 77/7 q2, .-, (J2p72)-

Proof. Let (I,ﬁ/\,ﬁ) and (I’,/W’,ﬁ’) be two points in Hg»(SO(1,g —p+ 1)), and (g2, ..., g2p—2) and

p—1 ) ~
(¢h, - - - db, o) be two points in @ H°(K?). Denote the associated points in the image of the map ¥
j=1

from (4.3) by
(VaVVﬂ?) = Ej(‘lu/V[77/f]7(]27"'7q2p—2) and (Vluwlun/) :E](I/7W17ﬁlaqéu'"7q/2p72)7

and recall that V =1® K,_; and W = Walw Kp—2.
First suppose (det(gy;), g577) is an S(O(1,C) x O(g — p + 1, C))-gauge transformation with
(det(ggp), ggp) - (1, W) = (I', W', ').
A straightforward computation shows that the S(O(p, C) x O(q,C))-gauge transformation

957 0
(4.6) (gv,gw) = (det( )Idv,( 0 det(gVAV)Id,cp%)))
acts on (V,W,n) as
(gV7gW) : (Va VVﬂ?) = \IJ(Ilv W/vﬁ/v q2,---, q2p72)-
Thus, if (I, W,n) and (I',WW',n’) are in the same S(O(1,C) x O(q¢ — p + 1,C))-gauge orbit, then
(I, W,n,q2,...,q2p—2) and U(I', W' 0, q2,...,q2p—2) are in the same S(O(p,C) x O(q,C))-gauge
orbit.

Now suppose (V, W, n) and (V', W’ ') are in the same S(O(p, C) x O(g, C))-gauge orbit. The action
of (gv, gw) on (V,W,n) is given by

(gv,9w) - (Ov,0w,n) = (9" Ovgv , gw' Owgw , gy ngw) -
With respect to the decompositions W = Waole Kp—2 and W' = Wol Kp—2, write

— A
gw = Iw and n= (775[7 77((12,---#121)72)) :
B IKp—2

The gauge transformation (gyv, giv) acts on the Higgs field by

gy ngw = gy - (nwgw + (g2, .. q2p—2)B  nA+n(a,. .., qap-z)gch,z) :
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and hence
(4.7) (W’VAV (g - fép_z)) =gy (nwgw +n(q2, -, q2p-2)B  npA+nle,..., qufz)gch,z)-

We now use the description of 7(ga, . . ., g2p—2) from (2.13). Since g‘jl is invertible and holomorphic,
its matrix representation in the decompositions V =1 ® K,_1 and V' = I' ® K,_1 is upper triangular

with nonzero diagonal entries. A straightforward computation, using the form of n(gj,. .., q§p72) and
*

the fact that g‘jlnwgw has the form <0

0
also that A = 0, g7 is an Qg-orthogonal gauge transformation and g, , is a Qr, _,-orthogonal gauge
transformation.

>, shows that B = 0. By orthogonality of gy we conclude

We now have 1(gs, - - -, g5, —2) = g‘;lT](QQ7 e G2p—2) 9K, - Since (IQK, 1, IQK, _2,1(q2, ..., q2p—2))
and (I'@Kp—1, I'@Kp—2,1(q5; - - -, @5,—o)) define gauge equivalent Higgs bundle in an O(p, p—1)-Hitchin
component, we have (ga, ..., q2p—2) = (g3, - -, q5,_2). By Remark 2.22, this implies

(9v,9x, ,) = £(Idv,1dk, ,) .
Finally, the determinant of gi; determines the above sign since det(—Idy ) det(—Idx, ,) = —1 and
1 = det(gv ) det(gw) = det(gv) det(gk,_,) det(gs)-

Thus, the gauge transformation gy uniquely determines gi,
given by (4.6), completing the proof.

—2

and gy. This shows that (gyv,gw) is
O

As a consequence of the two previous lemmas, we have the following proposition.

Proposition 4.6. The map v from (4.3) descends to a continuous map of moduli spaces

(4.8) U Mgr(SO(1,g —p+1)) x @HO(K%) — M(SO(p,q)),

j=1
which is a homeomorphism onto its image.

Remark 4.7. From Remark 2.14, one can check that the dimension of Mgk»(SO(1,q — p + 1)) x
p—1 )

@ H(K?) is the expected dimension of M(SO(p,q)). In particular, the map ¥ is open on the
j=1

smooth locus. Since the spaces M(SO(p,q)) and Mg»(SO(1,q — p + 1)) are singular, we have to
examine the local structures of each space to prove openness of ¥ at singular points.

4.2. Local structure of fixed points in the image of V. We will now analyze the local structure
of fixed points of the C*-action in M(SO(p, ¢)) which lie in the image of the map ¥. The following
lemma follows immediately from Lemma 3.9 and Proposition 4.6.

Lemma 4.8. An SO(p, q)-Higgs bundle (V,W,n) in the image of V is a fized point of the C*-action
if and only if (V,W,n) = ¥(I,W,7,0,...,0), where (I,W,n) is a fized point of the C*-action in
Mxg»(SO(1,q — p+1)). In particular, such a fived point is given by >

(LW, 7)) = (I,W_, @ W& Wy, (-, 0 0)),

where W is a polystable orthogonal bundle of rank g —p+1—21k(W,) and det(W}) = I, W, is either
zero or a negative degree vector bundle with no non-negative degree subbundles, W_, = W and n—p is
nonzero if W_,, is nonzero. The associated SO(p, q)-Higgs bundle will be represented by

(4.9) W, T ket Ay pge-z Ly L L Loggeee Lo piee TRy
o
We

2The notation from Lemma 3.9 has changed slightly, (W_1,1_1, W) is now represented by (W_p,n—p, W().
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Let (V,W,n) be a polystable SO(p, q)-Higgs bundle in the image of ¥ of the form (4.9). This will
be fixed until the end of Section 4.2. If W), is zero, some of the considerations below simplify.

We will consider a graded complex similar to (3.9) and repeatedly use the following bundle decom-
positions of V' and W from (4.9):

V:m—p®%—p®"'®vp—3@%—lu
W=W_,0We p,&---OWoD--- @ Wp_o@Wp,

(4.10) . _ Wy if p odd
Vi=IK7 forallj, W;=IK7if0<|j|<p, and Wy= .
ITe W) ifpeven.
2p—2
In terms of the above splittings, we have End(V) = @ Endg(V'), where Enday1(V) = 0 and
k=2—2p
p—1—k
@ Hom(Vi—pt25, Vi—ptojion) k=0
— J=0
(4.11) Endoe(V) =§ 77
Hom(V;)_l_gj, Vp_1_2j+2k) k <O0.
§=0

P
Similarly, End(W) = @5 Endg(W), where

k=—2p
p
End(Wo) ® @ End(W,_»;)  k=0and p odd
j=0
p—k
(4.12) Endg, (W) = @Hom(W_ergj, W_pi2jy2r) k>0or k=0 andpeven
§=0
p+k
P Hom(W,—2), Wy—zji0r) k<0
§=0
and
Hom(W_gk—1, Wo) ® Hom(Wy, War11) 2k+1 < pand p odd
(4.13) Endop 41 (W) = {O otherwise.
2p—1
Finally, Hom(W, V) @ Homy, (W, V), where
k=1-2p
p—1—k
@ Hom W,erQJ,Vl p+2j+2k> 2k +1 2 0
(4.14) Homgyq1(W, V) = ik
@HOIH(WP_QJ‘, Vp_2j+1+2k) 2k +1<0,
§=0
and
Hom(Wy, V- 1—-p<2k<p—1andpodd
(4.15) Homay (W, V) = { (Wo,¥ar) 1-p<2k<p P
0 otherwise.

Note that the Higgs field n is a holomorphic section of Hom; (W, V) @ K.

The Lie algebra bundle so(V) @s0(W) C End(V) @ End(W) with fiber so(p, C) ®so(q, C) consists of
Qv and —Qw skew symmetric endomorphisms of V' and W respectively. The decompositions (4.11),
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(4.12) and (4.13) induce the following decomposition of so(V') @ so(W) C End(V) @ End(V):

2p—2 2p
so(V) = @ 505 (V) and so(W) = @ so(W).
k=2—2p k=—2p
Here 509541 (V) = 0 and, using (4.11),
O1—py O3—py ey Qp1—2k) € Endop (V) | a0y = —a’ 9, _;} k=0
(4.16) soms (V) = {(a1—p, a3p p—1-2k) 2k(V) | o }
{(ap_l, QAp_3,..., al_p_%) € Endgk(V) | o = _O‘72k7i} k<0,

where the index of each homomorphism corresponds to the index of its domain, i.e.,
a2 Vi = Vigor.

For so(W), using (4.12) we have

(4.17)
{(ﬂlaﬂpaﬂp*Qa v 75*11) S EndO(W)| ﬁ/ - _(ﬂl)*a ﬂz = _/Bil} k =0 and p odd

500k (W) = { {(B—ps Bo—ps - - -+ Bp—2r) € Endor(W) | Bi = =B 9_s} k>0or k=0 and p even
{(ﬁpaﬁp—27 e 76—;0-‘1—2/6) € End2/€(W) | ﬁl = _ﬁi2k—i} k< 07

where ' : Wy — Wy and, as above, 3; : W; — Wi ax. For odd weights, using (4.13) we have
(4.18)

{(B=2k=1, =% 95_1) € Hom(W_op_1, W) ® Hom(Wy, Wa+1)} 2k +1 < p and p odd
502k+1(W) =

0 otherwise.

Since n € H°(Hom; (W, V) ® K), the map ad,, restricts to sox (V) & sox(W) — Homy1 (W, V) ® K,
yielding the subcomplex Cp of C'* of weight k as in (3.2)

Ct = C*(V, W, ) - s0,(V) @ s0,. (W) “2 Homyrn (W, V) ® K, (@, 8) > nof—aon.

This gives rise to a splitting of the hypercohomology sequence associated to C*®:
(4.19)

00— HY(Cp) ————— HOs0,(V) @ s0,(W)) 2, H°(Homg (W, V) ® K) — Hl(C,;))

ad,,
Q H(50(V)s1 ® 50541 (W) = H (Homy 11 (W, V) @ K) ——— H2(C) ———— 0.

For all k, we will compute H'(Cp) and show H?(Cp) vanishes in a series of lemmas. Using (4.10)
and the decomposition of Hom; (W, V) ® K from (4.14), we write

p—1
(4.20) N=(NpsM2ps- - 7p—2) € ED HO (Hom(W_ 195, Vi_pia;) @ K),
j=0
where
Nep W_p = Vi, ®K is defined in Lemma 4.8,
(4.21) no=(10):IeW,—-V®K ifpeven,
ni=1:W;, = Viz1 K otherwise.

Lemma 4.9. The map ad,, : s0,(V) & s0i(W) — Homy1(W,V) ® K is an isomorphism for each
positive weight k ¢ {p,2p}. In particular,

HO(Cp) = 0, HY(Cp) =0 and H2(Cp)=0.
Proof. We start by considering the case Cg, | with 0 < 2k+1 and 2k+1 # p. If pisevenor p < 2k+1,

the result is immediate since 09541 (V), $02x4+1(W) and Homog1o(W, V) @ K are all zero by (4.13)
and (4.15). For p odd and 2k + 1 < p, we have s09541(V) = 0, s02541 (W) = {(B-2k-1, —8%9,_1) €
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HOm(szkfl, W())@HOID(WQ, W2k+1)} and H0m2k+2(m V)®K = HOm(Wo, ‘/2k+2)®K. Using (420),
the map ad,, is the isomorphism sending S_ox_1 to the composition of —f*,, ; with 1 = nog41:

Wo Voro @ K

- ﬁ\ 7
—2k—1

Wak+1

Now consider the case C3, with 0 < 2k and 2k ¢ {p,2p}. We first show s09; (V) @ s02, (W) and
Homgay41 (W, V) @ K are isomorphic. Using (4.10) and (4.14), we have
(4.22)
Hom(W_,, IKP "o K @... K2 2k > p or p odd,
p—k—1 times
Hom(W_,, IKP~**) @ Hom(W{, IK ) o K™% @ ... @ K~?* otherwise.

p—k—1 times

Hom2k+1(W, V)(X)K =

On the other hand, by (4.16) and since the weight is positive, we have

(25 |1
(4.23) s095,(V) = Hom (Vaj—pi1, Vajpiiver) S K @ @ K2k .
7=0 L%’CJ times
=
Similarly, by (4.17), soop, (W)= @ Hom(Waj_p, Waj_piok), and thus,
j=0

(4.24)

Hom(W_,, IKP ") o K @...¢ K% 2k > p or p odd

p=k=11| times
o (1) = =y

Hom(W_,, IKP~?*) @ Hom(Wj, IK )@ K~?* @ ... @ K~?* otherwise.
| 2=5=1 | times
From (4.22), (4.23) and (4.24), we see that s025(V') @ 509, (W) is isomorphic to Homay41 (W, V) ® K.
Now we will show
03, < 5025 (V) @ 500 (W) 2% Homayir (W, V) ® K, ad,(a, ) =108 — a0
is an isomorphism. Using the notations of (4.16), (4.17) (for positive weight) and (4.20), if

a = (alfpao@*pa"'vapflfﬂc)a ﬂ = (ﬂ*paﬂ27pa"'7ﬂp72k) and n= (77*;077727;05"'577;072) )
then
ady (o, B) = (N—pr2kB—p — C1—pN—p, N2—pt2kB2—p — Q3—pN2—p, - - -, Mp—20p—2—2k — Ap—1—2kTp—2—2k)-

First assume p — k is even. In this case we have

o = (al—pa"wa—k—lu_a*_k_lw"7_a>{7p) and B: (B—pu"'uﬁ—k—2707 _Bik_gu"'u_ﬁip) .
For p odd or 2k > p, we have n; = 1 for all ¢ # —p by (4.21). Hence ad, («, 8) is given by
(425) (B—p — Q1 —pl—p, ﬁ2—p —Q3_p,. .. 7ﬁ—k—2 _a—k—luaikfh _Bik72 +aik737 ceey _ﬁékfp—"_ag{fp)'

This vanishes if and only if o and 8 are both identically zero, so ad,, is an isomorphism. For p even
and 2k < p, the only difference is that Wy = I ® W{. Therefore, if we write

Bo = (ﬂg [36) T ® W, — Wor,
then the terms Wy — Vor41 ® K and W_o, — Vi ® K of ad,; are given by
(4.26) (ﬂg _— 55) TOW, = Vet ® K and  — B +al W, = Vi @ K.

Again, ad,, vanishes if and only if o and 8 both vanish, and is therefore an isomorphism.



SO(p, )-HIGGS BUNDLES AND HIGHER TEICHMULLER COMPONENTS 27

Now suppose p — k is odd. In this case, (4.16) and (4.17) imply that
a=(a1—p,.s 02,0, = oo, —af_) and B = (B_p,.. o Boko1, =B 1, —BE,)
For p odd or 2k > p, ad,(«, B) is given by

(ﬁ—p — Ol —pT—p, ﬁ2—p —Q3_p, .- 7ﬁ—k—3 — -2, ﬁ—k—la _Bik—l + a*—k—27 ey _BS—Z) + aT_p)-

Since this vanishes if and only if o and 3 both vanish, ad,, is an isomorphism. The case of p even and
2k < p follows from a similar calculation as the one done above.

Since 50, (V) @50, (W) 2dn, Homy 1 (W, V)® K is an isomorphism for all positive weights k different
than p and 2p, we conclude that the hypercohomology groups H*(Cpy) all vanish for such k. O

Next we consider the subcomplexes of weight p and 2p.

Lemma 4.10. The hypercohomology groups H*(Cp) and H*(C3,) are given by

HO(CS) =0, H(C2) = HY (Hom(W_,, W})) and H2(C3) = 0,
H°(C3,) =0, HY(C3,) = H' (502, (W) and H*(C3,) =0,

where s02,(W) = {8 € Hom(W_,, W,)|8 + 8* = 0}.
Proof. First note that 509,(V) = 0, 509,(W) = {8 € Hom(W_,,, W,,)|5+5* = 0} and Homsp 1 (W, V) =
0, hence
HO(C3,) = HOsooy (W), HI(C3,) = H'(sop (W)  and  HE(C3,) =0.
If p is odd, then Wy = W, s0,(W) = Hom(W_,, W{), s0,(V) = 0 and Hom,1 (W, V) = 0, thus
H°(Cp) =2 HO(Hom(W_,, W), HY(Cp) = H' (Hom(W_,, W{)) and H2(Cp) =0

Moreover, H%(s02,(W)) and H°(Hom(W_,, W{)) were shown to vanish in the proof of Lemma 3.11,
completing the proof for the case 2p and when p is odd.
Now suppose p is even, then Wy = I @ W/ and, from (4.11), (4.12) and (4.14), we have
so,(V) 2K Pg--- K P,

L%J times

50,(W) =2 Hom(W_,,I) ® Hom(W_,, W) @ K P& --- & K~ ? & Hom(Wj, K?)

LPT%J times

and
Homp41(W,V)® K 2 Hom(W_,, )8 K P®---d K P .
£ —1 times
Thus, s0,(V) @ s0,(W) = Hom(W_,, W{) ® Hom,+1(W,V) @ K.
If £ is even and (a, §8) € 50,(V') @ s0,(W), then

*

a:(al,p,...,a_%_l,—aigil,...,—a’{_p) and [3:(ﬂ,p,...,ﬂ_g_z,O,—ﬁigfz,...,—ﬂip).

Using the decomposition of 1 from (4.20) and (4.21), we see that ad(a, §) is given by

(7706—;0 — Q1 —pTl—p, 62—1) —Q3-p,... 7ﬁ—%—2 - a—%—lu Oé*_%_l, _ﬁi%_g + a*_g_3u ceey _ﬁsfp + Oéslﬁfp)'
I I
If we write f_, = (§ZZ) cW_p, = I @ W, then noB_, = (10) (gzZ) = Bip. Hence Hom(W_,,, W)

is in the kernel of ad, and 108_, — a1-pn-p = B, — a1_pn—p. We conclude that the map induced by
ad, on (so,(V) @ s0,(W))/ Hom(W_,, W) — Homy, 1 (W, V) ® K is given by

ad,, : Hom(W_, We) @ (s0,(V) @ s0,(W))/ Hom(W_,, W) 2 Homy,1 (W, V) ® K
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with § an isomorphism. In particular, this implies that
H°(Cp) =2 HO(Hom(W_,, W), HY(Cp) = H' (Hom(W_,, W{)) and H?(Cp) = 0.

Moreover, H°(Hom(W_,,, W{)) was shown to vanish in the proof of Lemma 3.11. The proof for § odd
follows from similar arguments. O
Now we consider negative odd weights different from —p.

Lemma 4.11. The map ad,; : 502541 (V) @ $02541 (W) — Homop o (W, V) ® K is an isomorphism for
2k +1 <0 and 2k + 1 # —p. In particular,

HO( 2.k+1> =0, Hl( 2.k+1) =0 and HQ( 2.k+1) =0.
Proof. First, note that soox+1(V) = 0. Also, if p is even or 2k + 1 < —p, then sog51 (W) = 0 and
Homoy2(W, V) = 0. For p odd and 2k + 1 > —p,
502541 (W) = {(B-2k-1, —BLo_1) € Hom(W_zp_1, Wo) & Hom(Wo, Wap11)}

and Homoy12(W, V) ® K = Hom(Wjy, Vag42) ® K. Moreover, ad,, : $0241(W) — Homopo(W, V) @ K
is given by

Wo 3 Vaopyo @ K
R Woks1

which is an isomorphism. O

Next we deal with negative even weights different from —p and —2p.

Lemma 4.12. For 2k < 0 and 2k ¢ {—p, —2p}, Homay 1 (W, V) @ K = s091, (W) @ s091,(V) © K ~2F
and ad,, decomposes as

ady = (§) : 502k(W) ® 502, (V') = (502 (W) @ s02(V)) & K2,
where a is an isomorphism. In particular,

H%(C3;) =0, H'(C3y,) = HO(K—?F) and H?(C3y) = 0.

Proof. Using (4.14), we have that

Hom(W,, IK P ") o K~ ¢...¢ K~ if p odd or 2k < —p
+k times
Homgy 1 (W, V) ® K = !
n(WV) Hom (W, IK ?7%%) @ Hom(W}, IK " *) @ K** @ ... @ K~?* otherwise .
p+k times

If p+ k is even, then by (4.16) and (4.17) we have

p—1+k

sog,(V) = {(ap—l, ey Qg 1, = gy, Qg ) € @ Hom(V},—1-2;, Vp7172j+2k>}
=0

p+k

5005 (W) = {(ﬂp, o Bokt2,0, =B 0, —By) € @Hom(Wp—zj, Wp—2j+2k)}-
=0

Thus,
sog(V) 2K ?*q...o K2

ptk
2

times
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and
Hom(W,, IK P ") o K o... K% if p odd or 2k < —p

ptk
2

—1 times

509, (W) =2
(W) Hom (W, IK?7%%) @ Hom(Wj, IK ") K2 @ ... @ K—2* otherwise .

%’C —1 times

Hence we conclude that Homag 1 (W, V) @ K 2 s09, (W) @ 5091, (V) @ K~2¢. By a similar argument,
the conclusion also holds for the case p + k odd.

For the form of ad,, in this splitting, first assume p is odd or 2k < —p. If p+ k is even, then the map
ad,, : s025(V') @ s02,, (W) — Homoy 11 (W, V) ® K is given by

(4.27)
a'd’r](aa ﬁ) = (Bpu Bp—? —Qp—1y--- 7ﬁ—]€+2 — k43, — |41, _ﬁik-{-Q + Oé*—k+17 ey a;—l - n—pﬁ;)

Consider the summand K~2¥ = Hom(W_j, Viy1) ® K of Homgp 1 (W, V) ® K and take the corre-
sponding quotient (Homay,1(W,V) ® K)/K~2*. Then Homai1(W,V) ® K = (Homgy41(W,V) ®
K)/K~2?* & K~2F and, from (4.27), we conclude that ad,, can be written as

ady, = () : 5024(V) @ 500 (W) — (Homaps1 (W, V) @ K)/K 2" & K2
where a is an isomorphism. If p + k is odd, a similar conclusion holds.

If p is even and —p < 2k, the only difference is that we have the following decompositions

I\ *
ﬁoz(ﬂg ﬂé):I@Wé—)WQk and 53:(%@33*):W,2k—>1@w(;.

With these decompositions, the terms of ad, which involve 8y and j3; are given by

(4.28) Vie K Voopy1 @ K

(1 0) a1 ®Id 1 _ai1®IdK
/ \ and / \
ITe W, Vory1 @ K W_ak Vi ® K.

go\} / -8

The map I ® W} — Vogt1 @ K is given by (8{-e1 6)) and the map W_o, — Wi ® K is given by
—(B5)* + a—1. In particular, we have ad, = (§) : 502x(W) @ 5024 (V) — (s021(W) @ 5091(V)) & K2k
with a an isomorphism.

4)

IoW

5
=
ox

This implies that in the long exact sequence (4.19), for 2k < 0 and 2k ¢ {—p, —2p}, we have
HOCy) =0,  HI(CR)ZHUK ™) and  B2(Ch) = HY(K ™) =0,

completing the proof. O

The next lemma deals with H*(C? ) and H*(C?,,).
Lemma 4.13. In weight —2p we have H°(C®,,) = 0, H*(C3;) = 0 and
(429) 00— H(s0_9,(W)) 5 HO(Hom(W,, KP)) — H'(C*,,) — H'(s0_2,(W)) — 0,
where 50_o,(W) = {f € Hom(W,, W_,)|8 + 8* = 0}. For p odd, we have

H°(C*,) =0, H'(C*,) = H, and H*(C*,) =0,

where
(4.30) 0 — HO(Hom (W, W})) =5 HO(Hom (W, KP)) — HL ) — H' (Hom(W,,, W) — 0.
For p even,

s50_,(V)@so_,(W) ZHom(W,, Wj)® A and Hom;_,(W,V)® K = K? & Hom(W}, K?) ¢ A,
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0 b
and with respect to this splitting ad,, = (nfp 0), where a : A — A is an isomorphism. In particular,
0 a

for p even,

H(C*,) =0, H'(C*,) = H'(K?) @ H, and H*(C*,,) = 0.

Proof. For weight —2p we have s0_o,(V) = 0, s0_2,(W) = { € Hom(W,, W_,)|3 + 8* = 0} and
Hom 9,1 (W, V) ® K = Hom(W,,IK?). The map ad, : s0_9,(W) — Hom(W,, K?) is given by
ad, (8) = n—ppf. The result now follows from Lemmas 3.10 and 3.11.

If p is odd, then by (4.18) and (4.15) we have
s0_,(V)=0, so_,(W)=Hom(W,,Wj) and Hom;_,(W,V)® K = Hom(Wy,IKP?).
The map ad,, : Hom(W,,, Wg) — Hom(Wg, [K?) is given by ad,(3,) = —1-,0,. Again, the result now
follows from Lemmas 3.10 and 3.11.
If p is even, then
so_,(V)2KP&---& K,
—_——
\_%J times
50_,(W) = Hom(W,, I) ® Hom(W,, W)) ® K* & --- @& KP,
—_——
L%J times
Hom;_,(W,V) ® K = Hom(W,,, I) ® Hom(W, [IKP) ® KP & --- & KP.
—_———
£ times
Setting A = Hom(W,,I) ® K? @ ---® K we have so_,(V) ® so_,(W) = Hom(W,, W}) ® A and
—_———
£—1 times

Hom_,(W,V) ® K = K? @ Hom(W,IK?) @ A. The map ad, is analogous to the one in the proof of
Lemma 4.12 except that (4.28) is given by

(10) 1 OE  aran
/ \

d W, 1 ® K.
IoW Vo1 @K an P !
\ /f
—% ) " Towy MY

W_p
Thus, ad,, restricted to Hom(W,, W) is given by 3, — —n_,/3,". Hence,

ad, = (ngp 3) - Hom(W,, W() & A — K? @ Hom(W, K”) & A

a

where a : A — A is an isomorphism.
Since H'(KP) = 0, we have H*(C*®,) = 0. As in the odd case, we also find that H(C* ) =

Moreover, H'(C*® ) = H°(K?) ® H' , where H!  is given by (4.30). (I;
The final case concerns the weight zero subcomplex.

Lemma 4.14. There is a bundle A so that

500(V) @ s00(W) = s0(W)) ® End(W_,) ® A and Hom (W, V) ® K 2 Hom(W_,,IK?)® A ,

where s0(W) is the bundle of skew-symmetric endomorphisms of W (with respect to to Qw; ). With
respect to this splitting,

ad, = (8 nr 2) : so(W)) @ End(W_,) A —— Hom(W_,, IK?) & A,

where a : A — A is an isomorphism. In particular,

H(Cg) = 0, H(CF) = H(s0(W()) and HY(CE) = H' (s0(W)) © H,
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where

0= HO(End(W_,)) = HO(Hom(W_,, IK?)) = H} , - H'(End(W_,)) — H* (Hom(W_,, IK?) = 0.

Proof. By (4.14) we have
Hom(W_,,IK*) O®--- & O p odd
1 %]
p—1 times

Hom, (W, V) ® K =
omy (W, V) Hom(W_,, IKP) & O & - & O Hom(W,I) p even
~—————

p—1 times
and by (4.16) and (4.17),
End(W_,) @O ® - ® O @ so(W) p odd
—1 times
500(V) @ s0o(W) = i
o(V) o(W) End(W_,) @O ®---® O ®Hom(W(,I) ®so(W]) p even.
—_———
p—1 times
Hence, setting A to be
Od@---00 p odd
—_———

p—1 times
O&- - ®&OaHom(WJ,I) peven
1 ti

p—1 times

yields soo(V') @ s00(W) = so(W)) & End(W_,) & A and Hom(W,V); @ K = Hom(W_,,IK?) & A.
Since, W is an invariant bundle, the restriction of the map ad,, : s0o(W)®s0¢(V) — Hom (W, V)@ K

to so(W)) is identically zero. The restriction of the map ad,, to End(W_,) @ A is similar to (4.25) with
the exception that the term W_, — Vi_, ® K is given by

_ ‘/1_1)®K

A:

77? a1 p®ldk
W_, Vi, ® K.
B> W 4
-p

In particular, it is given by ("ZP 2) :End(W_,)® A — Hom(W_,,, I K?)& A where a is an isomorphism.

The hypercohomology complex for C'® splits as a direct sum of the following two complexes

O—>H87, —— H %(s0(WY)) 0 H(l)_’, H(so(W{)) —— 0,
and
0 M, HOEnd(W-y)) ——— HO(Hom(W-, IK) — H,
(. m (End(W_,)) — H' (Hom(W_,, [KP)) HZ, 0.
0 00
By Lemma 3.9, (W, &I ® W_,, ("OP ngp 8>) is a stable KP-twisted O(2rk(W,) + 1, C)-Higgs bundle,
so the hypercohomology groups Hf , and H , both vanish and H'(C§) = H' (so(Wp)) @ Hp ,,. O

4.3. Proof of Theorem 4.1. We are now set up to prove Theorem 4.1. We start by describing a
neighborhood of the image of the map ¥ which is open in M(SO(p, q)).

—~ p—1 )
Proposition 4.15. For each (I, W,1),qz,...,q2p—2) in Mg»(SO(1,¢ —p + 1)) x @ HY(K%), the
Jj=1
second hypercohomology group for the associated SO(p, q)-Higgs bundle vanishes

H2(C*(U(1, W, 5, 4o, - - - gap2))) = 0.
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In particular, an open neighborhood of \I/(I,W,ﬁ,qg, < @op—2) in M(SO(p,q)) is isomorphic to an
open neighborhood of zero in

Hl(C.(\Ij(Iu /V[77 ﬁu qz, ..., q2p—2)) // Aut(\Ij(Iu Wa ﬁa qz, ..., q2p—2))'

Proof. By Lemma 3.3, it suffices to prove the above proposition at the fixed points of the C*-action
in the image of ¥. These are the Higgs bundles given in Lemma 4.8. In Lemmas 4.9, 4.10, 4.11, 4.12,
4.13 and 4.14 it is shown that if (W, V,n) is a fixed point of the C*-action in the image of ¥, then each
of the graded pieces of H?(C*® (W, V, 7)) vanish. O

Proposition 4.16. For all U((I, W, 7),0,...,0) which are fixed points of the C*-action we have

Hl(O’(\I/(I,W,ﬁ,O,...,O))//Aut(\l/(],ﬁ/\,ﬁ,(),...,O))%(Hl(C‘(I,W\,ﬁ))/Aut ) @HO (K2).

Proof. Let W(I, /V[7, 7,0,...,0) be a fixed point of the C*-action. For the SO(1, ¢ — p+ 1)-Higgs bundle

(I, W, 7)), the first hypercohomology group H*(C* (I, /V[7, 7)) of the deformation complex was computed
in Lemma 3.11. In Lemmas 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 it was shown that the first hypercoho-
mology group of the deformation complex of the SO(p, ¢)-Higgs bundle is given by

HY(C*(U(I,W,#,0,...,0)) 2 H'(C*(I,W,)) @HO (K).

By Lemma 4.5, every S(O(1, C) xO(g¢—p+1, C)) automorphism (det(g), 957) of (£, W, 7)) determines
a unique automorphism of W(I, W, 7,0...,0)

9 0
(gv,gw) = (det(g) Idk, ( 0 det(ggp) ldx, )) :

Moreover, the action of such an automorphism on the holomorphic differentials in the above description
of HY(C* (¥ (I, W,7,0,...,0)) is trivial. Thus,

HY(C*(U(I,W,#,0,...,0)) J Aut(¥(I,W,7,0,...,0)) = (Hl(C'(I W, 7)) J Aut(W ) @HO (K27

as claimed. O

Theorem 4.17. The image of the map V from (4.1) is open and closed.

Proof. By Proposition 4.15 and Proposition 4.16 the map V¥ is open at all fixed points of the C*-action.
For (V, W, n) in the image of ¥, there is A sufficiently close to zero such that (V, W, An) is in a sufficiently
small open neighborhood of a fixed point of the C*-action. Thus, ¥ is open at all points.

To show the image of ¥ is closed, we use the properness of the Hitchin fibration. Namely, suppose

— , , p—1 ,
(I, Wi, i, G5, - - - qby o) is & sequence of points in Mg»(SO(1,q—p+1)) x @ H°(K*) which diverges.
j=1
Denote the associated Hitchin fibrations by

hy : Mge(SO(1,q — p+ 1)) — H(K?P) and h:M(SO(p,q))—)éHO(sz) .

. . —~ p _
By the properness of hy, (g3, ..., q5, o, hp(I, Wi, 1);)) diverges in @ H°(K?7). Moreover, by the defi-
j=1
nition of the map ¥, applying the SO(p, ¢)-Hitchin fibration to the image sequence yields

h(\I/(Iv W’ia ﬁ’iv qsv ceey qép—Q)) - (Q§a cee aqép—Qa hp(Iv W’ia ﬁl)) .

Since h is proper, we conclude that (I, Wi, Ny @by . . q§p72) also diverges in M(SO(p, q)). O
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5. CLASSIFICATION OF LOCAL MINIMA OF THE HITCHIN FUNCTION FOR M (SO(p,q))

In this section we will prove Theorem 5.9 which classifies all local minima of the Hitchin function
(3.1) on M(SO(p, q)). The strategy of proof is to divide the objects into the following three families:

(1) stable SO(p, q)-Higgs bundles with H?(C*(V, W, 7)) = 0,
(2) stable SO(p, ¢)-Higgs bundles whose corresponding SO (p+¢, C)-Higgs bundle is strictly polystable,
(3) strictly polystable SO(p, ¢)-Higgs bundles.

The first family consists of points which are either smooth or orbifold points of M(SO(p, q)). For these
points we can use Proposition 3.2 to classify such local minimum. The local minima in the other two
families will be described by a direct study of their deformations.

Recall from (3.2) that the deformation complex (2.6) of an SO(p, ¢)-Higgs bundle (V, W, n) which is
a fixed point of the C*-action decomposes as

(5.1) Of s50(V)k @ s0(W )y —2 s Hom(W, Vst @ K.
Each graded piece gives rise to the long exact sequence (3.3) in hypercohomology.
5.1. Stable minima with vanishing H?(C*®). By Proposition 3.5, polystable fixed points of the

C*-action are given by holomorphic chains of the form (3.6) or (3.7). The holomorphic chains (3.6)
will be important for us, they are given by

n-3 ny n-1 nZy I N,
V_o W_4 W Wi Vo
. . © .
M2 n-2 Mo 10 -2 72
ng V_ 1 W() Vl W2

We start by studying the constraints on these chains imposed by the local minima condition for stable
SO(p, q)-Higgs bundles with vanishing H?(C*®). This will be done by first proving two lemmas.

Lemma 5.1. Let (V,W,n) be a stable SO(p, q)-Higgs bundle with n # 0 and H2(C*(V,W,n)) = 0. If
(V,W,n) is a local minimum of f, then the direct sum of holomorphic chains given by (3.6) must have
one of the following forms:

(52) V,S MNs—1 Wlfs M—s -2 V71 Mo W() o V1 N—2 ) Th—s W571 Ns—1 VS
(53) W—r N—r ‘/i_r MNr—2 A W_1 -1 Vb n_1 W1 1 Nr—2 ‘/;~_1 n_r WT
L/ N—r ny -1 nZy m M Nr—1
(54) V_, — Wi_, cee W_1 Vo Wi s We_ 1 — Vr,
S
Wo
(5 5) W, N—s Vi, Ns—2 n-2 vV, Mo W 70 Vi -2 Ns—2 Vo, n- W,
S¥
Vo

Proof. Since (V, W, n) is stable and a fixed point of the C*-action, it is of the form (3.6) by Proposition
3.7. If one of the chains vanishes we are done, so assume there are two non-zero chains. Let r > 0 be
the maximal weight of the first chain in (3.6) and s > 0 be the maximal weight of the second chain.
We have r > 0 or s > 0 since 17 # 0. Since (V, W, n) is a stable local minimum of the Hitchin function
with H2(C*®) = 0, the subcomplexes from (5.1) are isomorphisms for k£ > 1 by Proposition 3.2.

If r and s have different parity, then both of the chains start and end with a summand of W if r is
even and start and end with a summand of V' if r is odd. In either case, Hom, ;51 (W, V)@ K =0
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but 50,4 (W) @ s0,44(V) is nonzero. Hence, the subcomplex Cp, , from (5.1) is not an isomorphism
for k = r + s, contradicting (V, W,7) being a stable minima with H?(C*®) = 0.

Now assume r and s have the same parity, so the first chain starts and ends with a summand of
W if and only if r is odd and the second chain starts and ends with a summand of W if only only if
s is even. If 7 > s, then Homa, . 1(W,V) ® K = 0 and s02,(V) @ s02,.(W) = A2V, & A2W,.. So the
isomorphism of C3, implies rk(W,.) = 1 or rk(V},.) = 1. Since r + s — 1 is odd, we have:

{(a, —*) € Hom(V_g,V,_1) @ Hom(V1_,, Vs)} if r is odd

rrs—1(V) = e
50,45-1(V) {{(a,—a*)eHom(VmVs1)@H0m(vl s, Vp)} ifris even

{(B,—B") € Hom(W_,, Ws_1) ® Hom(W,_,, W,.)} if r is odd
sor+s-1 (W) = {{(ﬁ, —B*) € Hom(W_y, Wy_1) ® Hom(Wi_,, W,)} if r is even
Hom(W,,V_,) @ K if r is odd
Hom(W_,,V,) @ K if r is even .

If s >0, then 7 +5—1 > 1 and the isomorphism C}, | gives
rk(Vy) rk(Vi—1) + rk(Ws_1) = rk(V5)  if r is odd
{rk(WS) rk(Wi—,) + tk(Vi_1) = tk(W;) if r is even .

Hom, (W, V) ® K = {

This implies either rk(W;_5) = 0 or rk(V,._1) = 0, both of which contradict Proposition 3.7. Thus,
we conclude that r is even and s = 0, so the holomorphic chain is given by (5.4). A similar argument
shows that for s > r, the holomorphic chain is of the form (5.5). O

Lemma 5.2. Let (V,W,n) be a stable SO(p, q)-Higgs bundle which is a local minimum of the Hitchin
function with n # 0 and H2(C*(V, W, n)) = 0; the associated holomorphic chain is given by (5.2), (5.3),
(5.4) or (5.5). For all j # 0, we have tk(W;) =1 and rk(V;) = 1. Moreover:

In case (5.2), V; 2V K77 and W; 2 V1 K71 for 0 < |j] < s.

In case (5. )V WlKﬂlandW W_1K=37Y for 0 < |j] < 7.

In case (5.4), tk(Vo) =1, and V; 2 Vo K7 and W; 2 VoK =7 for 0 < |j] <r.
In case (5.5), tk(Wp) =1, ande ~ VoK~ and Wj > VoK~ for 0 < |j| < s.

Proof. The proof involves an inductive argument on the weights. We first consider the case where
(V,W,n) is the holomorphic chain (5.4). We have the following decompositions

2r—2 2r—1
End(V) = €D Endi(V), End(W)= @5 Endi(W) and Hom(W,V)= @5 Hom(W,V).
j=—2r k=2—2r k=1-2r
r—k—1

For 2k > 0 we have Homoy41 (W, V) @ Hom(Wi_y425, Waryoj42k),
7=0

(5.6)
r—k r—k—1
Endo (V) = @ Hom(Va; v, Vajiok—r) and  Endor(W) = @5 Hom(Wi o, Wi_ri2j12k).
j=0 j=0

With respect to these splittings, so(V') = @50k(V) and so(W) = @50;€(W) where, for k> 0

(5.7) SOQ;C(V) = {(ao, R ,Oé,__k) € Endgk(V) | ooy = O}7
502, (W) ={(Bo, .., Br—k—1) € Endo (V) | Bi + B} __,_;, =0} .
Since (V,W,n) is a stable minima of the Hitchin function with H?(C*®) = 0, for all k¥ > 0 we have

505 (V) @®s0, (W) =2 Homag 1 (W, V)@ K. Note that r is even and nonzero. The isomorphism for k = 2r
implies A%V, = 0, hence rk(V,.) = 1.
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The isomorphism for k = 2r — 2 implies Hom(V_,., V,, _5) @ A2W;_,. = Hom(W;_,., V;.) ® K. Thus,
tk(V,_o) + 1k(A*W, ) = rk(Wy_,.),

which implies rk(W;_,) is either one or two. If rk(W;_,) = 2, taking the determinant of the iso-
morphism C3,_, implies V. K? = V,_y. Also, the kernels of the maps Nr—1 : W1 — V., ® K and
m—r : Wi—r = Vao_, ® K have negative degree by stability. Using V;* = V_; and W} = W_;, we have

deg(Vi—2) — 29 +2 < deg(W,-_1) < deg(V,.) + 29 — 2,

which contradicts V. K2 = V,_s. So rank W,_; = 1 and the isomorphism for C3,._5 gives the base case
of our induction:

1=r1k(V_,) =rk(Wi_,) = rk(Va_,) and Wi, 2V K .
If r = 2 we are done, so assume r > 4 and that for an integer k € [1, 5 — 1] we have
(5.8) Wi 2 Vo (K =Ws (K2 Wy K72 vzker%*l :

We will prove that Vo, & Wopy1 K = Vop o K2

. . . .
The isomorphism C3,._,_,, gives

15] L)

(5.9) @Hom(%j—ra‘/;"+2j—2—2k)® @ Hom(Wajt1—r, Wri2j—1-2k)
=0 §=0
k
@ m(Wajt1—r, Vigoj_or) ® K.
j=0

since A%V, __1 = 0 for k odd and A?W,_,_; = 0 for k even by (5.8). Using (5.8), computing the
ranks of both sides gives rk(Vagio—.) + L J + rk(Waogy1—p) + LMJ =k + rk(Wag41—,). Thus,

rk(‘/2k+277") =1
The isomorphism C3, _,_,, implies

k k—1

@ Hom (Vaj—r, Vitoj—2-ak) ® @ Hom(Wajis1-r, Wrzj—1-a1) & A*Wy—1 o
i=0 =0
2k
@ HOHl(WQjJrl—r; Vr+2jf4k) ® K.
=0

Using (5.8), this gives the following equality on ranks

k k-1 k-1 2%
Z tk(Vijoj—2-ak) + Z tk(Wyg2j-1-ak) + Tk(A°Wy_1 o) = Y 1k(Vigoj—ak) + Z rtk(Wajp1-r).
=0 =0 =0 =k

Simplifying, yields rk(Vagro—r) + 1k(A?Wapi1 1) = rk(Wags1—r). Thus, tk(Waj41_,) is one or two.
If rk(Waky1—r) = 2, then the determinant of the isomorphism in (5.9) gives
|5] [5=]

(5.10) ®Vr—2er+2j—2—2k QW2 AW,y 9 ® ® Wi —oj—1Wiioj_1-2k
=0 =1

B
|
—

1%

Wy—2j-1Vigaj-2K @ VEK? @ N*W,_1 oy, .

<.
I
o
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By (5.8), the above terms satisfy

. k
Vi—2jViioj—2_ak, forj=1,..., LgJ
5.11 V2, K22 , k—1
( ) T2k Wi_2j—1Wyioj_1-9r, forj=1,..., LTJ

WT72j71‘/7«+2j72kK7 for j = O, ey k—1.

Hence, simplifying (5.10) yields V,_op_o = V,.K2?T2*. The Higgs field gives rise to nonzero maps
Vi _op_o — Vi opK? and V,_op, — V,.K2* by Proposition 3.7. Thus, deg(V;_or_2) — deg(V,_a) =
4g — 4. As in the base case, this leads to a contradiction of stability. Namely, stability implies that the
kernels of mop 411 1 Wakg1—r — Vopyo—rn K and of mp—1_of : Wy_1_9 — V,_9; K have negative degree,
so that deg(Var—r) — 29 + 2 < deg(Wap1—) < deg(Vagi2—r) + 29 — 2. So tk(Wapy1—p) = 1.

Using rk(Wapy1—) = 1, (5.8) and (5.11), the determinant of (5.9) gives

5] "]

ViViiok 2 @ QV2 0p K272 @ Vi ap KW,y g @ Q) (V2o K272)
j=1

j=1

k—1
= QR K oWy VoK
j=0

which simplifies to Vag_, = Vopyo_ K 2. The Higgs field defines a nonzero map Vaor_, — Wopy1_ K —
Vogta—r K?. Thus,
(512) ‘/Qk—r = W2k+1—rK = %k-{-?—er
Recall that k was an integer between 1 and Z52. Since r is even, we can take k = (r — 2)/2, and hence
(5.12) gives V_o 2 W_1 K = VyK?2. This completes the proof for the chain (5.4).
The difference for the chain (5.3) is that r is odd and instead of (5.8) we must assume
Vier @ Wo o K 2 Vs K2 2o 2 Vo K202 2 Wy KPP,

where k is an integer satisfying 1 < k < (r — 3)/2. The same proof as above shows that Waj_, =
Vokr1-» K = Wapio K2 By taking k = (r —3)/2 we have W_3 = V_ oK = W_; K2, and no condition
on Vj is imposed. Switching the roles of V' and W gives the proof for the chains (5.2) and (5.4). O

We can now complete the classification of the stable minima with with vanishing H?(C*).

Theorem 5.3. A stable SO(p, q)-Higgs bundle (V,W,n) with p < q, n # 0 and H*(C*(V,W,n)) = 0
defines a local minimum of the Hitchin function if and only if it is a holomorphic chain of the form
(5.2), (5.3), (5.4) or (5.5) which satisfies one of the following:

(1) The chain is given by (5.2) with p =2 and 0 < deg(V_1) < 2g — 2.

(2) The chain is given by (5.2) with s = p — 1 and the bundle Wy decomposes as Wy = I & W,
where W[ is a stable O(q — p + 1,C)-bundle with det(W{) = I. Moreover, V; = IK~7 and
W; =IK=7 for all j # 0, and with respect to the splitting of Wy, the chain is given by

(5.13) . . B 1) T (40 - - .
st MNs—1 Wl—s 1 -2 Vfl ( 0 ) @ (10 0) Vl -2 T W571 Ns—1 Vs 7
g

(3) The chain is of the form (5.3) with q=p+1, V; = K= and W; = K~ for all |j| < p and
W_, is a line bundle satisfying deg(W_,) € (0,p(2g — 2)].

(4) The chain is of the form (5.4) where Wy is a stable O(q — p + 1, C)-bundle with det(Wy) = I,
and V; = IK—7 and W; = IK—J for all j # 0.

(5) The chain is of the form (5.5) withq=p+1, Vo =0, Wo 2O, V; =K 7 and W; = K~/ for
0<|j| <pand W_, is a line bundle satisfying deg(W_,) € (0,p(2g — 2)].

(6) The chain is of the form (5.5) with ¢ = p, and for some torsion 2 line bundle I, V; = IK~J
and W; = IK~7 for all j.
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Remark 5.4. The cases (2)-(6) are special cases of the fixed points considered in Lemma 4.8. In case
(2), note that if the stable invariant bundle Wy is instead strictly polystable, then the Higgs bundle is
still at a local minimum of the Hitchin function. Similarly, for case (4) replacing the stable orthogonal
bundle Wy with a strictly polystable orthogonal bundle still gives rise to a local minimum. We will
prove that these are the only local minima apart from n = 0. Note also that none of the above cases
have p =1 and q > 2.

Proof. We first show that cases (1) and (2) are sufficient for the chain (5.2) to be a stable minima with
H?(C*) = 0 by invoking Proposition 3.2. For case (1), C§ is the only isomorphism to consider. We
have s02(V) @s02(W) = A?V_; and Homs(W,V)® K = 0, which is an isomorphism since rk(V_1) = 1.
For case (2), the holomorphic chain (5.13) is a fixed point considered in Lemma 4.8 with W, = 0. By
Lemma 4.9, C2 : s05,(V) @ so5,(W) “2% Homy1(W, V) ® K is an isomorphism for all k > 0.

We now show that cases (1) and (2) are necessary for chains of the form (5.2). We have a chain

Neo1 M—s -2 5 70 N, Ni—s Ns—1
Vs Wi e Vo1 Wo 1% e We_1 Vs s

with s > 1 odd. By Lemma 5.2 each of the bundles in the chain is line bundle except Wy. Sop =s+1
is even and rk(Wy) = ¢ — p+ 2 > 2. Note that O = det(V') = det(W) = det(Wy).

If N = ker(n), then 13 maps V_; to N*K C Wy ® K. By Proposition 3.7, 7 is nonzero, hence
deg(N~+)—deg(V_1)+2g—2 > 0. If N is coisotropic N L is isotropic, and stability implies deg(V_1) +
deg(N~) < 0, which implies deg(V_1) < g — 1. If N is not coisotropic, then 7973 is a nonzero section
of the line bundle V2K2. Thus,

(5.14) deg(V_1) <29 —2.

If p=2 and deg(V_1) < 2g — 2 we are done. If deg(V_1) = 2g — 2, then nyn; is a nowhere vanishing
section of the line bundle Vi2K?2, and hence the kernel of 7y is a holomorphic orthogonal bundle
W € Wy of rank ¢—p+ 1. Furthermore, stability of (V, W, n) forces W{ to be stable. Taking orthogonal
complements gives a decomposition Wy = W @ I where KV; = I = det(W{) since O = det(Wy). By
Lemma 5.2, the holomorphic chain is given by (5.13). Thus, for p = 2 we are done. For p > 2 we will
show that stability forces deg(V_1) =29 —2 and V_, = K*I.

For p > 4 and even, we have s > 3 and odd. Using decompositions analogous to (5.6) and (5.7) and
rk(V}) = rk(W;) =1 for j # 0, the isomorphism of C_; gives
L] L]
s05-1(V) @ s0s_1 (W) = @ Hom(Vaj—s, Vaj-1) @ @ Hom (Waj 415, Waj)
i=0 =0
s—1

2
=~ Hom,(W,V)®@ K = @) Hom(Waji1-s, Vajs1) @ K .

Jj=0

Since det(Wy) = O, the determinant of both sides of the isomorphism C?_; is given by

22 =2 =

(5.15) ViV ® Q) VaojVaj 1 @WE 0 (R) Wit1o0;Way = (R) Wi1 9 Va1 K@ (Vo )0,

j=1 Jj=1 J=0
From Lemma 5.2, we have W,_; = V; K27% and
Vs—2jVaj_1, forj=1,...,|(s—1)/4]
VEK3™8 =2 { W_1_9;Way, forj=1,...,|(s—3)/4]

W57172jv2j+1Ka fOI‘j = 075(5_3)/2

This simplifies (5.15) to (V,V_1 K5~ 1)P=9=1 = (V; K)2. As in the proof of Lemma 5.2, the Higgs field
gives a nonzero map Vi — V,K*~!. Therefore,

02> (p—q—1)(deg(Vs) — deg(V1) + (s — 1)(2g9 — 2)) = 2(deg (V1) + 29 — 2),
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and hence deg(V71) < 2—2¢. By (5.14), we conclude that deg(V_1) = 29 — 2 and deg(V;) = —s(2g — 2).
As above, since deg(V_1) = 2g — 2, the bundle Wy decomposes as W/ @ I, where W is the kernel of
no and det(Wy)' = I = V1 K. Moreover, we have Vy = [ K ~* since, by Lemma 5.2, W,_1 = K'~*I and
Ns—1 : Ws—1 — V5 ® K is nonzero. This completes the proof of (2).

Cases (3) and (5) are almost identical, we will prove (3). By Lemma 5.2, the holomorphic chain
(5.3) is given by

N—r My_o 771‘

W_, Vier

x *
-1 i Nr—2 N

Wfl 7771 ‘/O Wl ‘/Tfl WT7

where rk(W;) = 1 for all j. Thus, » = ¢ — 1 and either rk(Vp) = 1 and ¢ = p + 1 or rk(V)) = 2 and
g = p. If ¢ = p, then, by switching the roles of V and W, we can assume we are in case (2). Thus we
may assume rk(Vp) = 1 and ¢ = p + 1. Moreover, Vj = O since O = det(V) = Vp. Since the Higgs
field defines a nonzero maps W_; = O ® K and W_; — W, ® K? we conclude that W_; = K. Thus,
W; = K9 and V; = K7 for all |j| < r by Lemma 5.2. Since W, is an invariant isotopic subbundle
and the Higgs field n_, : W_, = V_, 1 K is nonzero, we conclude

0 < deg(W-_, < p(2g - 2).
Thus, the conditions in case (3) are necessary.

The holomorphic chain from case (3) is a fixed point considered in Lemma 4.8 with W] = 0 and

rk(W_,) = 1. By Lemmas 4.9 and 4.10, C? : s05,(V) @ so,(W) 2% Homy1 (W, V) ® K is an isomor-
phism for all k£ > 0. Thus, the conditions in case (3) are also sufficient.

The holomorphic chain from case (4) is a fixed point considered in Lemma 4.8 with W_, = 0. By

Lemma 4.9, C? < s0x(V) @ s0x (W) “ Homys (W, V) ® K is an isomorphism for all k > 0. Thus, the
conditions in case (4) are sufficient.

To show the conditions of (4) are necessary, note that the holomorphic chain (5.4) is given by

N—r Mo 0y -1 oy n Nr—2 n-,
Vo, —5 Wi, = W Vo Wy ——--- W,y —>V, .
D
Wo

By Lemma 5.2, tk(V;) = 1 for all j, thus r = p—1 and rk(WWy) > 1. Also, if Vj = I, then I = det(V) =
det(W) = det(Wy), and V; = IK 7 for all [j| < p—1 and W; = K1 for all j # 0. Since Wy # 0,
50,_2(V) @ s0,_o(W) = Hom(W;_,, Wy) and Hom,_1(W,V) ® K = Hom(Wy,V,—1K). Taking the
determinant of this isomorphism and using Wa_, = K?~2I we conclude that V;_, = IK?P~!, finishing
the proof of case (4).

Finally, for case (6) the holomorphic chain (5.5) is given by

* * *

N—s Ns—2 -2 M5 70 ) Ns—2 N-s

Wy 5 v, N v Wy v, B VA W, .
S

Vo

By Lemma 5.2, tk(W;) =1 for all j. Thus s = ¢ — 1 = p — 1 and V} is a rank one orthogonal bundle
I with I = det(V) = det(W) = Wy, V; = IK 7 for all j and W; = IK 7 for all |j| < s. Similar to
case (4), we have s0,_2(V) @s0,_o(W) = Hom(Vy, V,,—2) and Hom,_1 (W, V) ® K = Hom(W1_,, Vo K).
Thus, the isomorphism C3_, implies Wi_,, = IK?~'. Thus, the conditions of (6) are necessary. As
with the other cases, the conditions of case (6) are sufficient by Lemmas 4.8 and 4.9. U

5.2. Stable minima with non-vanishing H?(C*®). We now classify stable SO(p, q)-Higgs bundles
such that the associated SO(p + ¢, C)-Higgs bundle is strictly polystable. By Remark 2.17, these
are exactly the stable SO(p, ¢)-Higgs bundles which may have H?(C*®) # 0. We will prove that such
SO(p, q)-Higgs bundles define minima of the Hitchin function if and only if the Higgs field 7 is zero.
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The SO(p + ¢, C)-Higgs bundle associated to an SO(p, ¢)-Higgs bundle (V, Qv, W, Qw,n) is

(5.16) (E,Q,@):(V@W,(QOV 73W),(n0*g)).

Recall that a GL(p, R)-Higgs bundle is defined by a triple (V, Q,n) where (V, @) is a rank p orthogonal
vector bundle and 7 : V' — V @ K is a holomorphic map satisfying n* = Q~'n7Q = n. Given such a
GL(p, R)-Higgs bundle we can construct an SO(p, p)-Higgs bundle

(V,Qv, W, Qw,n) = (V,Qv,V.Qv,n) .
Using the symmetry n* = ), the corresponding SO(2p, C)-Higgs bundle is
E.Q.0)=(Vev. (% 5, ).(58)

Even if the SO(p,p)-Higgs bundle (V,V,n) is stable, the above SO(2p,C)-Higgs bundle is strictly
polystable. Indeed, the following pair of disjoint degree zero isotropic subbundles are both ®-invariant:

VS vaev and V—svav .
v —— (v,v) v —— (v, =)

The following proposition shows that this example characterizes stable SO(p, ¢)-Higgs bundles which
are not stable as SO(p + ¢, C)-Higgs bundles.

Proposition 5.5. Let (V,W,n) be a stable SO(p, q)-Higgs bundle. The associated SO(p + q, C)-Higgs
bundle (5.16) is strictly polystable if and only if

G17) Qe WQwa = (e, (4 g ) iews, (%) ). (5 2))

where (‘/15 QVU V17 QV1 ) 771) is a stable SO(plvpl)_HZggS bundle with T]T =M and (‘/25 QVza W27 QW2 ) 772)
is a stable SO(pa, q2)-Higgs bundle.

Proof. By the above discussion, the condition (5.17) is sufficient. We now show that it is necessary.
Let (V,W,n) be a stable SO(p, ¢)-Higgs bundle and suppose the associated SO(p + ¢, C)-Higgs bundle
(E,Q,®) given by (5.16) is strictly polystable. Let U C V @ W be a degree zero proper subbundle
which is isotropic with respect to @ and satisfies ®(U) C U ® K. Let V4 C V and W7 C W be the
respective image sheafs of the projection of U onto each summand of V' & W. The subsheaf V; & W,
is preserved by ®, thus deg(V7) + deg(W7) < 0 by polystability of the associated SL(p 4 ¢, C)-Higgs
bundle (V & W, ®).

Consider the sequences

0 uv U Wi 0 and 0 Uv U Wi 0

3

where the subsheaf UY C V is Qv isotropic, the subsheaf U C W is Qw isotropic, n(U%) C U’ ® K
and n*(UY) C UY ® K. Stability of the SO(p, ¢)-Higgs bundle gives deg(U") + deg(U") < 0, which
implies deg(V1) 4+ deg(W1) > 0. But, since Vi @ W is preserved by @, deg(V;) + deg(W1) < 0 by
polystability of the Higgs bundle (V @& W, ®). This contradiction implies

Whw=uv=w;.

We claim that V) and W; are both orthogonal subbundles. Let Qv, and Qw, be the restrictions of
Qv and Qw to V and W respectively. Consider the following sequences

0— VlJ-Vl — Vl N ‘/1/V1J_V1 — 0 and 0—s WLW1 — W1 — VVl/VVIJ_VV1 —0 .

Since Vlj'v1 and le' " are maximally isotropic subbundles of Vi and W respectively, both V;/ Vlj'v1

and Wy/ Wf' "1 are orthogonal bundles. In particular, V1J'V1 and le' "1 are degree zero isotropic
subbundles of V' and W respectively. Moreover, we have

(W) c Vi @ K and VT cW M e K
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Again, stability of the SO(p, ¢)-Higgs bundle (V, W, n) implies both Vlj'v1 and le' "1 are zero, which
implies V7 C V and W7 C W are both orthogonal subbundles.

If p1 = rk(Wy) = rk(V1), then (Vi, Wi, nlw,) is an SO(p1, p1)-Higgs bundle. Note that isomorphism
between V7 and W is given by including V4 into V@& W and projecting onto W. Denote this isomorphism
by g : Vi — W1, we have n|lw,g = (97! @ 1K)77|?,V1. Moreover, g is orthogonal since for any z,y € V4
we have (z, g(z)), (y,9(y)) € U, and

0= Q((z, 9(2)), (4,9(v) = Qui(z,y) — Qw, (9(2), 9(y))
since U is isotropic. Therefore the pair (Idy,g~') defines an isomorphism between (V1, W1, 7n|w,) and
(V1, Vi,m) with 1 = n|w,g. In particular, g1 = n;.

Let Vo and W5 be the orthogonal compliments of V7 and Wj respectively and let 7o : Wo — Vo @ K
be the restriction of  to Ws. By the above discussion, we obtain the desired decomposition (5.17) of
the SO(p, ¢)-Higgs bundle (V, W, n). O

Now, if a stable SO(p, ¢)-Higgs bundle

~ 0 0
(VuQV7W7QW7n): (‘/1@‘/27(628/1 QV2) 7VIEBW27(Q(‘)/1 QW2)7(7701 7702)) B

with 7} = n; is a local minimum of the Hitchin function, then (V1, Qv,,n1) is a local minimum local min-
imum of the Hitchin function on the GL(p1, R)-Higgs bundle moduli space and (Va, Qv,, Wa, Qw,,n2)
is a local minimum of the Hitchin function on the SO(p2, ¢2)-Higgs bundle moduli space.

Recall from Example 3.4 that Hitchin proved the local minima in the GL(p, R)-Higgs bundle moduli
space with nonzero Higgs field are given by the minima in the Hitchin components. The holomorphic
chain of such a Higgs bundle is given by

Vl,Tp—>V3;2p Vs Ve

2 2

where V; = I K~/ for all j and some torsion two line bundle I. The holomorphic chain of the associated
SO(p, p)-Higgs bundle is given by

Vip —— Vs Vpr?’ Vp771

(5.18) ®
Vip —— Vs Ce Vpr?’ Vp771

By Proposition 3.7, such an SO(p, p)-Higgs bundle is not stable if p is even. Thus, the following
proposition shows that the only stable SO(p, ¢)-Higgs bundles with nonzero Higgs field are classified
by Theorem 5.3.

Proposition 5.6. For p-odd, the SO(p,p)-Higgs bundle given by (5.18) with V; = IK 7 for all j and
some torsion two line bundle I is not a minimum of the Hitchin function.

2r 2r
Proof. By assumption r = p_;l is a positive integer. Set V. = @ V;_, and W = P W;_, with
j=0 j=0
V; =I1K~7 and W; = IK 7 for all j and some torsion two line bundle I. The holomorphic chain (5.18)
is given by

Vo, —— W, — LV — Wy ——V, — LV —— W,
D
W, ——v, . —Lsw, sy ——w .. LW,V

Consider the complex C3,_; : 502,_1(V) @ s509,_1(W) 2dn, Homy, (W, V) @ K. We have
509,—1(V) 2 {(a, —a) € Hom(V_,., V,—_1) ® Hom(V1_,, V})} ,
509, 1 (W) = {(8,—B) € Hom(W_., W;_1) ® Hom(W1_,, W;)} ,
Homy,. (W, V) 2 Hom(W_,., V,.) ,
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Using V; = IK 7 and W; 2 IK 7 for all j, the induced map on first cohomology is
(519) a,dn . Hl(K1*2T) ® Hl(K172T) - Hl(K172'r‘) .
([od, [B]) ————— [B] + [o]

In particular, H2(C$,. ;) = 0 since this map is surjective and the kernel is given by [a] = —[f].

Let 8 € Q%Y(K!1=2") which is nonzero in cohomology and, with respect to the above splittings of V'
and W, consider the deformed orthogonal holomorphic structures:

Brer Brcr
0 6}(7*1 0 8[(7“71
3 _ . B _
Oy = . and Oy = i
B 0 o Op1—r —p 0 Op1—r
0 -8B Dpe—r 0o B Dye—r

In the above splittings of V' and W, the Higgs field is given by

0

10

77—< A ) W=V K,
10

and a calculation shows that 7 is still holomorphic with respect 55[, and 56. Since this deformation is in

the positive weight space, it decreases the Hitchin function and we conclude that such an SO(p, p)-Higgs
bundle is not a local minimum of the Hitchin function. O

5.3. Strictly polystable minima. Recall from Proposition 2.20 that a strictly polystable SO(p, q)-
Higgs bundle is isomorphic to

B 00
(Forov (il s) rorem (il ). (s70))
0 0 Qv 0 0 Qw

where (E, F, 8,7) is a polystable U(p1, ¢1)-Higgs bundle, with deg(F) 4+ deg(F) =0, and (V,W,n) is a
stable SO(p2, ¢2)-Higgs bundle.

Proposition 5.7. Let (E,F,B3,7) be a polystable U(p, q)-Higgs bundle which is a fixed point of the
C*-action. The associated SO(2p, 2q)-Higgs bundle

(5.20) (For, (8%) Feor (5%9).(32))

is a minimum of the Hitchin function if and only if B=~v=0o0rp <1 orq<1.

Proof. If 5 =~ =0 or p=0 or ¢ =0 the Higgs field is identically zero and we have a minimum. Now
suppose p > 0 and ¢ > 0 and that the SO(2p, 2¢q)-Higgs bundle (5.20) is a minimum of the Hitchin
function with nonzero Higgs field. This implies that the U(p, ¢)-Higgs bundle (E, F, 3,~) is a minimum

of the Hitchin function with 8 and - not both zero. Recall from Example 3.4, that this implies either
B8 =0 or v=0. Up to switching the roles of E, F', E* and F*, the relevant holomorphic chain is

(8) 7 0s)
F—"®——F".
E*

Since the U(p, ¢)-Higgs bundle (E, F,(,0) is a polystable minimum with 8 # 0, we must have [0]
deg(E) < 0 < deg(F).

The Lie algebra bundle so(F @ F*) decomposes as s0_o(F @ F*) @ s0o(F @ F*) @ soa(F @ F*) where

500(F @ F*) = {(d, —d*) € End(F) @ End(F*)} ,
509(F @ F*) 2 A2°F* 2 s50_o(F @ F*)*.

Moreover,

50(E @ E*) = s00(E ® E*) 2 {(a,b, ¢, —¢*) € A2E ® A2E* @ End(E) & End(E*)},
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and
Hom, (F & F*, E @ E*) = Hom(F, E) ® Hom(F, E*).
Also, the map ad,, : s02(F @ F*) — Homs(F, F) ® K = 0 is zero and

ad,, : s0(E & E*) @sog(F & F*) —— Hom(F, F) ® K & Hom(F, E*) ® K .
(a,b,c,d)t (B8d — ¢B,—bp)

If rk(F) = 1, then so0;(F @ F*) = 0 for all j > 0, hence (since so(E @ E*) = s0o(E @ E*)) we have
that Hl(C;) = 0 for every j > 0. In particular, such a SO(2p,2)-Higgs bundle is a local minimum
of the Hitchin function. Now suppose rk(F) > 1. Since deg(F*) < 0, Riemann-Roch implies that
HY(A?F*) # 0. Thus we may consider a nonzero extension 0 — F* — W — F — 0 given by an
element of H'(A?F*). Moreover, the Higgs field n = (2 0) is still holomorphic. Such a deformation

00
breaks the U(p, ¢) symmetry of the SO(2p, 2¢)-Higgs bundle and decreases the Hitchin function. O

By Remark 5.4, the following proposition is the final step in classifying all strictly polystable minima
of the Hitchin function.

Proposition 5.8. Let (E,F,(3,v) be a polystable U(m,n)-Higgs bundle with m = 1 or n = 1 and
B=0or~y=0. Let (V/, W 1) be a stable SO(p, q)-Higgs bundle which is a minimum of the Hitchin
function with ' # 0. The SO(p + 2m, ¢ + 2n)-Higgs bundle

1d 1d B0 0
(MQV,”;QWﬂ?):(EEBE*EBV/,(IOdO 8 ),F@F*@[/[//,(Iodo 8 )7 0~* 0 )
0 OQV/ 0 OQW/ 0 077,

is a minimum of the Hitchin function if and only if p=0 and m=1 orq=0 andn = 1.

Proof. First note that if p = 0 or ¢ = 0, then we have a local minimum. Now suppose p # 0, ¢ # 0
and (V,W,n') is a stable minimum from Theorem 5.3. Up to switching the roles of E, V', F, and W’
it suffices holomorphic chains of one of the following six types (recall that we suppress the twisting by
K from the notation):

(5.21) P 5 E
s D) 00 ) - (%) L)
T
F* E*
* @ * @
Vo w2y VoL w2y,

where tk(V_1) = 1 and 0 < deg(V_1) < 29 — 2.

(5:22) () T (&) Zos
EF—— & ——FE* F—— @ ——F*
F* or E*
D (S5)
Vi = Wop — o = Wy =5V, Viep = Wap = = Wy =V,

where V; = IK~7 and W; = IK 7 for all j and some [ with I? = O.

(5.23) @) oy (8) Fos)
E——¢——F" F—®—r
F* or E*
@ . @ .
M-p 1 1 M-p N—p 1 1 -p
W_,—Vi_p— - — Vi, — W, W_,—Vi_p— - — Vi, — W,

where V; = K7 and W; = K7 for all |j| < p, tk(W_,) =1, 0 < deg(W_,) < p(2g — 2) and n_,, # 0.
Furthermore, in (5.21), (5.22) and (5.23), the first chain has rk(E) = 1, 0 < deg(FE) and deg(F') < 0,
while the second chain has rk(F) = 1, 0 < deg(F') and deg(E) < 0.
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We will show that each of the above holomorphic chains is not a minimum. For the first chain of
(5.21) and the first chain of (5.22), the summand of so(V') given by

{(a, —a™) € Hom(E, V,,—1) ® Hom(Vi_,, E*)}

lies in the kernel of ad,, : s0(V') & so(W) — Hom(W, V) @ K. Since deg(E) > 0 and deg(V,—1) < 0, we
have H!(Hom(E, V,—1)) # 0 by Riemann-Roch. Thus, we may thus deform the holomorphic structure
on V by a nonzero extension of the summand E @ Vj,_; of the form

O—>Vp,1—>‘7—>E—>O.

Such a deformation decreases the Hitchin function. Similarly, for the second chain in (5.23) the sum-
mand of so(WW) isomorphic to Hom(F, W,,) is in the kernel of ad,. As above, since deg(F) > 0 and
deg(W,) < 0, Riemann-Roch implies H'(Hom(F,W,,)) # 0. Hence, again, deforming the holomorphic
structure by a nonzero element of H'(Hom(F,W,)) decreases the Hitchin function.

For the second chain in (5.21) and the second chain in (5.22), the summand of so(V') given by
{(a, —a™) € Hom(E™*,V,_1) ® Hom(Vi_,, E)}

is in the kernel of ad,,. As above, H'(Hom(E*,V,_1)) # 0, since deg(FE) < 0 and deg(V,,—1) < 0, hence
a nonzero element of H 1(Hom(E Vp—1)) can be used to deform the Higgs bundle and decrease the
Hitchin function. Similarly, for the first chain in (5.23) the summand of so(W) given by {(8,—8*) €
Hom(F*,W,) @ Hom(W_,, F)} is in the kernel of ad, . Since deg(F) < 0 and deg(W,) < 0, we have
H'(Hom(F*,W,)) # 0 by Riemann-Roch. Again, a nonzero element of H*(Hom(F*,W,)) can be used
to deform the Higgs bundle and decrease the Hitchin function. O

5.4. Summary of classification of minima of Hitchin function on M(SO(p,q)). Putting ev-
erything together, the following theorem classifies all polystable minima of the Hitchin function in the
moduli space of SO(p, ¢)-Higgs bundles for p < q.

Theorem 5.9. For 1 <p < g, let f: M(SO(p,q)) — R be the Hitchin function on the moduli space
of polystable SO(p, q)-Higgs bundles given by (3.1). A polystable SO(p, q)-Higgs bundle (V,W,n) is a
local minimum of f if and only if n =0 or (V,W,n) is isomorphic to a holomorphic chains of one of
the following mutually exclusive types, where we have suppressed the twisting by K in the Higgs field
from the notation:

(1) p=2 and (V,W,n) is of the form

6 ]
Vo, — w25,

where V.= V_1 ® V4 with V_1 is a line bundle having 0 < deg(V_1) < 2g—2, V1 =V*, and no
1S MONZEro.
(2) p>=2 and (V,W,n) is of the form

. .
Mp—2 N2—p Mp—a Np—a

Vi_ p—)WQ P

‘/3—1) Vp—l ?

Wo

p—1

where W is a polystable O(q — p + 1, C)-bundle with det(W{) =1, W = W@ @ W_pyoi with
W; =IK™ forallj,V = EB Vi_ptoi with V; = IK ™7 for all j, and each n; is nonzero.
(3) p=q—1and (V,W,n) is oftheform

n2-p p—4 Mp—4 M2—p Np—2 n-,

N-p "7;72
W,p — Vlfp — szp ngp
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where V. = @ Vi—pioi with V; = K=9 for all j, W = @ W_pioi with W; = K=7 for all
=0
l7il < p and W_p is a holomorphic line bundle with 0 < deg(W_p) < p(29 —2), and each n; is

nonzero.

Remark 5.10. Note that in case (2), det(V) = I? = det(W). Thus, if p is even, a Higgs bundle defined
in case (2) of Theorem 5.9 is an SO(p, q)-Higgs bundle which reduces to SOg(p, ¢) if and only if I = O,
on the other hand, when p is even the Higgs bundle in case (2) always reduces to SOg(p, q).

Proof. 1f the n = 0, then we are done, so suppose 1 # 0. By Theorem 5.3 and Proposition 5.6, the
result holds if (V,W,n) is a stable SO(p, ¢)-Higgs bundle. Suppose (V,W,n) is a strictly polystable
SO(p, ¢)-Higgs bundle with p < ¢. By Proposition 2.20,

§
(V, W, 1) = (E@E*@V’F@F*@W’( B*n/>),

where (E, F, 3,7) is a polystable U(p1, ¢1)-Higgs bundle and (V', W’ n') is a stable SO(p2, ¢2)-Higgs
bundle which does not necessarily have ps < g2. By Proposition 5.7 and Proposition 5.8 if such a Higgs
bundle is a minimum of the Hitchin function, then one of the following hold

(a) 8=0,7v=0and (V', W 7')is a minimum from Theorem 5.3,
(b)y pp=1,8=00ry=0and n =0,
(¢)g=1,=00ry=0and  =0.
For case (a), note that if po = 0 or g2 = 0 then the Higgs field is zero and we are at a minimum.
Consider a holomorphic chain of the form

vV, —WwW_— - —W_, —V or w.,—v , — o —V

&) S
E®E* FeFr

!
1 W’I"

where V!, and W/, are holomorphic line bundles of positive degree. This does not define a minimum
of the Hitchin function since deg(E) = 0 and deg(V’,) > 0 imply H'(Hom(V’,, E)) # 0, thus we
may deform such a holomorphic chain down by considering a nonzero extension in H!(Hom(V’ ., E)).
Similarly, the second chain does not define a minimum.

Since q > p, the only way we can have a holomorphic chain
w.,—Vi_ ,— - —V_ —W
S
EoFE*
with rk(W)) = 1k(V}) = 1 for all j is if £ =0 and ¢ = p + 1. Such a holomorphic chain is stable. By
Theorem 5.3 such a holomorphic chain is a minimum of the Hitchin function if and only if it satisfies
the conditions of case (3) in the statement of the Theorem. To finish case (a), consider holomorphic
chains of the form
v, —W_,— - — W, —V .
2
FoF*
By Theorem 5.3 and Remark 5.4, such a Higgs bundle is a polystable minimum if and only if it satisfies
the conditions of case (1) or case (2) in the statement of the theorem.

For case (b), we have rk(E) = 1 and up to switch E and E* the holomorphic chains are given by

(5:24) 5 (9) 507 o
e
)

View ,
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where 0 < deg(F). As above, (with the roles of £ and V’ switched) this does not define a local minimum
if V' #£ 0. When V’ = 0, we have a local minimum satisfying case (1) of the statement of theorem.

For case (¢), we have rk(F') = 1 and the holomorphic chain is given by (5.24) with F and F' switched.
As above, this is not a minimum if W’ = 0. Since p < ¢ and rk(V') = rk(V’) 4+ 2rk(E) < 2, we have
V' =0, giving a local minimum satisfying case (1) of the statement of theorem. O

6. THE CONNECTED COMPONENTS OF M (SO(p, q))

In this section we use the results from the previous sections to count the number of connected
components of the moduli space M(SO(p,q)), with 1 < p < ¢q. I p # 2 or if (p,q) = (2,2) or
(p,q) = (2,3) then we have enough information to give a precise count. In the remaining cases, namely
p =2, q > 4, we give a lower bound on the number of connected components of M(SO(2,q)) and
conjecture that it this bound is sharp.

6.1. Connected components of M(SO(p,q)) for 2 < p < ¢q. Recall from (2.14) that the moduli
space of SO(p, q)-Higgs bundles decomposes as

(6.1) M(SO(p,q)) = [ M***(SO(p, q)),

a,b,c
where the indices (a, b, ¢) are classes in H*(X,Zs) x H*(X,Z2) x H*(X,Zs) and a polystable SO(p, q)-
Higgs bundle (V, Qv, W, Qw,n) is in M»*¢(SO(p, q)) if a is the first Stiefel-Whitney class of (V, Qv)
and (W, Qw), b is the second Stiefel-Whitney class of (V, Qv ) and ¢ is the second Stiefel-Whitney class
of (W, Qw). Notice that each M»*¢(SO(p, q)) is not necessarily connected.

When 2 < p < ¢, the maximal compact subgroup S(O(p) x O(q)) C SO(p, q) is semisimple. Thus
by Proposition 2.23 each of the spaces M%*¢(SO(p,q)) is nonempty and has a unique connected
component in which every Higgs bundle (V,Qv,W,Qw,n) can be deformed to one with vanishing
Higgs field. Such components account for 22972 connected components of M(SO(p, q)). These are the
‘mundane’ components mentioned in the Introduction. Taking into account the ‘exotic’ components,
we obtain the following precise count of the connected components of M(SO(p, q)) for 2 < p < q.

Theorem 6.1. Let X be a compact Riemann surface of genus g > 2 and denote the moduli space of
SO(p, q)-Higgs bundles on X by M(SO(p,q)). For 2 < p < q, we have

2%9 ifg=p
|0 (M(SO(p,q)))| = 2292 + ¢ 2%9F — 14+ 2p(g—1) ifqg=p+1
229+1 ifg>p+1.

Proof. By the above discussion we only need to determine the number of connected components of
M(SO(p, q)) with the property that the Higgs field never vanishes. Recall that if Min(M(SO(p,q)))
is the subspace of M(SO(p, ¢)) where the Hitchin function (3.1) attains a local minimum, then

|70 (M(SO(p,9)))| < [mo(Min(M(SO(p, 9))))|-

From Theorem 5.9, an SO(p, ¢)-Higgs bundle (V, W, 7), with 2 < p < ¢ and ¢ # p+ 1, is a minimum
of the Hitchin function with nonzero Higgs field if and only if the holomorphic chain is given by:

77;,2 n2—p 77;74 Np—a 77;71) Np—2

(6'2) Viep —Way Va_p Vi3 Wp—2

Vp—1 5

®

Ws
where the bundle W} is a polystable O(q — p + 1,C)-bundle with det(W}) = I, V; = IK 7 and
W; = IK~J for all j # 0, and each 7, is nonzero. When ¢ = p + 1, so that W{ is a rank 2 orthogonal
bundle, there are also minima of the form

N—p 77;72 N2—p 77;74 Tlp—4 77;7? Mp—2

ntp
(63) W,p Vlfp szp ‘/37;0 fog Wpfz — fol — Wp R
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where V; = K7 and W; = K7 for all |j| < p, W_,, is a holomorphic line bundle with 0 < deg(W_,) <
p(2g — 2) and each 7; is nonzero.

For 2 < p = ¢, we only have minima of the form (6.2) with Wy = I. Each such minimum is labeled
by the choice of the 2-torsion line bundle I, yielding 229 connected components. For 2 < p < g,
the connected components of the minima subvarieties of the form (6.2) are labeled by the first and
second Stiefel-Whitney class of the bundle W{ by Proposition 2.23. Thus, the number of connected
components of these minima subvarieties is given by |Bunx (O(g —p+ 1)) =22t for2 <p < q—1.
For 2 < p = g — 1, when the first Stiefel-Whitney class of W vanishes the second Stiefel-Whitney class
also vanishes since swq (W()) = 0 implies W, = L & L™ for some degree zero line bundle L. This gives
22971 — 1 connected components of the minima subvarieties whose Higgs bundles are of the form (6.2).
There are p(2g — 2) connected components of minima subvarieties of type (6.3) since its connected
components are labeled by deg(W_,) € (0, p(2g — 2)].

Finally, by Theorem 4.1, each of the above minima are in a different connected component of the

p—1 )
image the map ¥ : Mg»(SO(1,¢ —p+1)) x @ H(K?) — M(SO(p,q)). Thus, each such minima
j=1
subvariety defines a connected component. O

The following is a direct corollary of the above proof. This formulation will be useful in Section 7.
Recall notation (2.11).

Corollary 6.2. Suppose 2 < p < q—1. For polystable Higgs bundles (V,W,n) € M(SO(p,q)) we have
the following dichotomy:

e FEither (V,W,n) can be continuously deformed to a polystable (V',W',0),
o or (V,W,n) can be continuously deformed to (Kp—1 @ I,W & Kp—2 @ I,(0 1n9)), where W is

a polystable rank q — p + 1 orthogonal bundle with APV = T and (Kp=1,Kp—2,m0) is the
unique minimum in the SO(p — 1, p)-Hitchin component.

For minima of the form (6.2) or (6.3), the first and second Stiefel-Whitney classes of V' and W are
readily computed. The results are shown in the table.

Type of min. a = swy (W) b= swy(V) c = swa (W)
(6.2) 0 if p is even 0 swa (W)
swi(W') if p is odd
(6.3) 0 0 deg(W_,) (mod 2)

The following corollaries are now immediate.

Corollary 6.3. For 2 < p < q — 1, if M**¢(SO(p,q)) is the union of connected components from
(6.1), then

2 if p is odd and b= 0
|mo(M@2¢(SO(p,q)))| =< 229 +1 if pis even, a =0 and b=0
1 otherwise .

Corollary 6.4. Forp > 2 and q = p, if M**¢(SO(p,p)) is the union of connected components from
(6.1), then

2 if p is odd and b= c =10
|0 (M*P(SO(p,p)))| = 229 +1 ifpis even anda=b=c=0
1 otherwise .

Corollary 6.5. Forp > 2 and ¢ =p+1, if M**¢(SO(p,p+1)) is the union of connected components
from (6.1), then
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2 if pis odd, b=10 and a # 0
2+p(g—1) ifpisodd anda=b=c=0
b 1+plg—1) ifpisodd anda=b=0 and c#0
[mo(M*(SO(p, p+ D)) = 24229 4 p(g—1) ifpiseven anda=b=c=0
14229 +p(g—1) ifpiseven anda=b=0 and c # 0
1 otherwise .

We observe finally that the following corollary is immediate since the map W is injective.

Corollary 6.6. For p > 1, the number of connected components of Mx»(SO(1,q)) are given by

229 g=1
[mo(Mi»(SO(1,9)))| = § 2% =1+ p(2g —2) ¢=2
2291 q>2.

In particular, if ¢ > 2 then every polystable KP-twisted SO(1,q)-Higgs bundle can be continuously
deformed to one with zero Higgs field.

6.2. Connected components of M(SO(2,¢)). In the previous section a complete component count
of M(SO(p,q)) when p < ¢ and p # 2 was given. We now discuss the case p = 2. In this special case
the group SO(p, q) is a group of Hermitian type. Furthermore in this case the minima of type (1) from
Theorem 5.9 appear. These are given by holomorphic chains of the form

(6.4) Vo w "y

where 0 < deg(V_1) < 2¢g — 2 and 79 is nonzero.

Let (V,W,n) be an SO(2,¢q)-Higgs bundle. As in the general case, the first and second Stiefel-
Whitney classes of the orthogonal bundles provide primary topological invariants which help distinguish
the connected components of the moduli space. However, when the first Stiefel-Whitney class vanishes,
we have (V,Qv) = (L& L', (9})) for some line bundle L. The natural number |deg(L)| satisfies
|deg(L)| = sw2(V) (mod 2) and provides a refinement of the second Stiefel-Whitney class invariant.
This natural number is the absolute value of the so-called Toledo invariant of the SO(2, ¢)-Higgs bundle.
Moreover, if such an SO(2, ¢)-Higgs bundle (V, W, n) is polystable then

|deg(L)| < 29 — 2.
This inequality is usually referred to as the Milnor-Wood inequality and was derived in the proof of
Theorem 5.3 (see (5.14)). The special maximal case | deg(L)| = 2¢g — 2 will be discussed in Section 7.3.

Examining the minima classification of Theorem 5.9 and using Theorem 4.1, in the case 2 = p < ¢
we see that the only obstruction to obtaining a full connected component count of M(SO(2, q)) is the
connectedness of the fixed point set (6.4). In particular, for 2 = p < ¢, we get bounds, rather than
precise values, namely

22912 4+ 4(g—1)+2%" +49-5 ifg=3
Imo(M(S02. 9l > {229“ —4+4(g—1)+2%H! if g >4
It follows from [21], that the above inequality was shown to be an equality for ¢ = 3:
(6.5) |T0(M(SO(2,3))] = 3 x 229%! 489 — 13.
We conjecture that equality also holds above for ¢ > 4.

For p = ¢ = 2 we can use Proposition 3.8 to give a complete count of the connected components of
M(SO(2,2)), as we now briefly explain, leaving the details for the reader.

Proposition 6.7. |mo(M(SO(2,2))| = 3(229T! — 1) + 2g(2g — 3).
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Proof. If (V,W,n) is a polystable SO(2, 2)-Higgs bundle with swy (V) = swy (W) # 0 then, by Propo-
sition 3.8, it can only be a minima of the Hitchin function if = 0. Hence the corresponding subspace
with the given topological types is connected. Taking into account swq (V') and swq (W), this gives rise
to 4(229 — 1) components.

If swy(V) = swi (W) =0,then V2L L tand W =2 M® M, with L and M isotropic line
subbundles, and 7 = ({ §) in these decompositions. Note that n* = (¢¢). Let | = deg(L) and
m = deg(M). We can assume [ > 0 (or m > 0, but not both). Indeed, this follows from the fact that
m0(SO(2,2)) 22 Zs acts nontrivially on 71 (SO(2,2)) 2 Z X Z by simultaneously changing the sign of the
generators, hence identifies the topological types (I, m) and (—I,—m). As above, | determines swy (V)
and m determines swo(W). Hence, supposing from now on that [ > 0, polystability forces

(6.6) l—29g4+2<m<2g—2—1.

Indeed, suppose for instance that m > 2g — 2 — I. Then we must have b = 0 in 7, so n(M) C LK and
n*(L) C MK, but deg(L)+deg(M) =1+m > 2g—2 > 0, contradicting polystability. If m < [—2g+2
the conclusion is similar.

Since I > 0, using (6.6), and recalling that the topological types (0,m) and (0, —m) are identified,
we conclude that there are precisely (2g — 1) — 2g + 2 allowed topological types (I,m) in M(SO(2,2))
with sw; = 0.

Now, by Proposition 3.8, (V, W, n) is a minimum if and only if 7 = 0 or it is of the form (3.8), up
to switching the roles of L, M, L~! and M ~'. By polystability, the minima with vanishing Higgs field
can only arise when [ = m = 0, giving one connected component. If (I,m) ¢ {(0,2g — 2), (29 — 2,0)},
the minima (3.8) can be described as certain connected coverings of (products of) certain symmetric
products of X, depending on [,m and on the divisors of the components a,b,c,d of . This gives
(2g — 1)? — 2g connected components. Finally, the minima of type (3.8) for (I,m) = (0,29 — 2) or
(I,m) = (2g — 2,0) are parameterized by the 2-torsion points of the Jacobian of X, thus have each 229
connected components. Summing up everything yields the count of |7y (M (SO(2,2))]. O

7. POSITIVE SURFACE GROUP REPRESENTATIONS AND CAYLEY PARTNERS

In this section, we recall the Non-Abelian Hodge correspondence between the Higgs bundle moduli
space and the moduli space of surface group representations. After proving some immediate conse-
quences of Theorem 6.1, we discuss how the exotic components of Theorem 4.1 are related to recent
work of Guichard and Wienhard on positive Anosov representations [25]. Finally, we show this relation
with positive Anosov representations can be seen as a generalization of the phenomenon which produces
the so-called Cayley partner of a G-Higgs bundle with maximal Toledo invariant for G a Hermitian
group of tube type.

7.1. Surface group representations. Let I' be the fundamental group of a closed oriented surface S
of genus g > 2 and let G be a real reductive Lie group. A representation p : I' — G is called reductive
if the composition of p with the adjoint representation of G is a completely reducible representations.

Denote the set of reductive representations by HomTed(l",G). The conjugation action of G on
Hom(T, G) does not in general have a Hausdorff quotient. However, if we restrict to the set of re-
ductive representations, the quotient will be Hausdorff.

Definition 7.1. The G-representation variety R(I', G) of a surface group T is the space of conjugacy
classes of reductive representations of I' in G:

R(T,G) = Hom"*(T',G) /G .

Ezample 7.2. The set of Fuchsian representations Fuch(I') € R(I', SO(2, 1)) is defined to be the subset
of conjugacy classes of faithful representations with discrete image. The space Fuch(I') defines one
connected components of R(T', SO(2, 1)) [20] and is in one to one correspondence with the Teichmiiller
space of isotopy classes of marked Riemann surface structures on the surface S. Since the surface S is
assumed to be orientable, every Fuchsian representation reduces to SOg(2,1).
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For G a split real form of a complex semisimple Lie group, there is a preferred embedding
(7.1) t:500(2,1) = G

called a principal embedding. When G is an adjoint group, the principal embedding is unique. For
the split real form G = SOg(p,p — 1), the principal embedding is given by taking the (p — 1)%¢-
symmetric product of the standard action of SOg(2,1) on R3. The principal embedding defines a map
t: R(I,S00(2,1)) — R(T', G), and the Hitchin component Hit(T', G) C R(I',G) is defined to be the
connected component containing ¢(Fuch(T")).

Each representation p € R(T', G) defines a flat G-bundle E, = (SxG)/T . This gives a decomposition

of the G representation variety:
RI,G) = || R4,
a€Bungs (G)

where a € Bung(G) is the topological type of the flat G-bundle of the representations in R%(G).
When G is a Hermitian Lie group Bung(G) is infinite. Such G-Higgs bundles and surface group
representations acquire a discrete invariant called the Toledo invariant. While the Toledo invariant
has several different descriptions, they all yield a finite set of allowed rational values, and hence give a
notion of maximality (see for example [14, 10, 5]). In particular, R*(G) is nonempty for only finitely
many values of a € Bung(G).

The following theorem links the G-representation variety and the K-twisted G-Higgs bundle mod-

uli space. It was proven by Hitchin [26], Donaldson [15], Corlette [13] and Simpson [38] in various
generalities. For the general statement below see [17].
Theorem 7.3. Let S be a closed oriented surface of genus g = 2 and G be a real reductive Lie
group. For each Riemann surface structure X on S there is a homeomorphism between the moduli
space Mg (G) of G Higgs bundles on X and the G-representation variety R(T', G). Moreover, for each
a € Bung(G), this homeomorphism identifies the spaces M%(G) and R*(G).

As in (6.1), for (a,b,c) € H*(S,Za) x H?(S,Zs) x H?(S,Z3), we have
R(SO(p.q)) = [[R*"*(SO(p, q))-

Using Theorem 6.1 and the above correspondence we have a connected component count of R(SO(p, q)).

Theorem 7.4. Let S be a closed surface of genus g = 2 and fundamental group I'. For 2 < p < q, the
number of connected components of the representation variety R(T',SO(p, q)) is given by

29 ifqg=p
|mo(R(T,SO(p, q)))| = 22912 + ¢ 2297 —1+2p(g—1) ifq=p+1
229+1 ifg>p+1.

Remark 7.5. The connected components of R*%¢(SO(p, q)) are given by corollaries 6.3, 6.4 and 6.5.

Corollary 6.2 can now be interpreted as a dichotomy in terms of the SO(p, ¢) representation variety.

Theorem 7.6. Let S be a closed surface of genus g > 2 and fundamental group I'. For2 <p < q—1,
the representation variety R(SO(p,q)) of S is disjoint union of two sets

(7.2) R(SO(p, q)) = R (SO(p, q)) LR (SO(p, q)) ,

where
e [p] € R’"(SO(p, q)) if and only if p can be continuously deformed to a compact representation,
e [p] € R*(SO(p,q)) if and only if p can be continuously deformed to a representation

(7.3) p'=a® (Lo pruch) ® det(a) ,

where « is a representation of T' into the compact group O(q — p + 1), pruch is a Fuchsian
representation of T' into SO (2, 1), and ¢ is the principal embedding from (7.1).
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Proof. For the first part, note that a representation p : I' — SO(p, ¢) can be continuously deformed to
a compact representation if and only if the corresponding Higgs bundle can be continuously deformed
to one with vanishing Higgs field.

If p cannot be continuously deformed to a compact representation, then by Corollary 6.2, the
associated SO(p, ¢)-Higgs bundle (V, W,7) can be continuously deformed to (cf. (2.11))

(Kpo1 @ LW @ Kpo2 @ 1,(0 10)),

where W is a polystable rank ¢ — p 4+ 1 orthogonal bundle with ATPHY = T and (Kp=1,Kp—2,m0) is
the unique minimum in the SO(p — 1, p)-Hitchin component. Through Theorem 7.3, the Higgs bundle
description of the Hitchin component from (2.21) is identified with the representation variety from
Example 7.2. In particular, if sy is the Hitchin section from (2.12), the representation associated to
sp(0) is ¢ © ppuch for a Fuchsian representation pgucn [28]. In particular, the representation associated
to the unique minimum in the SOg(p, p — 1)-Hitchin component (KC,—1,Kp—2,70) is given by ¢ © pruch
for a Fuchsian representation pgyuch.

If A€ SOg(p,p—1)and B€ O(q—p+1), then (A, B) — (det(f)"“ Jg) defines an embedding

SOo(p,p—1) x O(q —p +1) = SO(p, q).

If a:T — O(qg—p+1) is the representation associated to the polystable O(q — p 4+ 1, C)-bundle /V[7,
then the representation associated to the SO(p, ¢)-Higgs bundle (K,—1 @ I, W @ Kp_2 ® I, (0 1)) is
given by a® (L © pruch) ® det(a). O

7.2. Positive Anosov representations. Anosov representations were introduced by Labourie [31]
and have many interesting geometric and dynamic properties which generalize convex cocompact rep-
resentations into rank one Lie groups. Important examples of Anosov representations include Fuchsian
representations, quasi-Fuchsian representations, Hitchin representations into split real groups and max-
imal representations into Lie groups of Hermitian type. We will describe the necessary properties of
Anosov representations and refer the reader to [31, 24, 22, 29] for more details.

Let G be a semisimple Lie group and P C G be a parabolic subgroup. Let L C P be the Levi
factor (the maximal reductive subgroup) of P, it is given by L = P N P°PP| where P°PP is the opposite
parabolic of P. The homogeneous space G/L is the unique open G orbit in G/P x G/P, and points
(z,y) € G/P x G/P in this open orbit are called transverse.

Definition 7.7. Let T’ be the fundamental group of a closed surface of genus g > 2. Let 05" be the
Gromov boundary of the group T'. Topologically O-cI' = RP'. A representation p: I — G is P-Anosov
if there exists a unique continuous boundary map &, : s’ — G/P which satisfies

o Equivariance: (v -x) = p(y) - &(x) for all v € T and all x € 05T
o Transversality: for all distinct x,y € OxoI' the generalized flags £(x) and &(y) are transverse.
e Dynamics preserving: see [31, 24, 22, 29] for the precise notion.

The map &, will be called the P-Anosov boundary curve.

One important property of Anosov representations is that they define an open subset of the repre-
sentation variety R(T", G). The set of Anosov representations is however not closed. For example, for
the group PSL(2, C) the set of Anosov representations corresponds to the non-closed set quasi-Fuchsian
representations of R(T", PSL(2,C)). The special cases of Hitchin representations and maximal repre-
sentations define connected components of Anosov representations. Both Hitchin representations and
maximal representations satisfy an additional “positivity” property which is a closed condition. For
Hitchin representations this was proven by Labourie [31] and Fock-Goncharov [16], and for maximal
representations by Burger-Tozzi-Wienhard [9]. These notions of positivity have recently been unified
and generalized by Guichard and Wienhard [25].

For a parabolic subgroup P C G, denote the Levi factor of P by L and the unipotent subgroup
by U C P. The Lie algebra p of P admits an Ady-invariant decomposition p = [ @ u where [ and u
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are the Lie algebras of L and U respectively. Moreover, the unipotent Lie algebra u decomposes into
irreducible L-representation:
u= @ ug .

Recall that a parabolic subgroup P is determined by fixing a simple restricted root system A of a
maximal R-split torus of G, and choosing a subset © C A of simple roots. To each simple root §; € ©
there is a corresponding irreducible L-representation space ug; .

Definition 7.8. ([25, Definition 4.2]) A pair (G,P®) admits a positive structure if for all 8; € ©, the
L®-representation space ug, has an LS -invariant acute convex cone c(ﬂ")j, where L denotes the identity

component of L®.

If (G, P®) admits a positive structure, then exponentiating certain combinations of elements in the
Lg’-invariant acute convex cones give rise to a semigroup Ugo C U® [25, Theorem 4.5]. The existence
of the semigroup Us( gives a well defined notion of positively oriented triples of pairwise transverse
points in G/P®. This notion allows one to define a positive Anosov representation.

Definition 7.9. ([25, Definition 5.3]) If the pair (G,P®) admits a positive structure, then a P®-
Anosov representation p : T — G is called positive if the Anosov boundary curve € : JosT' — G/P®
sends positively ordered triples in 0., to positive triples in G/P®.

Conjecture 7.10. ([23, 25]) If (G, P®) admits a notion of positivity, then the set P®-positive Anosov
representations is an open and closed subset of R(T', G).

In particular, the aim of this conjecture is to characterize the connected components of R(T', G)
which are not labeled by primary topological invariants as being connected components of positive
Anosov representations, such connected components are referred as higher Teichmiiller components.

Remark 7.11. When G is a split real form and ©® = A the corresponding parabolic is a Borel subgroup
of G. In this case, the connected component of the identity of the Levi factor is LOA = (R*)T’“(G) and
each simple root space ug, is one dimensional. The LOA-invariant acute convex cone in each simple root
space ug, is isomorphic to RT. The set of PA-positive Anosov representations into a split group are
exactly Hitchin representations. When G is a Hermitian Lie group of tube type and P is the maximal
parabolic associated to the Shilov boundary of the Riemannian symmetric space of G, the pair (G, P)
also admits a notion of positivity [10]. In this case, the space of maximal representations into G are
exactly the P-positive Anosov representations. In particular, the above conjecture holds in these two
cases.

In general, the group SO(p, ¢) is not a split group and not a group of Hermitian type. Nevertheless,
if p # ¢, then SO(p, q) has a parabolic subgroup P® which admits a positive structure. Here P® is the
stabilizer of the partial flag Vi C Vo C -+ C Vj_1, where V; C RP*7 is a j-plane which is isotropic with
respect to a signature (p, ¢) inner product with p < ¢. Here the subgroup Lf;)os c L® ¢ SO(p, q) which

g)j is isomorphic to LY . =2 R* x SO(1,q—p+ 1) . We refer the reader to [25] and

preserves the cones c pos

[12, Section 7] for more details.

To construct examples of SO(p, q) positive Anosov representations we have the following proposition.

p ptq
Proposition 7.12. Let p < q. Consider the signature (p, q)-inner product (x,xz) = > 3:? - > 3:?
P R Ex |

If A€ SOg(p,p—1) and B € O(q —p + 1), then the set matrices (dCt(f)'A g) defines an embedding
SOo(p,p —1) x O(g —p+ 1) = SO(p, ).

If prit : T — SOg(p,p— 1) is a Hitchin representation and o : T' — O(q —p+1) is any representation,
then
p = puit ®det(a) & a: T = SO(p,q)

s a Pe—positive Anosov representation.
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This is proven for ¢ = p+ 1 in [12, Section 7], and the proof for general ¢ is the same. For the
proof of the first part of the above proposition it suffices to show that the map SO(p,p—1) — SO(p, q)
described above sends the positive semigroup U. >AO C SO(p,p—1) into the positive semigroup U 90. The
second part follows from the fact that a representation p is a P-Anosov representation if and only if
the restriction of p to any finite index subgroup is P-Anosov, and the fact that the centralizer of an
Anosov representation acts trivially on the Anosov boundary curve.

Using Proposition 7.12 and Theorem 7.6, we conclude that for ¢ > p + 1 the connected components
of R(I',SO(p, q)) from Theorem 4.1 contain P®-positive Anosov representations.

Proposition 7.13. Let P® C SO(p, q) be the stabilizer of the partial flag Vi C Vo C -+ C Vp_1, where
V; C RPYY 4s a j-plane which is isotropic with respect to a signature (p,q) inner product with p < q.
If ¢ > p+ 1, then each connected component of R°*(SO(p, q)) from (7.2) contains P®-positive Anosov
representations.

Remark 7.14. When ¢ = p + 1, this was shown in [12] for the analogous connected components
which contain minima of the form (6.2). The components which contain minima of the form (6.3) are
smooth, and one cannot use Proposition 7.12 to obtain positive representations in these components.
However, we note that if Conjecture 7.10 holds, then each of the these smooth connected components
of R(SO(p,p + 1)) consists of positive representations since each component would be contained in a
component of positive representations into SO(p, p + 2).

Proposition 7.13 gives further evidence for Conjecture 7.10, and it is thus natural to expect that all
representations in the connected components from Theorem 4.1 are positive Anosov representations.
Indeed, this would follow from Conjecture 7.10 and Proposition 7.13. Moreover, if Conjecture 7.10 is
true, then the connected components of Theorem 4.1 correspond exactly to those connected components
of R(T',SO(p, q)) which contain positive Anosov representations.

7.3. Positivity and a generalized Cayley correspondence. We conclude the paper by interpreting
the parameterization of the ‘exotic’ connected components of the SO(p, ¢)-Higgs bundle moduli space
from Theorem 4.1 as a generalized Cayley correspondence.

Let G be a simple adjoint Hermitian Lie group of tube type and let G/P be the Shilov boundary
of the symmetric space of G. In [5], it is proven that if L is the Levi factor of P, then the space of
Higgs bundles with maximal Toledo invariant is isomorphic to M g2(L). More generally, an analogous
statement holds when G’ — G is a finite cover such that a G-Higgs bundle with maximal Toledo
invariant lifts to a G’-Higgs bundle. This correspondence between maximal G-Higgs bundles and
K2-twisted L-Higgs bundles is called the Cayley correspondence.

Remark 7.15. In [5], the above statement is stated differently. We use the above interpretation because
it relates directly with the notions of positivity discussed in the previous section.

Note that the above parabolic and Levi factor are exactly the objects which appear in the notion
of positivity when G is Hermitian Lie group of tube type. When G is a split real form the Hitchin
components of M(G) admit an analogous interpretation. Namely, if G is such a split group, then
(G,P) admits a positive structure when P is a minimal parabolic subgroup. In this case, L C P is
(R*)™(%) and the identity component Lg is given by (R1)™(%). Moreover, the moduli space of L-twisted
R*-Higgs bundles is isomorphic to H°(L) :

Mp(RT) = HO(L).

rk(G)
Thus, when the Hitchin base is @ H?(K™i™1), the Hitchin components are given by
j=1

Mgemirr (RT) X X M pemg gy +1 (RT).

In particular, the Higgs bundles associated surface group to representations into split real groups which
are positive with respect the minimal parabolic subgroup also satisfy a ‘Cayley correspondence’.
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For the group SO(p, q), the Levi factor of the parabolic P® so that (SO(p,q),P®) has a positive

structure is L® = SO(1,¢—p+1) x (R*)P~1. Moreover, the subgroup L&, . which preserves the positive
cones is

pos

L@ Rt x...xRT xSO(l,q—p‘Fl)'
S————

pos

(p—1)-times

Recall that the ‘exotic’ connected components in the image of ¥ Theorem 4.1 are given by

p—1
M (SO(1, g —p+1)) x [[ HO(KE™).
j=1
Using M g2, (RT) = H°(K?7), this is equivalent to
p—1
Mg (SO(L,q — p+ 1)) x [ M2 (RT).
j=1

When 2 = p < ¢, we recover the Cayley correspondence for groups of Hermitian type [7, 5]. Hence,
for 2 < p < ¢ we have established that the Higgs bundles associated to representations into SO(p, q)
which cannot be continuously deformed to compact representations satisfy a generalized Cayley cor-
respondence. Moreover, when p < ¢ — 1 each such component of the representation variety contains
positive representations by Proposition 7.13. This suggests a general theorem for positive representa-
tions which relates the connected components of the subgroup of L® which preserves the cones with
the product of moduli spaces of appropriately twisted L;-Higgs bundles.
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