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SO(p, q)-HIGGS BUNDLES AND HIGHER TEICHMÜLLER COMPONENTS
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PETER B. GOTHEN, AND ANDRÉ OLIVEIRA

Abstract. Some connected components of a moduli space are mundane in the sense that they
are distinguished only by obvious topological invariants or have no special characteristics. Others are
more alluring and unusual either because they are not detected by primary invariants, or because they
have special geometric significance, or both. In this paper we describe new examples of such ‘exotic’
components in moduli spaces of SO(p, q)-Higgs bundles on closed Riemann surfaces or, equivalently,
moduli spaces of surface group representations into the Lie group SO(p, q). Furthermore, we discuss
how these exotic components are related to the notion of positive Anosov representations recently
developed by Guichard and Wienhard. We also provide a complete count of the connected components
of these moduli spaces (except for SO(2, q), with q > 4).

Contents

1. Introduction 2

2. Higgs bundle background 6

2.1. General Definitions 6

2.2. The Higgs bundle moduli space and deformation theory 8

2.3. Stability and deformation complex for G = SO(p, q) 10

2.4. The Hitchin fibration and Hitchin component 12

2.5. Topological invariants 13

3. The C∗-action and its fixed points 14

3.1. SO(p, q)-fixed points 16

3.2. Fixed points on M(SO(2, 2)) 17

3.3. SO(1, n)-fixed points and local structure of MKp(SO(1, n)) 17

4. Existence of exotic components of M(SO(p, q)) 20

4.1. Defining the map Ψ 20

4.2. Local structure of fixed points in the image of Ψ 23

4.3. Proof of Theorem 4.1 31

5. Classification of local minima of the Hitchin function for M(SO(p, q)) 33

5.1. Stable minima with vanishing H2(C•) 33

Date: February 23, 2018.
2000 Mathematics Subject Classification. 14D20, 14F45, 14H60.
Key words and phrases. Semistable Higgs bundles, connected components of moduli spaces.
The authors acknowledge support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367

“RNMS: GEometric structures And Representation varieties” (the GEAR Network). The third author is funded by a Na-
tional Science Foundation Mathematical Sciences Postdoctoral Fellowship, NSF MSPRF no. 1604263. The fourth author
was partially supported by the Spanish MINECO under ICMAT Severo Ochoa project No. SEV-2015-0554, and under
grant No. MTM2013-43963-P. The fifth and sixth authors were partially supported by CMUP (UID/MAT/00144/2013)
and the project PTDC/MAT-GEO/2823/2014 funded by FCT (Portugal) with national funds. The sixth author was also

partially supported by the Post-Doctoral fellowship SFRH/BPD/100996/2014 funded by FCT (Portugal) with national
funds.

1

http://arxiv.org/abs/1802.08093v1


2 Aparicio-Arroyo, Bradlow, Collier, Garćıa-Prada, Gothen, Oliveira
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1. Introduction

For a closed surface S and a Lie group G, the representation varietyR(S,G) parameterizes conjugacy
classes of group homomorphisms from the fundamental group of S into G. For each Riemann surface
structure X on S, the Non-Abelian Hodge (NAH) correspondence defines a homeomorphism between
R(S,G) and M(X,G), the moduli space of polystable G-Higgs bundles on X . In general these moduli
spaces have multiple connected components. Some of the components are mundane in the sense that
they are distinguished by obvious topological invariants and have no known special characteristics.
Others are more alluring and unusual, either because they are not detected by the primary invariants
or because they parameterize objects of special significance, or both.

Instances of such ‘exotic’ components are well understood in two situations. The first is the case
where G is the split real form of a complex semisimple Lie group, in which case the exotic components
are known as Hitchin components (see [28]). The second occurs when G is the isometry group of a
non-compact Hermitian symmetric space, in which case the subspace with so-called maximal Toledo
invariant has exotic components (see [7]). In [11], both of these classes of exotic components of rep-
resentation varieties have been called higher Teichmüller components since they enjoy many of the
geometric features of Teichmüller space.

One distinguishing feature common to all higher Teichmüller components is that every representation
in them is an Anosov representation, a concept introduced by Labourie [31]. Anosov representations
have many interesting dynamical and geometric properties which generalize convex cocompact rep-
resentations into rank one Lie groups. In particular, higher Teichmüller components consist entirely
of discrete and faithful representations [31] which are holonomies of geometric structures on certain
closed manifolds [24]. In general, the Anosov condition is open in the representation variety and so
does not by itself distinguish connected components. More recently, in [25], Guichard and Wienhard
defined a notion of positivity which refines the Anosov property and is still an open condition. They
conjecture that such positivity for Anosov representations is also a closed condition, and hence should
detect connected components of a representation variety. They showed, moreover, that apart from the
split real forms and the real forms of Hermitian type, the only other non-exceptional groups which
allow positive representations are the disconnected groups SO(p, q) for 1 < p < q, i.e. the special
orthogonal groups with signature (p, q). This leads directly to the conjecture that R(S, SO(p, q)) and
hence M(X, SO(p, q)) should have ‘exotic’ connected components.

In this paper we establish the existence of such exotic components, count them, and show that each
exotic component contains positive Anosov representations. Our methods lie on the Higgs bundle side
of the NAH correspondence, so our results actually address the connected components of M(SO(p, q))
(where we drop the X from the notation unless explicitly needed for clarity or emphasis). Except for
the special cases p = 2, q = p or q = p+1, the group SO(p, q) is neither split nor of Hermitian type, so
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the relation between topological invariants and connected components in the representation varieties
or related moduli spaces cannot be inferred from previously known mechanisms.

Our main theorem1 has two parts — one is an existence result and one is a non-existence result.
Namely we prove

(1) the existence of a class of explicitly described exotic components of M(SO(p, q)) for 1 < p 6 q,
and

(2) the non-existence of any other exotic components of M(SO(p, q)) for both p = 1 and 2 < p 6 q.

Combining these two results and including the 22g+2 ‘mundane’ components yields a complete count of
the connected components for the moduli spaces of SO(p, q)-Higgs bundles M(X, SO(p, q)) or, equiv-
alently, the representation varieties R(S, SO(p, q)), for 2 < p 6 q.

Theorem 6.1. Let X be a compact Riemann surface of genus g > 2 and denote the moduli space of
SO(p, q)-Higgs bundles on X by M(SO(p, q)). For 2 < p 6 q, we have

|π0(M(SO(p, q)))| = 22g+2 +





22g if q = p

22g+1 + 2p(g − 1)− 1 if q = p+ 1

22g+1 if q > p+ 1 .

Remark 1.2. In fact, our methods also show that M(SO(1, q)) does not have exotic components for
q > 2, yielding 22g+1 connected components. We also give a precise count of the components of
M(SO(2, 2)) and M(SO(2, 3)) (the latter case basically follows from previously known results), but
for q > 4 our techniques fall short of a component count of M(SO(2, q)). However, we expect no new
exotic components to exist (see Section 6.2 for details).

The primary topological invariants are apparent from the structure of the Higgs bundles. In the
case of SO(p, q)-Higgs bundles on X , the objects are described by a triple (V,W, η), where V and W
are holomorphic orthogonal bundles of rank p and q respectively, such that ΛpV ∼= ΛqW , and η is
a holomorphic section of the bundle Hom(W,V ) ⊗ K, where K is the canonical bundle of X . The
topological invariants are then the first and second Stiefel-Whitney classes of V and W subject to the
constraint that sw1(V ) = sw1(W ). These invariants provide a primary decomposition of the moduli
spaceM(SO(p, q)) into (not necessarily connected) components labeled by triples (a, b, c) ∈ H1(S,Z2)×
H2(S,Z2)×H2(S,Z2). Using the notation Ma,b,c(SO(p, q)) to denote the union of components labeled
by (a, b, c), we can thus write

(1.1) M(SO(p, q)) =
∐

(a,b,c)∈Z
2g
2 ×Z2×Z2

Ma,b,c(SO(p, q)) .

Each space Ma,b,c(SO(p, q)) has one connected component characterized entirely by the topological
invariants (a, b, c). This is the connected component which contains the moduli space of polystable
orthogonal bundles with these invariants, which correspond to Higgs bundles for the maximal com-
pact subgroup of SO(p, q). Denoted by Ma,b,c(SO(p, q))top, these comprise the 22g+2 ‘mundane’
components for 2 < p 6 q. Our existence result identifies additional components disjoint from the
Ma,b,c(SO(p, q))top components. Identifying the topological invariants of each component of Theorem
6.1 gives the following precise component count.

Corollary 6.3. For 2 < p < q − 1 and (a, b, c) ∈ H1(S,Z2)×H2(S,Z2)×H2(S,Z2)

|π0(M
a,b,c(SO(p, q)))| =





2 if p is odd and b = 0

22g + 1 if p is even, a = 0 and b = 0

1 otherwise .

Remark 1.4. For p = 1 and p = 2, the primary topological invariants are slightly different. For p = q
and p = q − 1, the connected component count of Ma,b,c(SO(p, q)) is different (see Corollaries 6.4 and

1This result was announced, without details, in [1]. We now provide the details of the proof.
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6.5). For p = q and p = q−1, all components had been previously detected in [28] and [12] respectively.
Nevertheless, the nonexistence of additional components is new.

Another advantage of working on the Higgs bundle side of the NAH correspondence is that the
Higgs bundles and their moduli spaces possess a rich structure that provides tools which are not
readily available in the representation varieties. Two of these tools, which we exploit, are a real-valued
proper function defined by the L2-norm of the Higgs field, called the Hitchin function, and a natural
holomorphic C∗-action. These two tools are related since the critical points of the Hitchin function
occur at fixed points of the C∗-action. When the moduli space is smooth the Hitchin function is
a perfect Morse-Bott function. While this is not the case in general, the properness of the Hitchin
function nevertheless allows one to extract useful information about π0 from the loci of local minima
which, in turn, can be described using information about the corresponding C

∗-fixed points.

For many groups G the Hitchin function has no local minima other than those defining the mundane
components (see for example [19, 32, 18]). In these cases, this approach yields enough information to
completely count the components of M(G). Interestingly, this is not the case for SO(p, q); neverthe-
less, we are able to classify all the local minima. Even though the singularities in the space render
this insufficient for completely determining the number of connected components of M(SO(p, q)), the
classification of local minima plays a crucial role in the non-existence part of our main result, and the
C∗-fixed points are helpful in the proof of the main existence theorem. The new exotic components
are detected by a more direct approach.

To show that the components exist, we first describe a model for the supposed components. We
then construct a map from the model to M(SO(p, q)) and show that the map is open and closed. The
description of the model invokes a variant of Higgs bundles in which the canonical bundle K is replaced
by the pth power of K.

Theorem 4.1. Let X be a compact Riemann surface with genus g > 2 and canonical bundle K. Denote
the moduli space of Kp-twisted SO(1, q− p+1)-Higgs bundles on X by MKp(SO(1, q− p+1)) and the
moduli space of K-twisted SO(p, q)-Higgs bundles on X by M(SO(p, q)). For 1 6 p 6 q, there is a well
defined map

(1.2) Ψ : MKp(SO(1, q − p+ 1))×

p−1⊕

j=1

H0(X,K2j) // M(SO(p, q))

which is an isomorphism onto its image and has an open and closed image. Furthermore, if p > 1,
then every Higgs bundle in the image of Ψ has a nowhere vanishing Higgs field.

In the case p = 2, the model described in this theorem coincides exactly with the description of
the ‘exotic’ maximal components of M(SO(2, q)) (see [7, 5]), where the objects parameterized by the
components are described by K2-twisted Higgs bundles referred to as Cayley partners. In that setting,
the emergence of the Cayley partners is a consequence of the fact that SO(2, q) is a group of Hermitian
type; our new results for SO(p, q) with p > 2 show that the phenomenon has a more fundamental
origin. In this regard, we note that our new components generalize both the afore-mentioned Cayley
partners in the Hermitian case (i.e. for p = 2) and also the Hitchin components for the split real forms
SO(p, p) and SO(p, p+ 1) (see Section 7.3 for more details).

A key technical detail required to show that the map (1.2) is open, is the fact that the spaces
(both the model and its image under the map) are essentially smooth. This means that all points are
either smooth points or mildly singular, thus allowing the use of Kuranishi’s methods to describe open
neighborhoods of all points. The proof of this key technical detail uses the relation between the tangent
spaces for points in M(SO(p, q)) and hypercohomology spaces computed from a deformation complex.
The deformation complex has three terms, with the first term coming from infinitesimal automorphisms
and the third term encoding integrability obstructions. The crucial lemma establishes the vanishing
of the second hypercohomology, i.e. of integrability obstructions for infinitesimal deformations. This
is the first place where we exploit the natural C∗-action on the moduli space. More precisely, it is the
special structure of the fixed points of the action which allows us to prove the vanishing results for
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the deformation complexes at those points. We then use an upper-semicontinuity argument to extend
the result to all points where it is needed. To show that the image of the map (1.2) is closed, the
properness of the Hitchin fibration is exploited.

The non-existence result also relies heavily on the fixed points of the C∗-action and on their relation
to the critical points of the Hitchin function on M(SO(p, q)). The properness of this function implies
that it attains its minimum on each connected component. The non-existence result thus follows from
a careful analysis of all the C∗-fixed points, most of which is devoted to identifying which fixed points
correspond to local minima of the function. We show that these are of two types, namely those where
the Higgs field is identically zero, and those which lie in the new exotic components. Since the former
label the known ‘mundane’ components, this proves that we have not missed any components.

We now discuss a few consequences of our work for the SO(p, q)-representation varietyR(S, SO(p, q)).
Recall that a representation ρ : π1(S) → SO0(2, 1) is called Fuchsian if it is discrete and faithful and
that, since SO0(p− 1, p) is a split group of adjoint type, there is a unique principal embedding

(1.3) ι : SO0(2, 1) → SO0(p− 1, p) .

One consequence of our techniques is a dichotomy for polystable SO(p, q)-Higgs bundles (see Corollary
6.2). Translating this statement across the NAH correspondence leads to the following dichotomy for
surface group representations into SO(p, q).

Theorem 7.6. Let S be a closed surface of genus g > 2. For 2 < p < q− 1, the representation variety
R(SO(p, q)) of S is a disjoint union of two sets,

(1.4) R(SO(p, q)) = Rcpt(SO(p, q)) ⊔ Rex(SO(p, q)) ,

where

• [ρ] ∈ Rcpt(SO(p, q)) if and only if ρ can be continuously deformed to a compact representation,
• [ρ] ∈ Rex(SO(p, q)) if and only if ρ can be continuously deformed to a representation

(1.5) ρ′ = α⊕ (ι ◦ ρFuch)⊗ det(α) ,

where α is a representation of π1(S) into the compact group O(q − p+ 1), ρFuch is a Fuchsian
representation of π1(S) into SO0(2, 1), and ι is the principal embedding from (1.3).

Remark 1.7. For 2 < p = q− 1, the above theorem does not hold. Namely, there are exactly 2p(g− 1)
exotic components of R(S, SO(p, p + 1)) for which the result fails. With the exception of the Hitchin
component, in [12] it is conjectured that all representations in these components are Zariski dense.

It is Theorem 7.6 which connects our work on the Higgs bundle side of the NAH correspondence
to the theory of Anosov representations. For a fixed parabolic subgroup P ⊂ G, a representation
ρ : π1(S) → G is P-Anosov if there is an equivariant boundary curve

ξρ : ∂∞π1(S) → G/P

from the Gromov boundary of π1(S) to the flag variety G/P with certain dynamical properties (see
Definition 7.7). The set of P-Anosov representations defines an open set in the representation variety
consisting of representations with desirable dynamic and geometric properties. In [25], Guichard and
Wienhard show that for certain pairs (G,P), triples of transverse points in G/P admit a notion of being
positively ordered. For such pairs (G,P), an Anosov representation is called positive if the boundary
curve ξρ takes positively oriented triples in ∂∞π1(S) to positively ordered triples in G/P.

The set of positive Anosov representations is open in R(S,G) and conjectured by Guichard and
Wienhard to also be closed [25]. For the classical groups, the pairs (G,P) which admit a notion of
positivity come in three families: G a split real form and P is the minimal parabolic subgroup, G a
Hermitian group of tube type and G/P the Shilov boundary of the symmetric space, and G = SO(p, q)
with p < q and P the stabilizer of the partial flag V1 ⊂ V2 ⊂ · · · ⊂ Vp−1, where Vj ⊂ Rp+q is an isotropic
j-plane. For the first two families the set of positive Anosov representations corresponds exactly to the
connected components of Hitchin representations and maximal representations respectively; thus, for
these families, positivity is indeed a closed condition. For the group SO(p, q), the conjecture is open.
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However, it follows from the work of Guichard and Wienhard that the model representation (1.5) is a
positive Anosov representation. Thus, as a corollary to Theorem 7.6 we have:

Proposition 7.13. Let P ⊂ SO(p, q) be the stabilizer of the partial flag V1 ⊂ V2 ⊂ · · · ⊂ Vp−1, where
Vj ⊂ Rp+q is an isotropic j-plane. If 2 < p < q − 1, then each connected component of Rex(SO(p, q))
from (1.4) contains a nonempty open set of positive P-Anosov representations.

For the group SO(p, q), we expect the exotic components described in this paper to correspond
exactly to the positive Anosov SO(p, q)-representations. Indeed, this would follow from Proposition
7.13 and a positive answer to the conjecture of Guichard and Wienhard.

Though our main results prove the existence of the first exotic components outside the realm of
higher Teichmüller theory, evidence has been building for some time. The first indication came from
the local minima of the Hitchin function described above. While the absolute minimum, i.e. the zero
level, is attained on the components Ma,b,c(SO(p, q))top, in [3] the first author described additional
smooth local minima at non-zero values, thus opening up the possibility that further components exist.

The special case q = p+1 provided a further early indication of the phenomenon which we see more
generally for any q > p, i.e. for the existence of additional exotic components. Hitchin components
were known to exist in M(SO(p, p+ 1)) by virtue of the fact that the group SO(p, p + 1) is the split
real form of SO(2p + 1,C). The results in [12] show that these are not the only exotic components.
With the luxury of hindsight, we now see that the additional components in M(SO(p, p+1)) coincide
exactly with the exotic components described by our main results for the case q = p+ 1.

We note finally that additional features of the connected components of M(SO(p, q)) have recently
been detected by Baraglia and Schaposnik (in [4]) by examining spectral data on generic fibers of
the Hitchin fibration for M(SO(p + q,C)). Their methods cannot distinguish connected components
because of the genericity assumption on the fibers, but, where they apply, their methods provide an
intriguing alternative perspective.

2. Higgs bundle background

In this section we recall the necessary background on G-Higgs bundles on a compact Riemann surface
and their deformation theory. Special attention is then placed on the group SO(p, q). Higgs bundles
were introduced by Hitchin in [26] and Simpson in [38], and have been studied extensively by many
authors. For real groups we will mostly follow [17]. For the rest of the paper, let X be a compact
Riemann surface of genus g > 2 and with canonical bundle K → X .

2.1. General Definitions. Let G be a real reductive Lie group with Lie algebra g and choose a
maximal compact subgroup H ⊂ G with Lie algebra h ⊂ g. Fix a Cartan splitting g ∼= h⊕m, where m

is the orthogonal complement of h ⊂ g with respect to a nondegenerate Ad(G)-invariant bilinear form
(which is taken to be the Killing form when G is semisimple). In particular, [h,m] ⊂ m and [m,m] ⊂ h,
thus such a splitting is preserved by the adjoint action of H on g, giving a linear representation
H → GL(m). Complexifying everything yields an Ad(HC)-invariant splitting gC ∼= hC ⊕mC.

For any group G, if P is a principal G-bundle and α : G → GL(V ) is a linear representation, denote
the associated vector bundle P ×G V by P [V ].

Definition 2.1. Fix a C∞ principal HC-bundle P → X and a holomorphic line bundle L → X. An
L-twisted G-Higgs bundle structure on P is a pair (E , ϕ) where E is a holomorphic principal HC-bundle
with underlying smooth bundle P and ϕ ∈ H0(X, E [mC]⊗L) is a holomorphic section of the associated
mC-bundle twisted by L. The section ϕ is called the Higgs field.

Remark 2.2. As usual, when the line bundle L is the canonical bundle K of the Riemann surface, we
refer to a K-twisted Higgs bundle as a Higgs bundle. We are mainly interested in the case L = K,
however, taking L = Kp will also play an important role.
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Example 2.3. Note that when G is a compact group, we have GC = HC and mC = 0, so a G-Higgs
bundle is just a holomorphic GC-bundle on X. When G is a complex group, we have G = HC and
mC ∼= g. In this case, the Higgs field is just an L-twisted section of the adjoint bundle.

Recall that a holomorphic structure on a C∞ principal HC-bundle P is equivalent to a Dolbeault
operator ∂̄P , and that the space of such operators is an affine space modelled on Ω0,1(X,P [hC]). We
denote the space of L-twisted Higgs bundle structures on P by

(2.1) HL(G, P ) = {(∂̄P , ϕ) | ∂̄Pϕ = 0},

where ϕ ∈ Ω0(X,P [mC]⊗L) is the Higgs field. The set of Dolbeault operators is an affine space modelled
on Ω0,1(X,P [hC]) so HL(G, P ) can be identified with a subvariety of the vector space Ω0,1(X,P [hC])×
Ω0(X,P [mC]⊗ L).

Since we are concerned with classical groups, rather than dealing with principal bundles, we will use a
linear representation α : HC → GL(V ) and work with vector bundles and sections of associated bundles.
The standard representations of GL(n,C), SL(n,C) and O(n,C) on C

n give the following vector bundle
definitions, which are of course equivalent to their corresponding principal bundle formulations given
by Definition 2.1.

Definition 2.4. An L-twisted GL(n,C)-Higgs bundle on X is a pair (E,Φ) where E → X is a rank n
holomorphic vector bundle and Φ : E → E⊗L is a holomorphic L-twisted endomorphism. If ΛnE ∼= O
and tr(Φ) = 0, then (E,Φ) is an L-twisted SL(n,C)-Higgs bundle.

Definition 2.5. An L-twisted O(n,C)-Higgs bundle is a triple (E,Q,Φ) where (E,Φ) is an L-twisted
GL(n,C)-Higgs bundle, Q is an everywhere nondegenerate holomorphic section of Sym2E∗ such that
ΦTQ +QΦ = 0, where we are considering Q as a symmetric isomorphism Q : E → E∗. If ΛnE ∼= O,
then (E,Q,Φ) defines an L-twisted SO(n,C)-Higgs bundle.

The group O(p, q) is the group of linear automorphisms of Rp+q which preserve a nondegenerate
symmetric quadratic form of signature (p, q). We are mainly interested in the subgroup G = SO(p, q) of
O(p, q) which also preserves an orientation of Rp+q. The group SO(p, q) has two connected components
and the connected component of the identity is denoted by SO0(p, q).

If Qp and Qq are positive definite symmetric p× p and q × q matrices, then the Lie algebra so(p, q)
is defined by the matrices

so(p, q) ∼=
{
(A B
C D )

∣∣∣ (A B
C D )

T
(

Qp

−Qq

)
+
(

Qp

−Qq

)
(A B
C D ) = 0

}
,

where A is a p× p matrix, B is a p× q matrix, C is a q × p matrix and D is a q × q matrix. Thus,

(2.2) ATQp +QpA = 0, DTQq +QqD = 0 and C = −Q−1
q BTQp .

The maximal compact subgroup of O(p, q) is O(p) × O(q) and the maximal compact subgroup of
SO(p, q) is S(O(p)×O(q)). Using (2.2), the complexified Cartan decomposition of so(p, q) is

so(p+ q,C) ∼= (so(p,C)⊕ so(q,C))⊕Hom(W,V ),

where V and W are the standard representations of O(p,C) and O(q,C). Using these representations,
we have the following vector bundle definition of an SO(p, q)-Higgs bundle.

Definition 2.6. An L-twisted O(p, q)-Higgs bundle on X is a tuple (V,QV ,W,QW , η) where

• V and W are respectively rank p and q holomorphic vector bundles on X, QV and QW are
respectively everywhere nondegenerate holomorphic section of Sym2V ∗ and Sym2W ∗,

• η : W → V ⊗ L is a holomorphic section of Hom(W,V )⊗ L.

An L-twisted SO(p, q)-Higgs bundle is an L-twisted O(p, q)-Higgs bundle (V,QV ,W,QW , η) with the
extra condition Λp(V ) ∼= Λq(W ). Finally, an L-twisted SO0(p, q)-Higgs bundle is an L-twisted SO(p, q)-
Higgs bundle (V,QV ,W,QW , η) such that Λp(V ) ∼= O ∼= Λq(W ).
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Remark 2.7. We will usually interpret the orthogonal structures as symmetric isomorphisms:

QV : V
∼=

−−−→ V ∗ and QW : W
∼=

−−−→ W ∗ .

Moreover, when the orthogonal structures are clear, we will omit them from the notation.

Example 2.8. For p = 1, an L-twisted SO(1, q)-Higgs bundle is a tuple (V,W, η) where V is a holo-
morphic line bundle I ∼= ΛqW with I2 ∼= O and η ∈ H0(Hom(W, I) ⊗ L). In particular, an L-twisted
SO(1, n)-Higgs bundle is determined by (W, η).

Given an SO(p, q)-Higgs bundle (V,QV ,W,QW , η), let

η∗ = Q−1
W ηTQV .

The L-twisted SO(p+ q,C)-Higgs bundle associated to (V,QV ,W,QW , η) is given by

(2.3) (E,Q,Φ) =
(
V ⊕W,

(
QV 0
0 −QW

)
,
(

0 η
η∗ 0

))
.

In subsequent sections, we will also need to the notions of U(p, q)-Higgs bundles and GL(n,R)-Higgs
bundles. The complexified Cartan decompositions for these groups are given by

u(p, q)C ∼= (gl(p,C)⊕ gl(q,C)) ⊕ (Hom(E,F )⊕Hom(F,E))

gl(n,R)C ∼= o(n,C)⊕ sym(Cn),

where E and F are respectively the standard representations of GL(p,C) and GL(q,C) and sym(Cn)
denotes the set of symmetric endomorphisms of Cn. As above, we have the following vector bundle
definitions of the associated Higgs bundles.

Definition 2.9. An L-twisted U(p, q)-Higgs bundle on X is a tuple (E,F, β, γ) where

• E and F are holomorphic vector bundles on X, of rank p and q respectively;
• β ∈ H0(Hom(F,E) ⊗ L) and γ ∈ H0(Hom(E,F )⊗ L).

An L-twisted GL(n,R)-Higgs bundle on X is a tuple (E,Q,Φ) where

• E is a rank n holomorphic vector bundle on X and Q is a everywhere nondegenerate holomor-
phic section of Sym2E∗;

• Φ ∈ H0(End(E)⊗ L) such that ΦTQ = QΦ.

If ΛnE ∼= O and tr(Φ) = 0, then (E,Q,Φ) is an L-twisted SL(n,R)-Higgs bundle.

2.2. The Higgs bundle moduli space and deformation theory. To form a moduli space of G-
Higgs bundles we need a notion of stability for these objects. In general, these stability notions involve
the interaction of the Higgs field with certain parabolic reductions of structure group (see [17]). For
the above groups stability can be simplified and expressed in vector bundle terms in the following way
(see [17]).

Proposition 2.10. An L-twisted SL(n,C)-Higgs bundle (E,Φ) is

• semistable if for every holomorphic subbundle F ⊂ E with Φ(F ) ⊂ F ⊗L we have deg(F ) 6 0,
• stable if for every proper holomorphic subbundle F ⊂ E with Φ(F ) ⊂ F⊗L we have deg(F ) < 0,
• polystable if it is semistable and for every degree zero subbundle F ⊂ E with Φ(F ) ⊂ F ⊗ L,
there is a subbundle F ′ with Φ(F ′) ⊂ F ′ ⊗ L so that E = F ⊕ F ′. That is,

(E,Φ) =
(
F ⊕ F ′,

(
ΦF 0
0 ΦF ′

))
.

Remark 2.11. For the notions of stability, semistability and polystability for an L-twisted O(n,C)-
Higgs bundles (E,Q,Φ), one only needs to consider isotropic subbundles F ⊂ E with Φ(F ) ⊂ F ⊗K
(see for example [17]). Here a subbundle F ⊂ E is isotropic if F ⊂ F⊥ where F⊥ is the perpendicular
subbundle defined by Q. For a polystable L-twisted O(n,C)-Higgs bundle, if F ⊂ E is a zero degree
isotropic subbundle with Φ(F ) ⊂ F ⊗ L, then E ∼= F ⊕ F ′ where F ′ is a degree zero coisotropic
subbundle satisfying Φ(F ′) ⊂ F ′ ⊗ L. We note also that the polystability of (E,Q) as an orthogonal
vector bundle is equivalent to the polystability of W as a vector bundle [34].



SO(p, q)-HIGGS BUNDLES AND HIGHER TEICHMÜLLER COMPONENTS 9

For real groups, the notions of semistability, stability and polystability are a bit more involved.
However, to define the moduli spaces we are interested in we may use the following result of [17].

Proposition 2.12. Let G be a real form of a simple subgroup of SL(n,C). An L-twisted G-Higgs
bundle (E , ϕ) is polystable if and only if the induced SL(n,C)-Higgs bundle is polystable in the sense of
Proposition 2.10.

The gauge group GHC of C∞ bundle automorphisms of a smooth HC-bundle PHC acts on the space
HL(G, P ) of L-twisted Higgs bundle structures from (2.1). Moreover, this action preserves the subspace
HL(G, P )ps ⊂ HL(G, P ) of polystable L-twisted Higgs bundles and the orbits of the GHC -action on
HL(G, P )ps are closed.

If (V,QV ) and (W,QW ) are respectively rank p and rank q orthogonal vector bundles with ΛpV ∼=
ΛqW , then the S(O(p,C) × O(q,C))-gauge group consists of pairs (gV , gW ), where gV and gW are
smooth automorphisms of V and W such that

gTV QV gV = QV , gTWQW gW = QW and det(gV )⊗ det(gW ) = Id .

Such a gauge transformation acts on the data (V,W, η) by

(gV , gW ) · (∂̄V , ∂̄W , η) = (gV ∂̄V g
−1
V , gW ∂̄W g−1

W , gV ηg
−1
W ) .

Definition 2.13. Fix a smooth principal HC-bundle PHC and a holomorphic line bundle L on X. The
moduli space ML(PHC ,G) of L-twisted G-Higgs bundle structures on PHC consists of isomorphism
classes of polystable L-twisted Higgs bundles with underlying smooth bundle PHC ,

ML(PHC ,G) = HL(PHC ,G)ps/GHC .

The union over the set of isomorphism classes of smooth principal HC-bundles on X of the spaces
ML(PHC ,G) will be referred to as the moduli space of L-twisted G-Higgs bundles and denoted by
ML(G).

In the case L = K, we shall denote the corresponding moduli space just by M(G).

Remark 2.14. The moduli space ML(G) of L-twisted G-Higgs bundles can also be constructed as
the set of S-equivalence classes of semistable G-Higgs bundles. Such a construction is a particular
case of a construction of Schmitt [36] using geometric invariant theory. In particular, ML(G) is
naturally a complex algebraic variety. Suppose G is such that its maximal compact subgroup H ⊂ G
is semisimple. Then, for L = K, the expected dimension of M(G) is dim(G)(g − 1), while for L such
that deg(L) > 2g − 2, the expected dimension of ML(G) is dim(h)(g − 1) + dim(m)(deg(L) + 1 − g),
where we recall that h⊕m is a Cartan decomposition of the Lie algebra of G. If the maximal compact
H ⊂ G is only reductive, then the expected dimension is obtained by adding dim(Z(h)∩ker ad) to both
formulas, where ad : h → End(m) is the map induced by the linear representation Ad : H → GL(m).
See [26, 39, 36, 33, 17].

Remark 2.15. The moduli space of L-twisted G-Higgs bundles is homeomorphic to the moduli space of
solutions to the Hitchin self-duality equations. These are equations for a reduction of structure group
of the bundle to a maximal compact subgroup (see [17]). When L = K, this solution is sometimes
referred as a harmonic metric.

The automorphism group Aut(E , ϕ) of a G-Higgs bundle (E , ϕ) is defined by

(2.4) Aut(E , ϕ) = {g ∈ GHC | (Adg ∂̄E ,Adg ϕ) = (∂̄E , ϕ)}.

The center Z(GC) of GC is the intersection of the center of HC and the kernel of the representation
Ad : HC → GL(mC). Thus, we always have Z(GC) ⊂ Aut(∂̄E , ϕ).

Remark 2.16. If GC is semisimple, then a G-Higgs bundle is stable if it is polystable with finite au-
tomorphism group. In particular, if Hs

L(P,G) ⊂ Hps
L (P,G) denotes the subset of stable Higgs bundle

structures, then Hs
L(P,G) is open in Hps

L (P,G).
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Given a polystable G-Higgs bundle (E , ϕ), consider the complex of sheaves

(2.5) C•(E , ϕ) : E [hC]
adϕ

// E [mC]⊗ L.

This gives a long exact sequence in hypercohomology:

(2.6) 0 // H0(C•(E , ϕ)) // H0(E [hC])
adϕ

// H0(E [mC]⊗ L) // H1(C•(E , ϕ)) ��BC
GF�� // H1(E [hC])

adϕ
// H1(E [mC]⊗ L) // H2(C•(E , ϕ)) // 0 .

Remark 2.17. When the group G is complex, Serre duality implies that the second hypercohomology
group in this deformation complex is isomorphic to the dual of the zeroth hypercohomology group
[17, Proposition 3.17]. In particular, this implies that for, complex semisimple groups, H2(C•(E , ϕ))
vanishes if and only if the Higgs bundle (E , ϕ) is stable.

Note that the automorphism group Aut(E , ϕ) acts on H1(C•(E , ϕ)). Using standard slice meth-
ods of Kuranishi (see [30, Chapter 7.3] for details for the moduli space of holomorphic bundles), a
neighborhood of the isomorphism class of a polystable Higgs bundle (E , ϕ) in ML(G) is given by

κ−1(0) � Aut(E , ϕ)

where κ : H1(C•(E , ϕ)) → H2(C•(E , ϕ)) is the so called Kuranishi map.

When H2(C•(E , ϕ)) = 0, this simplifies considerably. Namely, in this case, a neighborhood of the
isomorphism class of a polystable Higgs bundle (E , ϕ) in ML(G) is isomorphic to

H
1(C•(E , ϕ)) � Aut(E , ϕ) .

When the automorphism group Aut(E , ϕ) is finite, the GIT quotient above simplifies to a regular
quotient, and the isomorphism class (E , ϕ) defines at most an orbifold point of ML(G).

Remark 2.18. For all of the SO(p, q)-Higgs bundles considered in the subsequent sections we will prove
that the relevant H2 always vanishes. Thus, we will not recall the construction of the Kuranishi map.

2.3. Stability and deformation complex for G = SO(p, q). We shall need the precise notion of
stability SO(p, q)-Higgs bundles. The derivation of the following simplification of the stability notion
for SO(p, q)-Higgs bundles is very similar to many cases treated in the literature. For example, see [19]
for the case G = Sp(2p, 2q).

Proposition 2.19. Let (V,QV ,W,QW , η) be an L-twisted SO(p, q)-Higgs bundle and let η∗ = Q−1
W ηTQV .

Then it is

• semistable if for any pair of isotropic subbundles V1 ⊂ V and W1 ⊂ W such that η(W1) ⊂ V1⊗L
and η∗(V1) ⊂ W1 ⊗ L we have deg(V1) + deg(W1) 6 0,

• stable if for any pair of isotropic subbundles V1 ⊂ V and W1 ⊂ W such that η(W1) ⊂ V1 ⊗ L
and η∗(V1) ⊂ W1 ⊗ L we have deg(V1) + deg(W1) < 0,

• polystable if it is semistable and whenever V1 ⊂ V and W1 ⊂ W are isotropic subbundles of
with η(W1) ⊂ V1 ⊗ L, η∗(V1) ⊂ W1 ⊗ L and deg(V1) + deg(W1) = 0, there are coisotropic
bundles V2 ⊂ V and W2 ⊂ W so that η(W2) ⊂ V2 ⊗ L and η∗(V2) ⊂ W2 ⊗ L. That is,

(V,W, η) =
(
V1 ⊕ V2,W1 ⊕W2,

( η1 0
0 η2

))
.

We now give a recursive classification of strictly polystable SO(p, q)-Higgs bundles, which will be
important in the following sections of the paper.

Given a U(p, q)-Higgs bundle (E,F, β, γ) with deg(E ⊕ F ) = 0, consider the associated SO(2p, 2q)-
Higgs bundle

(V,QV ,W,QW , η) =
(
E ⊕ E∗,

(
0 Id
Id 0

)
, F ⊕ F ∗,

(
0 Id
Id 0

)
,
(

β 0

0 γT

))
.
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If (E,F, β, γ) is a polystable U(p, q)-Higgs bundle, then this SO(2p, 2q)-Higgs bundle is strictly polystable.
Indeed, E, E∗, F and F ∗ are all isotropic subbundles with deg(E) + deg(F ) = 0 and

η(F ) ⊂ E ⊗K, η(F ∗) ⊂ E∗ ⊗K, η∗(E) ⊂ F ⊗K, and η∗(E∗) ⊂ F ∗ ⊗K.

Proposition 2.20. An SO(p, q)-Higgs bundle (V,QV ,W,QW , η) is polystable if and only if it is iso-
morphic to

(2.7)

(
E ⊕ E∗ ⊕ V0,

(
0 Id 0
Id 0 0
0 0 QV0

)
, F ⊕ F ∗ ⊕W0,

(
0 Id 0
Id 0 0
0 0 QW0

)
,

(
β 0 0

0 γT 0
0 0 η0

))
,

where (E,F, β, γ) is a polystable U(p1, q1)-Higgs bundle and (V0, QV0 ,W0, QW0 , η0) is a stable SO(p−
2p1, q − 2q1)-Higgs bundle.

Proof. Let (V,W, η) be a strictly polystable SO(p, q)-Higgs bundle and suppose E ⊂ V and F ⊂ W
are isotropic subbundles of rank p1 and q1 respectively, such that deg(E) + deg(F ) = 0 and

η(F ) ⊂ E ⊗K and η∗(E) ⊂ F ⊗K .

Since (V,W, η) is polystable, the bundles V and W split as V = E ⊕ V ′ and W = F ⊕W ′ where V ′

and W ′ are both coisotropic subbundles with the property

η(W ′) ⊂ V ′ ⊗K and η∗(V ′) ⊂ W ′ ⊗K .

Since the bundles E and F are isotropic, the bundles V ′ and W ′ are extensions of the form:

0 // E⊥/E // V ′ // E∗ // 0 and 0 // F⊥/F // W ′ // F ∗ // 0 .

We claim that the above extension classes vanish. For the bundle V we have a holomorphic splitting
E⊕V ′ and a smooth splitting E⊕E⊥/E⊕E∗. In this smooth splitting, the orthogonal structure QV

and the ∂̄-operator on V are isomorphic to

QV
∼=

(
0 0 Id
0 Q

E⊥/E
0

Id 0 0

)
and ∂̄V ∼=

(
∂̄E 0 0
0 ∂̄

E⊥/E
α

0 0 ∂̄E∗

)
,

where α ∈ Ω0,1(Hom(E∗, E⊥/E)). However, since the orthogonal structure QV is holomorphic, we have
α = 0. By applying the same argument to the bundle W , we have the following holomorphic splitting

(W,QW ) ∼=

(
F ⊕ F⊥/F ⊕ F ∗,

(
0 0 Id
0 Q

F⊥/F
0

Id 0 0

))
.

The conditions η(F ) ⊂ E ⊗K, η∗(E) ⊂ F ⊗K and η(W ′) ⊂ V ′ ⊗K imply that η is given by

η =

(
β 0 0
0 η0 0

0 0 γT

)
: F ⊕ F⊥/F ⊕ F ∗ −→ E ⊕ E⊥/E ⊕ E∗.

The tuple (E,F, β, γ) defines a polystable U(p1, q1)-Higgs bundle and

(V0, QV0 ,W0, QW0 , η0) = (E⊥/E,QE⊥/E , F
⊥/F,QF⊥/F , η0)

defines a polystable SO(p− 2p1, q − 2q1)-Higgs bundle. By iterating this process if necessary, we may
assume (V0,W0, η0) is a stable SO(p− 2p1, q − 2q1)-Higgs bundle. �

For the group SO(p, q) we have that the complexified Lie algebra of its maximal compact subgroup
is hC ∼= so(p,C) ⊕ so(q,C). If (E , ϕ) is an L-twisted SO(p, q)-Higgs bundle in the sense of Definition
2.1, let (V,QV ,W,QW , η) denote the associated L-twisted SO(p, q) in the sense of Definition 2.6. Write

so(V ) = {α ∈ End(V ) | αTQV +QV α = 0} and so(W ) = {β ∈ End(W ) | βTQW +QWβ = 0}.

Then the bundles E [hC] and E [mC]⊗ L are given by

E [so(p,C)⊕ so(q,C)] ∼= so(V )⊕ so(W ) and E [mC]⊗ L ∼= Hom(W,V )⊗ L.
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The deformation complex (2.5) is given by

(2.8) C•(V,W, η) : so(V )⊕ so(W )
adη

// Hom(W,V )⊗ L ,

(α, β)
✤ // η ⊗ β − (α⊗ IdL)⊗ η

and the long exact sequence (2.6) is given by

(2.9) 0 // H
0(C•(V,W, η)) // H0(so(V )⊕ so(W ))

adη
// H0(Hom(W,V )⊗ L) // H

1(C•(V,W, η)) ��BC
GF�� // H1(so(V )⊕ so(W ))

adη
// H1(Hom(W,V )⊗ L) // H2(C•(V,W, η)) // 0 .

We will use the above complex and long exact sequence extensively throughout the paper.

2.4. The Hitchin fibration and Hitchin component. Let GC be a complex semisimple Lie group
of rank ℓ and let p1, . . . , pℓ be a basis of GC-invariant homogeneous polynomials on gC with deg(pj) =
mj+1. Given an L-twisted GC-Higgs bundle (E , ϕ), the tensor pj(ϕ) is a holomorphic section of Lmj+1.
The map (E , ϕ) 7→ (p1(ϕ), . . . , pℓ(ϕ)) descends to a map

(2.10) h : ML(G
C) //

ℓ⊕

j=1

H0(Lmj+1)

known as the Hitchin fibration. In [27], Hitchin showed that h is a proper map for L = K, and for
general L properness was shown by Nitsure in [33]. The properness of the Hitchin fibration will play
a key role in Section 4.

Another important aspect of the Hitchin fibration for this paper is the Hitchin section.

Theorem 2.21. (Hitchin [28]) Let G be the split real form of a complex semisimple Lie group GC of
rank ℓ. There is a section sH of the fibration (2.10) with L = K, such that the image of sH consists of
G-Higgs bundles. Moreover, the map

sH :

ℓ⊕

j=1

H0(Kmj+1) → M(G)

maps the vector space
ℓ⊕

j=1

H0(Kmj+1) homeomorphically onto a connected component of M(G).

Remark 2.22. For a split real group G, a connected component of MK(G) described by Theorem 2.21
is called a Hitchin component. When GC is an adjoint group, their is exactly one Hitchin component.
Since the Hitchin component is smooth, the automorphism group of a Higgs bundle in a Hitchin
component is as small as possible. For O(p, p− 1), it is given by ±(IdV , IdW ).

We now describe an explicit construction of such sections for GC = O(2p− 1,C). This construction
will be used in Section 4. We will construct one such section sIH for each choice of a holomorphic line
bundle I with I2 ∼= O. In this case, the rank is p− 1, the integers mj +1 equal to 2j and the split real
form is isomorphic to O(p, p− 1). Therefore the Hitchin section is given by

sIH :

p−1⊕

j=1

H0(K2j) → M(O(2p− 1,C)).

For each n, consider the holomorphic orthogonal bundle

(2.11) (Kn, Qn) =

(
Kn ⊕Kn−2 ⊕ · · · ⊕K2−n ⊕K−n,

(
1

. .
.

1

))
.
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For (q2, . . . , q2p−2) ∈
p−1⊕
j=1

H0(K2j), the O(p, p − 1)-Higgs bundle (V,QV ,W,QW , η) in the image of a

Hitchin section sIH is given by

(2.12) sIH(q2, . . . , q2p−2) = (I ⊗Kp−1, Qp−1, I ⊗Kp−2, Qp−2, η(q2, . . . , q2p−2)),

where η(q2, . . . , q2p−2) depends on a choice of the basis of invariant polynomials. Notice that, in
particular, the holomorphic structures on V = I ⊗ Kp−1 and W = I ⊗Kp−2 are fixed. One choice for
η(q2, . . . , q2p−2) is given by

(2.13) η(q2, . . . , q2p−2) =




q2 q4 · · · q2p−2

1 q2 · · · q2p−4

. . .
. . .

1 q2

1




: I ⊗Kp−2
// I ⊗Kp−1 ⊗K .

For example, when p = 3 we have

(V,QV ,W,QW , η(q2, q4)) =
(
IK2 ⊕ I ⊕ IK−2,

(
1

1
1

)
, IK ⊕ IK−1, ( 1

1 ) ,
( q2 q4

1 q2
0 1

))
.

Using (2.3), the associated O(5,C)-Higgs bundle is given by

(E,Q,Φ) =
(
IK2 ⊕ I ⊕ IK−2 ⊕ IK ⊕ IK−1,

(
1

1
1

−1
−1

)
,




0 0 0 q2 q4
0 0 0 1 q2
0 0 0 0 1
1 q2 q4 0 0
0 1 q2 0 0



)
.

One computes that tr(Φ2) = 8q2 and tr(Φ4) = 20q22 + 8q4, so the above description describes the
Hitchin section for the basis p1(Φ) =

1
8 tr(Φ

2) and p2 = 1
8 tr(Φ

4)− 20
64 (tr(Φ

2))2.

2.5. Topological invariants. Since HC and G are both homotopy equivalent to H, the set of equiva-
lence classes of topological HC-bundles on X is the same as the set of equivalence classes of topological
G-bundles on X . Denote this set by BunX(G). This gives a decomposition of the Higgs bundle moduli
space:

ML(G) =
∐

a∈BunX(G)

Ma
L(G) ,

where a ∈ BunX(G) is the topological type of the underlying HC-bundle of the Higgs bundles in
Ma

L(G).

In general, the number of connected components of the moduli space of K-twisted G-Higgs for a
simple Lie group G has not been established. However, there have been many partial results. For
instance, when G is compact and semisimple, the spaces Ma(G) are connected and nonempty [35].
Using Example 2.3, this implies the following proposition.

Proposition 2.23. If G is a connected real semisimple Lie group such that the maximal compact
subgroup H is semisimple, then, for each a ∈ BunX(G), the space Ma(G) is nonempty. Moreover,
each component Ma(G) contains a unique connected component with the property that every Higgs
bundle in it can be continuously deformed to a Higgs bundle with zero Higgs field.

The above proposition implies that, when G is a semisimple complex Lie group, the space Ma(G)
is nonempty for each a ∈ BunX(G). In fact, each of the spaces Ma(G) is connected. This was proven
for connected groups by Li [32] and in general in [18]. In particular, we have the following:

Corollary 2.24. If G is a semisimple complex Lie group, then every Higgs bundle (E , ϕ) ∈ MK(G)
can be continuously deformed to Higgs bundle with vanishing Higgs field. In particular,

|π0(M(G))| = |BunX(G)|.
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A semisimple Lie group G whose maximal compact subgroup is not semisimple but only reductive
is called a group of Hermitian type. We will discuss this case in more detail in Section 6.2.

For p = 1, O(1) ∼= Z2 and O(1)-bundles are classified by their first Stiefel-Whitney class sw1 ∈
H1(X,Z2). For p > 2, topological O(p)-bundles have two characteristic classes, a first Stiefel-Whitney
class and a second Stiefel-Whitney class sw2 ∈ H2(X,Z2). When the first Stiefel-Whitney class van-
ishes, the structure group can be reduced to SO(p). Since SO(2) is a circle, the second Stiefel-Whitney
class of an O(2)-bundle lifts to the degree of a circle bundle when sw1 = 0. However, as an O(2)-
bundle, it is only the absolute value of the degree which is a topological invariant. For p > 2, the
Steifel-Whitney classes classify topological O(p)-bundles over X .

We will be particularly interested in the case of Kp-twisted SO(1, n)-Higgs bundles and K-twisted
SO(p, q)-Higgs bundles. Since the maximal compact subgroup of SO(p, q) is S(O(p)×O(q)), the Higgs
bundles are determined by two orthogonal bundles which have the same first Stiefel-Whitney class.

Let Ma,b,c
L (SO(p, q)) denote the subset of SO(p, q)-Higgs bundles (V,QV ,W,QV , η) so that

a = sw1(V,QV ) = sw1(W,QW ) b = sw2(V,QV ) and c = sw2(W,QW ).

These invariants are constant on connected components, thus we have a decomposition

(2.14) ML(SO(p, q)) =
∐

Ma,b,c
L (SO(p, q)) .

Note that when p = 1 the invariant b is zero and when q = 1, the invariant c = 0.

We now focus on the special case of Kp-twisted Higgs bundles, with p > 1, for the group SO(2, q)
with q > 1, and with vanishing first Stiefel-Whitney class. Let (V,W, η) be a polystable Kp-twisted
SO(2, q)-Higgs bundle with sw1(V ) = 0. Then there is a line bundle L so that the SO(2,C)-bundle
(V,QV ) is isomorphic to

(V,QV ) ∼= (L ⊕ L−1, ( 0 1
1 0 )) .

With respect to this splitting, the Higgs field η : W → V ⊗Kp decomposes as

η =
( γ
β

)
: W → (L⊕ L−1)⊗Kp.

When q = 2 then W also splits as W ∼= M ⊕M−1. With respect to these splittings we have

η = ( a c
b d ) : M ⊕M−1 → (L ⊕ L−1)⊗Kp.

Moreover, as described in Section 6.2, polystability puts constraints on the degree of L (and also on
the degree of M if q = 2).

3. The C∗-action and its fixed points

In this section we recall the definition of the C∗-action on the Higgs bundle moduli space and discuss
its importance. The action of C∗ on the L-twisted Higgs bundle moduli space is defined by scaling
the Higgs field. Namely, if (E , ϕ) is an L-twisted G-Higgs bundle, then, for λ ∈ C∗, (E , λ · ϕ) is also
an L-twisted G-Higgs bundle. Since this action clearly preserves notions of (poly)stability, we have a
holomorphic action on the moduli space. Using the properness of the Hitchin fibration, it can be shown
that if (E , ϕ) is the isomorphism class of a polystable L-twisted G-Higgs bundle, then, for λ ∈ C∗, the
limit lim

λ→0
(E , λ · ϕ) exists and is a polystable fixed point of the C∗-action [38].

Notation 3.1. Note that we have denoted the isomorphism class of a Higgs bundle and the Higgs bundle
itself with the same symbol. The context will always clarify which object we are referring to.

Consider the function on the moduli space of K-twisted G-Higgs bundles which assigns the L2-norm
of the Higgs field with respect to the harmonic metric solving the self-duality equations:

(3.1) f : M(G) → R, (E , ϕ) 7→

∫

X

||ϕ||2.
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Note that f is non-negative and zero if and only if ϕ = 0. Using Uhlenbeck compactness, Hitchin
showed that the map f is proper [27]. Moreover, the critical points of f correspond exactly to the fixed
points of the C∗-action.

We will refer to the function f as the Hitchin function. Since it is a proper function, it attains its
local minima on each closed subset of M(G). In particular, if Min(M(G)) ⊂ M(G) denotes the subset
where f attains a local minimum, we have

|π0(M(G))| 6 |π0(Min(M(G)))|.

Thus, the Hitchin function can be used to study the connected components of the moduli space of
G-Higgs bundles.

We now describe the structure of the L-twisted Higgs bundles at the fixed points of the C∗-action.
A detailed understanding of this structure is used extensively in the proofs of our main results. If
(E , ϕ) ∈ ML(G) is such a fixed point, there is a one parameter family gλ of holomorphic gauge
transformations of E which realize the C∗-action: Adgλ ·ϕ = λϕ. For each point x ∈ X the gauge

transformation gλ gives a weight space grading on the Lie algebra gC =
M⊕

j=−M

gCj , where gλ(x) acts on

gCj by λj · Id. Since gλ(x) ∈ HC, this grading respects the Cartan decomposition, namely, gCj = hCj ⊕mC
j .

The holomorphicity of gλ defines a weight space splitting of the Lie algebra bundles

E [hC] =
M⊕

j=−M

E [hCj ] and E [mC]⊗ L =
M⊕

j=−M

E [mC
j ]⊗ L .

Moreover, the Higgs field takes values in the weight one space: ϕ ∈ H0(E [mC
1 ] ⊗ L). Thus, for such a

fixed point (E , ϕ), the complex C• = C•(E , ϕ) : E [hC]
adϕ

// E [mC]⊗ L defined in (2.5) splits as

(3.2) C•
k : E [hCk ]

adϕ
// E [mC

k+1]⊗ L,

yielding a corresponding splitting of the long exact sequence in cohomology from (2.6):

(3.3) 0 // H0(C•
k )

// H0(E [hCk ])
adϕ

// H0(E [mC

k+1]⊗ L) // H1(C•
k) ��BC

GF�� // H1(E [hCk ])
adϕ

// H1(E [mC

k+1]⊗ L) // H2(C•
k )

// 0.

When L = K and (E , ϕ) is a smooth or orbifold point ofM(G), the spacesH1(C•
k ) can be interpreted

as the eigendirections (for eigenvalue −k) of the Hessian of the Hitchin function f . In particular, when
such a fixed point is a local minimum of f , we have H1(C•

k ) = 0 for all k > 0. In fact, we have the
following criterion for such local minima of f (see [8, Section 3.4]).

Proposition 3.2. If (E , ϕ) is a K-twisted G-Higgs bundle which is a fixed point of the C∗-action such
that H0(C•) = 0 and H2(C•) = 0, then (E , ϕ) is a local minimum of the Hitchin function f if and only
if either ϕ = 0 or the map (3.2) is an isomorphism of sheaves for every k > 0.

The following result will help us show the vanishing H2(C•) for relevant Higgs bundles.

Lemma 3.3. If (E , ϕ) is a polystable L-twisted Higgs bundle and (E ′, ϕ′) = lim
λ→0

(E , λϕ), then

dim
(
H

2(C•(E , ϕ))
)
6 dim

(
H

2(C•(E ′, ϕ′))
)
.

Proof. If (E , ϕ) is fixed by the C
∗-action then we are done. If (E , ϕ) is not fixed by C

∗, then consider
the C∗-family (E , λϕ). Since lim

λ→0
(E , λη) exists, we can extend this to a family over A1, hence the result

follows by semi-continuity of H2. �
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Example 3.4. The above minima criterion was used in [28] to classify all local minima for the group
SL(n,R) and in [6] to classify all local minima for the group U(p, q) (cf. Definition 2.9). For SL(n,R),
the only local minima (E,Q,Φ) with nonzero Higgs field are the ones defining the Hitchin components.
More precisely, they are given by

E = K(n−1)/2 ⊕ · · · ⊕K(1−n)/2, Q =

(
1

. .
.

1

)
and Φ =

(
0
1 0

. . .
. . .
1 0

)
.

For the group U(p, q), all minima (E,F, β, γ) have either β = 0 or γ = 0.

3.1. SO(p, q)-fixed points. We now focus on the details of fixed points of the C
∗-action on the L-

twisted SO(p, q)-Higgs bundle moduli space. Let (V,W, η) be a polystable SO(p, q)-Higgs bundle with
(V,W, η) ∼= (V,W, λη) for all λ ∈ C∗. If η 6= 0, then for each λ there are holomorphic orthogonal gauge
transformations gVλ and gWλ of V and W such that (gVλ )−1 · η · gWλ = λη.

Let V =
⊕
ν∈R

Vν and W =
⊕
µ∈R

Wµ denote the eigenbundle decompositions of gVλ and gWλ respectively,

so that gVλ |Vν = λν · IdVν and gWλ |Wµ = λµ · IdWµ . Since the gauge transformations gVλ and gWλ are
orthogonal, two eigenbundles Vν and Vν′ or Wµ and Wµ′ are orthogonal if ν + ν′ 6= 0 or µ+ µ′ 6= 0.

For all weights µ and ν, we have η(Wµ) ⊂ Vµ+1 ⊗ L and η∗(Vν) ⊂ Wν+1 ⊗ L. Thus, η =
∑

ηµ and
η∗ =

∑
η∗ν , where

(3.4) ηµ = η|Wµ : Wµ −→ Vµ+1 ⊗ L and η∗ν = η∗|Vν : Vν −→ Wν+1 ⊗ L .

In particular, the eigenvalues of gVλ and gWλ are related via η and η∗, and each set of eigenvalues is of
the form {λ−x, λ1−x, . . . , λx−1, λx}. Thus the eigenbundle decompositions of V and W are of the form

(3.5) V = V−r ⊕ V1−r ⊕ · · · ⊕ Vr−1 ⊕ Vr and W−s ⊕W1−s ⊕ · · · ⊕Ws−1 ⊕Ws

for some half-integers r and s. Notice that QW η = −ηTQV and (3.4) imply that 2r and 2s have the
same parity, i.e. the number of summands in (3.5) are either both even or both odd.

We summarize the above characterization of C∗-fixed points in the following proposition.

Proposition 3.5. If (V,W, η) is a polystable L-twisted SO(p, q)-Higgs bundle which is a fixed point of
the C∗-action with η 6= 0, then there are half-integers r and s with 2r = 2s (mod 2) such that

V =
r⊕

j=−r

Vj and W =
s⊕

j=−s

Wj .

Moreover, the corresponding quadratic forms define isomorphisms Vj
∼= V ∗

−j and Wj
∼= W ∗

−j and the
Higgs field η : W → V ⊗K splits as a sum η =

∑
ηj with ηj : Wj → Vj+1 ⊗ L.

Notation 3.6. By the preceding proposition, a Higgs bundle (V,W, η) which is a C∗-fixed point can be
represented by one of the following holomorphic chains:

(3.6) · · ·
η−3

// V−2

η∗

1 // W−1

η−1
// V0

η∗

−1
// W1

η1
// V2

η∗

−3
// · · ·

⊕

· · ·
η∗

2 // W−2
η−2

// V−1

η∗

0 // W0
η0

// V1

η∗

−2
// W2

η2
// · · ·

or

(3.7) · · ·
η−5/2

// V−3/2

η∗

1/2
// W−1/2

η−1/2
// V1/2

η∗

−3/2
// W3/2

η3/2
// · · ·

⊕

· · ·
η∗

3/2
// W−3/2

η−3/2
// V−1/2

η∗

−1/2
// W1/2

η1/2
// V3/2

η∗

−5/2
// · · ·

where each chain ends with a subbundle of V or W depending on the parity of r and s. For simplicity
of notation, we have suppressed the twisting by L from the Higgs field. This will be done every time
we use these chain representations.
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Proposition 3.5 provides a characterization of polystable C
∗-fixed points with non-vanishing Higgs

field. The next result shows that stability imposes further conditions on such fixed points.

Proposition 3.7. If (V,W, η) is a stable L-twisted SO(p, q)-Higgs bundle which is a C
∗-fixed point,

then each component of the Higgs field is nonzero and the maximal weights r and s in Proposition 3.5
are integers (i.e. it is represented by a chain of type (3.6)).

Proof. Suppose (V,W, η) is represented by (3.7), i.e., 2r = 2s = 1 (mod 2). Consider the subbundles

V ′ = · · · ⊕ V−3/2 ⊕ V1/2 ⊕ · · · ⊂ V and W ′ = · · · ⊕W−1/2 ⊕W3/2 ⊕ · · · ⊂ W .

The bundles V ′ and V ′∗ define non-trivial isotropic subbundles of V , and the bundles W ′ and W ′∗

define non-trivial isotropic subbundles of W . Since deg(V ′) + deg(W ′) = − deg(V ′∗)− deg(W ′∗), such
an SO(p, q)-Higgs bundle is not stable. If one of the maps in (3.6) is identically zero, then the chain
splits as A⊕B⊕A∗ where A is a subchain consisting of isotropic subbundles and A∗ is the dual chain.
This again contradicts stability. �

3.2. Fixed points on M(SO(2, 2)). Fixed points of the C∗-action inM(SO(2, 2)) are particularly easy
to describe using (3.6) and (3.7). Let (V,W, η) be an SO(2, 2)-Higgs bundle. If sw1(V ) = sw1(W ) 6= 0,
then neither V nor W have holomorphic isotropic subbundles, thus (V,W, η) is a fixed point if and
only if η = 0. If sw1(V ) = sw1(W ) = 0, then V = L ⊕ L−1 and W = M ⊕M−1 where L and M are
isotropic line bundles. Up to switching the roles of L, M , L−1 and M−1, the holomorphic chains are
given by

(3.8) M
(ab )

// L⊕ L−1
( b a )

// M−1 .

Polystability of the associated Higgs bundle puts certain constraints on the degrees of L and M ,
depending on the shape of η : M ⊕M−1 → LK ⊕ L−1K.

Proposition 3.8. Every fixed point in M(SO(2, 2)) is a local minimum.

Proof. Take a fixed point (V,W, η) in M(SO(2, 2)) with non-vanishing Higgs field. Up to switching the
roles of V and W , it must be of the form (3.8). Hence we see that V = L ⊕ L−1 has weight 0, while
M ⊂ W has weight −1 and M−1 ⊂ W has weight 1. It follows that the corresponding positive weight
subcomplexes C•

1 and C•
2 are both zero, and hence so are H1(C•

1 ) and H1(C•
2 ). This implies that (3.8)

is a local minimum because any non-trivial deformation of (V,W, η) in M(SO(2, 2)) which decreases
the value of the Hitchin function must correspond to a non-trivial direction in H1(C•

1 )⊕H1(C•
2 ). �

3.3. SO(1, n)-fixed points and local structure of MKp(SO(1, n)). We now focus on Kp-twisted
SO(1, n)-Higgs bundles which are fixed by the C∗-action. These results will be used in the next section
to describe the exotic connected components of M(SO(p, q)). Recall from Example 2.8 that a Kp-
twisted SO(1, n)-Higgs bundle is a triple (I,W, η) where W is a rank n holomorphic vector bundle with
an orthogonal structure QW , I = ΛnW and η ∈ H0(Hom(W, I)⊗Kp).

Lemma 3.9. If (I,W, η) is a polystable Kp-twisted SO(1, n)-Higgs bundle which is a C∗-action fixed
point with η 6= 0, then it decomposes as

(I,W, η) ∼=
(
I,W−1 ⊕W0 ⊕W1,

(
η−1 0 0

))
,

where W0 is a polystable orthogonal bundle and W1
∼= W ∗

−1. Furthermore,
(
I,W−1⊕W1,

(
η−1 0

))
is a

stable Kp-twisted O(1, n′)-Higgs bundle which is stable as a Kp-twisted O(n′ + 1,C)-Higgs bundle. In
the notation of (3.6), such a (I,W, η) is given by the chain

W−1

η−1
// I

η∗

−1
// W1

⊕

W0

.
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Proof. The first part of the statement follows directly from Proposition 3.5. Since the bundles W1 and
W−1 are isotropic, if W1 has a degree zero subbundle U , then W−1 has U∗ as a subbundle contained
in the kernel of η−1 by polystability. We may thus assume that the invariant polystable orthogonal
subbundle U∗ ⊕ U is a summand of W0. Now since (W−1 ⊕W1, I, ( η−1 0 )) is a stable O(1, n′)-Higgs
bundle, the associated O(n′ + 1,C)-Higgs bundle is stable by Proposition 2.7 of [2]. �

At a C
∗-fixed point, we have so(I) = 0 and End(W−1 ⊕W0 ⊕W1) =

2⊕
j=−2

Endj(W ), where

End2(W )∗ = End−2(W ) = Hom(W1,W−1),

End1(W )∗ = End−1(W ) = Hom(W1,W0)⊕Hom(W0,W−1),

End0(W ) = End(W−1)⊕ End(W0)⊕ End(W1).

This gives a grading on so(W ) =
2⊕

j=−2

soj(W ), where

so2(W )∗ = so−2(W ) = {β ∈ Hom(W1,W−1) | β + β∗ = 0},

so1(W )∗ = so−1(W ) = {(β,−β∗) ∈ End−1(W )},

so0(W ) = {(β−1, β0,−β∗
−1) ∈ End0(W ) | β0 + β∗

0 = 0}.

Also, Hom(W, I)⊗Kp = Hom−1(W, I) ⊗Kp ⊕Hom0(W, I)⊗Kp ⊕Hom1(W, I)⊗Kp, where

Hom±1(W, I)⊗Kp = Hom(W∓1, I)⊗Kp and Hom0(W, I)⊗Kp = Hom(W0, I)⊗Kp.

Corresponding to each subcomplex C•
k , the above splittings give adη : sok(W ) → Homk+1(W, I)⊗Kp

for k = −2, . . . , 2. Note that C•
k is defined by composing with η−1. For each such k, this yields the

long exact sequence in cohomology

(3.9) 0 // H0(C•
k )

// H0(sok(W ))
η−1

// H0(Homk+1(W, IKp)) // H1(C•
k ) ��BC

GF�� // H1(sok(W ))
η−1

// H1(Homk+1(W, IKp)) // H2(C•
k )

// 0 .

Lemma 3.10. For p > 1, if (I,W, η) is a polystable Kp-twisted SO(1, n)-Higgs bundle, then the second
hypercohomology group H2(C•(I,W, η)) vanishes.

Proof. By Lemma 3.3, to show that H2(C•(I,W, η)) vanishes it suffices to show the vanishing of each
graded piece of (3.9) at a fixed point of the C∗-action. Such fixed points are given by Lemma 3.9.

First note that H2(C•
k ) = 0 for k > 1 since Homk+1(W, I) = 0 for k > 1. Stability implies W1 and

W0 have no positive degree subbundles, and, by Serre duality, we have

H1(Homk+1(W, IKp)) ∼=

{
H0(Hom(IKp−1,W1))

∗ k = −2

H0(Hom(IKp−1,W0))
∗ k = −1 .

Thus, since p > 1, H1(Homk+1(W, IKp)) = 0 for k 6 −1.

Finally, the form of the Higgs field implies the kernel of adη : so0(W ) → Hom1(W, I) ⊗ Kp is
so(W0). Hence, H2(C•

0 ) injects into the second hypercohomology group of the stable O(1, n′)-Higgs
bundle

(
I,W−1 ⊕W1,

(
η−1 0

))
. The associated O(n′ + 1,C)-Higgs bundle is stable by Lemma 3.9, so

this hypercohomology group vanishes by Remark 2.17. �

Lemma 3.11. If p > 1 and (I,W, η) =
(
I,W−1 ⊕W0 ⊕ W1,

(
η−1 0 0

))
is a polystable Kp-twisted

SO(1, n)-Higgs bundle which is fixed by the C∗-action, then

H
0(C•) ∼= H0(so(W0)) and H

1(C•) =

2⊕

k=−2

H
1(C•

k ),

where so(W0) is the bundle of skew-symmetric endomorphisms of W0 with respect to Q0. Moreover,
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• H
1(C•

2 )
∼= H1(so2(W )) = {β ∈ Hom(W−1,W1)|β + β∗ = 0},

• H1(C•
1 )

∼= H1(Hom(W−1,W0)),
• H1(C•

0 )
∼= H1(so(W0))⊕H1

0, where H1
0 is defined by the sequence

0 // H0(End(W−1))
η−1

// H0(Hom(W−1, IK
p)) // H

1
0 ��BC

GF�� // H1(End(W−1))
η−1

// H1(Hom(W−1, IK
p)) // 0 ,

• H1(C•
−1) is defined by the sequence

0 // H0(Hom(W0,W−1))
η−1

// H0(Hom(W0, IK
p)) // H1(C•

−1) // H1(Hom(W0,W−1)) // 0 ,

• H1(C•
−2) is defined by the sequence

0 // H0(so−2(W ))
η−1

// H0(Hom(W1, IK
p)) // H1(C•

−2) // H1(so−2(W )) // 0 ,

where so−2(W ) = {β ∈ Hom(W1,W−1)|β + β∗ = 0}.

Proof. By Lemma 3.9, a C∗-fixed point is given by (I,W, η) =
(
I,W−1 ⊕W0 ⊕W1,

(
η−1 0 0

))
, where

W0 is a polystable orthogonal bundle and (I,W−1⊕W1, ( η−1 0 )) is a stable O(1, n′)-Higgs bundle such
that the associated O(n′ + 1,C)-Higgs bundle is also stable. In particular, W1 has no non-negative
degree subbundles and W0 has no positive degree subbundles. Recall that in the proof of Lemma 3.10
it was shown that H1(Homk+1(W, IKp)) = 0 for k 6 −1.

For k = 2, we have C•
2 : so2(W ) → 0, thus, H0(C•

2 ) = H0(so2(W )) and H1(C•
2 ) = H1(so2(W )). In

particular, H0(C•
2 ) injects into the zeroth hypercohomology group of the deformation complex of the

O(1, n′)-Higgs bundle (I,W−1 ⊕W1, ( η−1 0 )), which vanishes by stability.

For k = 1, so1(W ) ∼= Hom(W−1,W0) and C•
1 : so1(W ) → 0 imply H0(C•

1 ) = H0(Hom(W−1,W0))
and H1(C•

1 ) = H1(Hom(W−1,W0)). The vanishing of H0(Hom(W−1,W0)) ∼= H0(Hom(W0,W1)) fol-
lows from stability. Namely, any nonzero homomorphism f : W0 → W1 defines a non-negative degree
subbundle of W1, contradicting the stability of (I,W−1 ⊕W1, ( η−1 0 )).

For k = 0, C•
0 : so0(W ) → Hom1(W, I)⊗Kp is given by

C•
0 : End(W−1)⊕ so(W0) → Hom(W−1, I)⊗Kp, (β−1, β0) 7→ η−1β−1.

Thus, we can split C•
0 as C•

0 = C•,′
0 ⊕ C•,′′

0 with C•,′
0 : End(W−1)

η−1
−−→ Hom(W−1, I) ⊗ Kp and

C•,′′
0 : so(W0) → 0. The hypercohomology groups split accordingly, hence

H0(C•,′′
0 ) = H0(so(W0)) and H1(C•,′′

0 ) ∼= H1(so(W0)) .

For C•,′
0 , H0(C•,′

0 ) = 0 by stability of
(
I,W−1 ⊕W1,

(
η−1 0

))
. Thus, if H1

0 = H1(C•,′
0 ), we have

0 // H0(End(W−1))
η−1

// H0(Hom(W−1, IK
p)) // H1

0 ��BC
GF�� // H1(End(W−1))

η−1
// H1(Hom(W−1, IK

p)) // 0 .

For k = −1, we have H1(Hom0(W, IKp)) = 0 and C•
−1 : Hom(W0,W−1)

η−1
−−→ Hom(W0, I) ⊗ Kp.

Thus,

0 // H0(C•
−1)

// H0(Hom(W0,W−1))
η−1

// H0(Hom(W0, IK
p)) ��BC

GF�� // H1(C•
−1) // H1(Hom(W0,W−1)) // 0 .

It remains to show that H0(C•
−1) = 0. If N is the kernel of η−1 : W−1 → IKp, then H0(C•

−1)
∼=

H0(Hom(W0, N)). If N = 0 we are done so suppose N 6= 0. Stability of
(
I,W−1 ⊕ W1,

(
η−1 0

))

implies deg(N) < 0 and moreover N has no non-negative degree subbundles. A non-zero section
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β ∈ H0(Hom(W0, N)) must have a non-trivial kernel since otherwise β(W0) ⊂ N would define a non-
negative degree subbundle. However, this implies that deg(ker(β)) > 0, contradicting the polystability
of W0. We conclude that H0(Hom(W0, N)) = 0, and thus H0(C•

−1) = 0.

Finally consider the case of C•
−2 : so−2(W )

adη
−−→ Hom(W1, I)⊗Kp. As in the case k = 2, stability of

the O(1, n′)-Higgs bundle (I,W−1 ⊕W1, ( η−1 0 )) implies H0(C•
−2) = 0. The group H1(C•

−2) is defined
by the exact sequence in the statement of the lemma since H1(Hom(W1, IK

p)) = 0. �

4. Existence of exotic components of M(SO(p, q))

In this section we will prove the following theorem exhibiting connected components of M(SO(p, q))
which are not distinguished by primary characteristic classes for p > 2.

Theorem 4.1. Let X be a compact Riemann surface with genus g > 2 and canonical bundle K.
Denote the moduli space of Kp-twisted SO(1, q− p+1)-Higgs bundles on X by MKp(SO(1, q− p+1))
and the moduli space of K-twisted SO(p, q)-Higgs bundles on X by M(SO(p, q)). For 1 6 p 6 q, there
is a well defined map

(4.1) Ψ : MKp(SO(1, q − p+ 1))×

p−1⊕

j=1

H0(K2j) // M(SO(p, q))

which is an isomorphism onto its image and has an open and closed image. Furthermore, if p > 2,
then every Higgs bundle in the image of Ψ has a nowhere vanishing Higgs field.

Remark 4.2. As a direct corollary of the above theorem, we have that, for p > 2,
∣∣π0

(
M(SO(p, q))

)∣∣ > 22g+2 +
∣∣π0

(
MKp(SO(1, q − p+ 1))

)∣∣ .
In particular, there are connected components of M(SO(p, q)) which are not distinguished by the
Stiefel-Whitney classes of the underlying orthogonal bundles. In Theorem 6.1 we will show that the
above inequality is in fact an equality.

Remark 4.3. The space of holomorphic differentials H0(K2j) can be identified with the moduli space
MK2j(SO0(1, 1)) = MK2j (R+). In Section 7.3, this identification will be used to interpret the compo-
nents from Theorem 4.1 as a generalized Cayley correspondence.

4.1. Defining the map Ψ. Recall that a Kp-twisted SO(1, n)-Higgs bundle is a triple (I, Ŵ , η̂), where

Ŵ is a rank n vector bundle with an orthogonal structureQ
Ŵ
, I = ΛnŴ and η̂ ∈ H0(Hom(Ŵ , I)⊗Kp).

Let HKp(SO(1, q − p + 1)) denote the configuration space of all Kp-twisted SO(1, q − p + 1)-
Higgs bundles and let H(SO(p, q)) denote the configuration space of all SO(p, q)-Higgs bundles. That

is, HKp(SO(1, q − p + 1)) consists of pairs (∂̄
Ŵ
, η̂) where ∂̄

Ŵ
is a Dolbeault operator on Ŵ , η̂ ∈

Ω1,0(Hom(Ŵ ,Λq−p+1Ŵ )) such that ∂̄
Ŵ
η̂ = 0 and ∂̄

Ŵ
Q

Ŵ
= 0. The space H(SO(p, q)) is defined

analogously.

Recall that the Hitchin section sIH :
p−1⊕
j=1

H0(K2j) → M(SO(p, p− 1)) is given by (2.12), and that

(I ⊗Kn, Qn) =

(
I ⊗ (Kn ⊕Kn−2 ⊕ · · · ⊕K2−n ⊕K−n),

(
1

. .
.

1

))
.

Recall that the Higgs field in the image of sIH is given by η(q2, . . . , q2p−2) : I ⊗Kp−2 → I ⊗Kp−1 ⊗K,
as in (2.13).

Define the map

(4.2) Ψ̃ : HKp(SO(1, q − p+ 1))×

p−1⊕

j=1

H0(K2j) // H(SO(p, q))
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by

(4.3) Ψ̃((I, Ŵ , η̂), q2, . . . , q2p−2) =
(
I ⊗Kp−1, Ŵ ⊕ I ⊗Kp−2,

(
η
Ŵ

η(q2, . . . , q2p−2)
))

where

η
Ŵ

=

(
η̂
0
...
0

)
: Ŵ // I ⊗ (Kp ⊕Kp−2 ⊕ · · · ⊕K2−p) = I ⊗Kp−1 ⊗K .

It is clear that the map Ψ̃ is continuous.

Lemma 4.4. For (I, Ŵ , η̂, q2, . . . , q2p−2) ∈ HKp(SO(1, q − p+ 1)) ×
p−1⊕
j=1

H0(K2j), the SO(p, q)-Higgs

bundle Ψ̃(I, Ŵ , η̂, q2, . . . , q2p−2) is (poly)stable if and only if the Kp-twisted SO(1, q−p+1)-Higgs bundle

(I, Ŵ , η̂) is (poly)stable.

Proof. Fix (I, Ŵ , η̂, q2, . . . , q2p−2) ∈ HKp(SO(1, q−p+1))×
p−1⊕
j=1

H0(K2j). Recall that an SO(p, q)-Higgs

bundle is polystable if and only if the associated SL(p+ q,C)-Higgs bundle is polystable. Suppose first

that q2j = 0 for all j. Then the SL(p+q,C)-Higgs bundle associated to the image of Ψ̃(I, Ŵ , η̂, 0, . . . , 0)
is represented by

IKp−1 1 // IKp−2 1 // · · ·
1 // IK2−p 1 // IK1−p

η̂∗
ss❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢

Ŵ
η̂

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

.

To check (poly)stability for such a “cyclic” Higgs bundle, it suffices to show that each of the bundles in
the above cycle do not contain an invariant destabilizing subbundle (see Proposition 6.3 of [37]). Thus

Ψ̃(I, Ŵ , η̂, 0, . . . , 0) is polystable if and only if there are no destabilizing subbundles of Ŵ in the kernel

of η̂, that is, if and only if (I, Ŵ , η̂) is polystable. Furthermore, since Ψ̃(I, Ŵ , η̂, 0, . . . , 0) is strictly

polystable if and only if Ŵ contains a degree zero isotropic subbundle in the kernel of η̂, we conclude

that Ψ̃(I, Ŵ , η̂, 0, . . . , 0) is stable if and only if (I, Ŵ , η̂) is stable.

Now suppose (q2, . . . , q2p−2) 6= (0, . . . , 0) and let (V,W, η) = Ψ̃(I, Ŵ , η̂, q2, . . . , q2p−2) be given by
(4.3). For λ ∈ C∗, consider the following holomorphic orthogonal gauge transformations of V and W

gV =




λ1−p

λ3−p

. . .
λp−1


 and gW =




Id
Ŵ

λ2−p

λ4−p

. . .
λp−2


 .

Using the description of sIH from (2.12) and (2.13), a straightforward computation shows that

(4.4) (gV , gW ) · (V,W, λη) = Ψ̃(I, Ŵ , λpη̂, λ2q2, λ
4q4, . . . , λ

2p−2q2p−2).

Assume (I, Ŵ , η̂) is stable. In particular, (I, Ŵ , λpη̂) is a stable Kp-twisted SO(1, q − p + 1)-Higgs

bundle for all λ ∈ C
∗. By the above argument, Ψ̃(I, Ŵ , λpη̂, 0, . . . , 0) is also stable for all λ ∈ C

∗.

Hence, by the continuity of Ψ̃ and since stability is an open condition (cf. Remark 2.16), there is a

neighborhood U of (0, . . . , 0) ∈
p−1⊕
j=1

H0(K2j) such that Ψ̃(I, Ŵ , λpη̂, λ2q2, λ
4q4, . . . , λ

2p−2q2p−2) is stable

for (λ2q2, . . . , λ
2p−2q2p−2) ∈ U i.e. for small λ. From (4.4), (V,W, λη) is stable, and thus, (V,W, η) is

also stable. This argument is reversible, so (V,W, η) is stable if and only if (I, Ŵ , η̂) is stable.

Assume now that (I, Ŵ , η̂) is strictly polystable. By Proposition 2.20, there is q′ satisfying p− 1 6

q′ < q, such that

(I, Ŵ , η̂) =
(
Ŵ ′ ⊕ Ŵ ′′,

(
η̂′ 0

))
,
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where (I, Ŵ ′, η̂′) is a stable Kp-twisted O(1, q′−p+1)-Higgs bundle and Ŵ ′′ is a polystable orthogonal
bundle of rank q − q′. In this case, we have

Ψ̃(I, Ŵ , η̂, q2, . . . , q2p−2) =
(
V, Ŵ ′ ⊕ Ŵ ′′,

(
η̂′ 0

))

where

(4.5) (V,W ′, η̂′) = Ψ̃(I, Ŵ ′, η̂′, q2, . . . , q2p−2),

and the map Ψ̃ in (4.5) is defined as in (4.2) and (4.3), but with q replaced by q′. By the above argument,

Ψ̃(I, Ŵ ′, η̂′, q2, . . . , q2p−2) is a stable O(p, q′)-Higgs bundle. Since Ŵ ′′ is a polystable orthogonal bundle,

we conclude that Ψ̃(I, Ŵ , η̂, q2, . . . , q2p−2) is a strictly polystable SO(p, q)-Higgs bundle. Again, the
argument is reversible, hence the converse also holds. �

The next lemma shows that Ψ̃ both respects isomorphism classes of the corresponding objects and
is injective on such classes.

Lemma 4.5. Two SO(p, q)-Higgs bundles Ψ̃(I, Ŵ , η̂, q2, . . . , q2p−2) and Ψ̃(I ′, Ŵ ′, η̂′, q′2, . . . , q
′
2p−2) are

in the same S(O(p,C) × O(q,C))-gauge orbit if and only if (I, Ŵ , η̂) and (I ′, Ŵ ′, η̂′) are in the same
S(O(1,C) × O(q − p + 1,C))-gauge orbit and q2j = q′2j for all 1 6 j 6 p − 1. Furthermore, each

S(O(1,C)×O(q−p+1,C))-gauge transformation between (I, Ŵ , η) and (I ′, Ŵ ′, η̂′) uniquely determines

an S(O(p,C)×O(q,C))-gauge transformation between the Higgs bundles Ψ̃(I, Ŵ , η̂, q2, . . . , q2p−2) and

Ψ̃(I ′, Ŵ ′, η̂′, q2, . . . , q2p−2).

Proof. Let (I, Ŵ , η̂) and (I ′, Ŵ ′, η̂′) be two points in HKp(SO(1, q − p + 1)), and (q2, . . . , q2p−2) and

(q′2, . . . , q
′
2p−2) be two points in

p−1⊕
j=1

H0(K2j). Denote the associated points in the image of the map Ψ̃

from (4.3) by

(V,W, η) = Ψ̃(I, Ŵ , η̂, q2, . . . , q2p−2) and (V ′,W ′, η′) = Ψ̃(I ′, Ŵ ′, η̂′, q′2, . . . , q
′
2p−2),

and recall that V = I ⊗ Kp−1 and W = Ŵ ⊕ I ⊗Kp−2.

First suppose (det(g
Ŵ
), g

Ŵ
) is an S(O(1,C)×O(q − p+ 1,C))-gauge transformation with

(det(g
Ŵ
), g

Ŵ
) · (I, Ŵ , η̂) = (I ′, Ŵ ′, η̂′).

A straightforward computation shows that the S(O(p,C)×O(q,C))-gauge transformation

(4.6) (gV , gW ) =
(
det(g

Ŵ
) IdV ,

(
g
Ŵ

0

0 det(g
Ŵ

) IdKp−2
)

))

acts on (V,W, η) as

(gV , gW ) · (V,W, η) = Ψ̃(I ′, Ŵ ′, η̂′, q2, . . . , q2p−2).

Thus, if (I,W, η) and (I ′,W ′, η′) are in the same S(O(1,C) × O(q − p + 1,C))-gauge orbit, then

Ψ̃(I,W, η, q2, . . . , q2p−2) and Ψ̃(I ′,W ′, η′, q2, . . . , q2p−2) are in the same S(O(p,C) × O(q,C))-gauge
orbit.

Now suppose (V,W, η) and (V ′,W ′, η′) are in the same S(O(p,C)×O(q,C))-gauge orbit. The action
of (gV , gW ) on (V,W, η) is given by

(gV , gW ) · (∂̄V , ∂̄W , η) = (g−1
V ∂̄V gV , g−1

W ∂̄W gW , g−1
V ηgW ) .

With respect to the decompositions W = Ŵ ⊕ I ⊗Kp−2 and W ′ = Ŵ ′ ⊕ I ′ ⊗Kp−2, write

gW =


g

Ŵ
A

B gKp−2


 and η =

(
η
Ŵ

η(q2, . . . , q2p−2)
)
.

The gauge transformation (gV , gW ) acts on the Higgs field by

g−1
V ηgW = g−1

V ·
(
η
Ŵ
g
Ŵ

+ η(q2, . . . , q2p−2)B η
Ŵ
A+ η(q2, . . . , q2p−2)gKp−2

)
,
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and hence

(4.7)
(
η′
Ŵ

η(q′2, . . . , q
′
2p−2)

)
= g−1

V ·
(
η
Ŵ
g
Ŵ

+ η(q2, . . . , q2p−2)B η
Ŵ
A+ η(q2, . . . , q2p−2)gKp−2

)
.

We now use the description of η(q2, . . . , q2p−2) from (2.13). Since g−1
V is invertible and holomorphic,

its matrix representation in the decompositions V = I ⊗Kp−1 and V ′ = I ′ ⊗Kp−1 is upper triangular
with nonzero diagonal entries. A straightforward computation, using the form of η(q′2, . . . , q

′
2p−2) and

the fact that g−1
V η

Ŵ
g
Ŵ

has the form

( ∗
0
...
0

)
, shows that B = 0. By orthogonality of gW we conclude

also that A = 0, g
Ŵ

is an Q
Ŵ
-orthogonal gauge transformation and gKp−2 is a QKp−2-orthogonal gauge

transformation.

We now have η(q′2, . . . , q
′
2p−2) = g−1

V η(q2, . . . , q2p−2)gKp−2 . Since (I⊗Kp−1, I⊗Kp−2, η(q2, . . . , q2p−2))
and (I ′⊗Kp−1, I

′⊗Kp−2, η(q
′
2, . . . , q

′
2p−2)) define gauge equivalent Higgs bundle in an O(p, p−1)-Hitchin

component, we have (q2, . . . , q2p−2) = (q′2, . . . , q
′
2p−2). By Remark 2.22, this implies

(gV , gKp−2) = ±(IdV , IdKp−2) .

Finally, the determinant of g
Ŵ

determines the above sign since det(− IdV ) det(− IdKp−2) = −1 and

1 = det(gV ) det(gW ) = det(gV ) det(gKp−2) det(gŴ ).

Thus, the gauge transformation g
Ŵ

uniquely determines gKp−2 and gV . This shows that (gV , gW ) is
given by (4.6), completing the proof. �

As a consequence of the two previous lemmas, we have the following proposition.

Proposition 4.6. The map Ψ̃ from (4.3) descends to a continuous map of moduli spaces

(4.8) Ψ : MKp(SO(1, q − p+ 1))×

p−1⊕

j=1

H0(K2j) −→ M(SO(p, q)),

which is a homeomorphism onto its image.

Remark 4.7. From Remark 2.14, one can check that the dimension of MKp(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(K2j) is the expected dimension of M(SO(p, q)). In particular, the map Ψ is open on the

smooth locus. Since the spaces M(SO(p, q)) and MKp(SO(1, q − p + 1)) are singular, we have to
examine the local structures of each space to prove openness of Ψ at singular points.

4.2. Local structure of fixed points in the image of Ψ. We will now analyze the local structure
of fixed points of the C∗-action in M(SO(p, q)) which lie in the image of the map Ψ. The following
lemma follows immediately from Lemma 3.9 and Proposition 4.6.

Lemma 4.8. An SO(p, q)-Higgs bundle (V,W, η) in the image of Ψ is a fixed point of the C∗-action

if and only if (V,W, η) = Ψ(I, Ŵ , η̂, 0, . . . , 0), where (I, Ŵ , η̂) is a fixed point of the C∗-action in
MKp(SO(1, q − p+ 1)). In particular, such a fixed point is given by 2

(I, Ŵ , η̂) =
(
I,W−p ⊕W ′

0 ⊕Wp,
(
η−p 0 0

))
,

where W ′
0 is a polystable orthogonal bundle of rank q− p+1− 2 rk(Wp) and det(W ′

0) = I, Wp is either
zero or a negative degree vector bundle with no non-negative degree subbundles, W−p

∼= W ∗
p and η−p is

nonzero if W−p is nonzero. The associated SO(p, q)-Higgs bundle will be represented by

(4.9) W−p

η−p
// IKp−1 1 // IKp−2 1 // · · ·

1 // I
1 // · · ·

1 // IK2−p 1 // IK1−p
η∗

−p
// Wp

⊕
W ′

0

.

2The notation from Lemma 3.9 has changed slightly, (W−1, η−1,W0) is now represented by (W−p, η−p,W
′

0
).
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Let (V,W, η) be a polystable SO(p, q)-Higgs bundle in the image of Ψ of the form (4.9). This will
be fixed until the end of Section 4.2. If Wp is zero, some of the considerations below simplify.

We will consider a graded complex similar to (3.9) and repeatedly use the following bundle decom-
positions of V and W from (4.9):

(4.10)

V = V1−p ⊕ V3−p ⊕ · · · ⊕ Vp−3 ⊕ Vp−1,

W = W−p ⊕W2−p ⊕ · · · ⊕W0 ⊕ · · · ⊕Wp−2 ⊕Wp,

Vj = IK−j for all j, Wj = IK−j if 0 < |j| < p, and W0 =

{
W ′

0 if p odd

I ⊕W ′
0 if p even.

In terms of the above splittings, we have End(V ) =

2p−2⊕

k=2−2p

Endk(V ), where End2k+1(V ) = 0 and

(4.11) End2k(V ) =





p−1−k⊕

j=0

Hom(V1−p+2j , V1−p+2j+2k) k > 0

p−1+k⊕

j=0

Hom(Vp−1−2j , Vp−1−2j+2k) k < 0.

Similarly, End(W ) =

2p⊕

k=−2p

Endk(W ), where

(4.12) End2k(W ) =





End(W0)⊕

p⊕

j=0

End(Wp−2j) k = 0 and p odd

p−k⊕

j=0

Hom(W−p+2j ,W−p+2j+2k) k > 0 or k = 0 and p even

p+k⊕

j=0

Hom(Wp−2j ,Wp−2j+2k) k < 0

and

(4.13) End2k+1(W ) =

{
Hom(W−2k−1,W0)⊕Hom(W0,W2k+1) 2k + 1 6 p and p odd

0 otherwise.

Finally, Hom(W,V ) =

2p−1⊕

k=1−2p

Homk(W,V ), where

(4.14) Hom2k+1(W,V ) =





p−1−k⊕

j=0

Hom(W−p+2j , V1−p+2j+2k) 2k + 1 > 0

p+k⊕

j=0

Hom(Wp−2j , Vp−2j+1+2k) 2k + 1 < 0,

and

(4.15) Hom2k(W,V ) =

{
Hom(W0, V2k) 1− p 6 2k 6 p− 1 and p odd

0 otherwise.

Note that the Higgs field η is a holomorphic section of Hom1(W,V )⊗K.

The Lie algebra bundle so(V )⊕so(W ) ⊂ End(V )⊕End(W ) with fiber so(p,C)⊕so(q,C) consists of
QV and −QW skew symmetric endomorphisms of V and W respectively. The decompositions (4.11),
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(4.12) and (4.13) induce the following decomposition of so(V )⊕ so(W ) ⊂ End(V )⊕ End(V ):

so(V ) =

2p−2⊕

k=2−2p

sok(V ) and so(W ) =

2p⊕

k=−2p

sok(W ).

Here so2k+1(V ) = 0 and, using (4.11),

(4.16) so2k(V ) =

{
{(α1−p, α3−p, . . . , αp−1−2k) ∈ End2k(V ) | αi = −α∗

−2k−i} k > 0

{(αp−1, αp−3, . . . , α1−p−2k) ∈ End2k(V ) | αi = −α∗
−2k−i} k < 0,

where the index of each homomorphism corresponds to the index of its domain, i.e.,

αi : Vi → Vi+2k.

For so(W ), using (4.12) we have
(4.17)

so2k(W ) =





{(β′, βp, βp−2, . . . , β−p) ∈ End0(W )| β′ = −(β′)∗, βi = −β∗
−i} k = 0 and p odd

{(β−p, β2−p, . . . , βp−2k) ∈ End2k(W ) | βi = −β∗
−2k−i} k > 0 or k = 0 and p even

{(βp, βp−2, . . . , β−p+2k) ∈ End2k(W ) | βi = −β∗
−2k−i} k < 0,

where β′ : W0 → W0 and, as above, βi : Wi → Wi+2k. For odd weights, using (4.13) we have
(4.18)

so2k+1(W ) =

{
{(β−2k−1,−β∗

−2k−1) ∈ Hom(W−2k−1,W0)⊕Hom(W0,W2k+1)} 2k + 1 6 p and p odd

0 otherwise.

Since η ∈ H0(Hom1(W,V )⊗K), the map adη restricts to sok(V )⊕ sok(W ) → Homk+1(W,V )⊗K,
yielding the subcomplex C•

k of C• of weight k as in (3.2)

C•
k = C•(V,W, η)k : sok(V )⊕ sok(W )

adη
−−→ Homk+1(W,V )⊗K, (α, β) 7→ η ◦ β − α ◦ η.

This gives rise to a splitting of the hypercohomology sequence associated to C•:
(4.19)

0 // H0(C•
k )

// H0(sok(V )⊕ sok(W ))
adη

// H0(Homk+1(W,V )⊗K) // H1(C•
k ) ��BC

GF�� // H1(so(V )k+1 ⊕ sok+1(W ))
adη

// H1(Homk+1(W,V )⊗K) // H2(C•
k)

// 0.

For all k, we will compute H1(C•
k ) and show H2(C•

k ) vanishes in a series of lemmas. Using (4.10)
and the decomposition of Hom1(W,V )⊗K from (4.14), we write

(4.20) η = (η−p, η2−p, . . . , ηp−2) ∈

p−1⊕

j=0

H0(Hom(W−p+2j , V1−p+2j)⊗K),

where

(4.21)





η−p : W−p → V1−p ⊗K is defined in Lemma 4.8,

η0 = ( 1 0 ) : I ⊕W ′
0 → V1 ⊗K if p even,

ηi = 1 : Wi → Vi+1 ⊗K otherwise.

Lemma 4.9. The map adη : sok(V ) ⊕ sok(W ) → Homk+1(W,V ) ⊗ K is an isomorphism for each
positive weight k /∈ {p, 2p}. In particular,

H0(C•
k ) = 0, H1(C•

k ) = 0 and H2(C•
k ) = 0 .

Proof. We start by considering the case C•
2k+1 with 0 < 2k+1 and 2k+1 6= p. If p is even or p < 2k+1,

the result is immediate since so2k+1(V ), so2k+1(W ) and Hom2k+2(W,V ) ⊗ K are all zero by (4.13)
and (4.15). For p odd and 2k + 1 < p, we have so2k+1(V ) = 0, so2k+1(W ) = {(β−2k−1,−β∗

−2k−1) ∈
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Hom(W−2k−1,W0)⊕Hom(W0,W2k+1)} and Hom2k+2(W,V )⊗K = Hom(W0, V2k+2)⊗K. Using (4.20),
the map adη is the isomorphism sending β−2k−1 to the composition of −β∗

−2k−1 with 1 = η2k+1:

W0

−β∗

−2k−1
((P

PP
PP

PP
// V2k+2 ⊗K

W2k+1

1

55❥❥❥❥❥❥

Now consider the case C•
2k with 0 < 2k and 2k /∈ {p, 2p}. We first show so2k(V ) ⊕ so2k(W ) and

Hom2k+1(W,V )⊗K are isomorphic. Using (4.10) and (4.14), we have
(4.22)

Hom2k+1(W,V )⊗K ∼=





Hom(W−p, IK
p−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
p−k−1 times

2k > p or p odd,

Hom(W−p, IK
p−2k)⊕Hom(W ′

0, IK
−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
p−k−1 times

otherwise.

On the other hand, by (4.16) and since the weight is positive, we have

(4.23) so2k(V ) ∼=

⌊ p−k
2 ⌋−1⊕

j=0

Hom(V2j−p+1, V2j−p+1+2k) ∼= K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
⌊ p−k

2 ⌋ times

.

Similarly, by (4.17), so2k(W ) ∼=
⌊p−k−1

2 ⌋⊕
j=0

Hom(W2j−p,W2j−p+2k), and thus,

(4.24)

so2k(W ) ∼=





Hom(W−p, IK
p−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
⌊p−k−1

2 ⌋ times

2k > p or p odd

Hom(W−p, IK
p−2k)⊕Hom(W ′

0, IK
−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
⌊ p−k−1

2 ⌋ times

otherwise.

From (4.22), (4.23) and (4.24), we see that so2k(V )⊕ so2k(W ) is isomorphic to Hom2k+1(W,V )⊗K.

Now we will show

C•
2k : so2k(V )⊕ so2k(W )

adη
−−→ Hom2k+1(W,V )⊗K, adη(α, β) = η ◦ β − α ◦ η

is an isomorphism. Using the notations of (4.16), (4.17) (for positive weight) and (4.20), if

α = (α1−p, α3−p, . . . , αp−1−2k), β = (β−p, β2−p, . . . , βp−2k) and η = (η−p, η2−p, . . . , ηp−2) ,

then

adη(α, β) = (η−p+2kβ−p − α1−pη−p, η2−p+2kβ2−p − α3−pη2−p, . . . , ηp−2βp−2−2k − αp−1−2kηp−2−2k).

First assume p− k is even. In this case we have

α = (α1−p, . . . , α−k−1,−α∗
−k−1, . . . ,−α∗

1−p) and β = (β−p, . . . , β−k−2, 0,−β∗
−k−2, . . . ,−β∗

−p) .

For p odd or 2k > p, we have ηi = 1 for all i 6= −p by (4.21). Hence adη(α, β) is given by

(4.25) (β−p−α1−pη−p, β2−p−α3−p, . . . , β−k−2−α−k−1, α
∗
−k−1,−β∗

−k−2+α∗
−k−3, . . . ,−β∗

2−p+α∗
1−p).

This vanishes if and only if α and β are both identically zero, so adη is an isomorphism. For p even
and 2k 6 p, the only difference is that W0 = I ⊕W ′

0. Therefore, if we write

β0 =
(
βI
0 β′

0

)
: I ⊕W ′

0 → W2k,

then the terms W0 → V2k+1 ⊗K and W−2k → V1 ⊗K of adη are given by

(4.26)
(
βI
0 − α1 β′

0

)
: I ⊕W ′

0 → V2k+1 ⊗K and − βI∗
0 + α∗

1 : W−2k → V1 ⊗K.

Again, adη vanishes if and only if α and β both vanish, and is therefore an isomorphism.
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Now suppose p− k is odd. In this case, (4.16) and (4.17) imply that

α = (α1−p, . . . , α−k−2, 0,−α∗
−k−2, . . . ,−α∗

1−p) and β = (β−p, . . . , β−k−1,−β∗
−k−1, . . . ,−β∗

−p).

For p odd or 2k > p, adη(α, β) is given by

(β−p − α1−pη−p, β2−p − α3−p, . . . , β−k−3 − α−k−2, β−k−1,−β∗
−k−1 + α∗

−k−2, . . . ,−β∗
2−p + α∗

1−p).

Since this vanishes if and only if α and β both vanish, adη is an isomorphism. The case of p even and
2k 6 p follows from a similar calculation as the one done above.

Since sok(V )⊕sok(W )
adη
−−→ Homk+1(W,V )⊗K is an isomorphism for all positive weights k different

than p and 2p, we conclude that the hypercohomology groups H∗(C•
k ) all vanish for such k. �

Next we consider the subcomplexes of weight p and 2p.

Lemma 4.10. The hypercohomology groups H∗(C•
p ) and H∗(C•

2p) are given by

H0(C•
p ) = 0, H1(C•

p )
∼= H1(Hom(W−p,W

′
0)) and H2(C•

p ) = 0,

H
0(C•

2p) = 0, H
1(C•

2p)
∼= H1(so2p(W )) and H

2(C•
2p) = 0,

where so2p(W ) = {β ∈ Hom(W−p,Wp)|β + β∗ = 0}.

Proof. First note that so2p(V ) = 0, so2p(W ) = {β ∈ Hom(W−p,Wp)|β+β∗ = 0} and Hom2p+1(W,V ) =
0, hence

H0(C•
2p)

∼= H0(so2p(W )), H1(C•
2p)

∼= H1(so2p(W )) and H2(C•
2p) = 0 .

If p is odd, then W0 = W ′
0, sop(W ) ∼= Hom(W−p,W

′
0), sop(V ) = 0 and Homp+1(W,V ) = 0, thus

H0(C•
p )

∼= H0(Hom(W−p,W
′
0)), H1(C•

p )
∼= H1(Hom(W−p,W

′
0)) and H2(C•

p ) = 0.

Moreover, H0(so2p(W )) and H0(Hom(W−p,W
′
0)) were shown to vanish in the proof of Lemma 3.11,

completing the proof for the case 2p and when p is odd.

Now suppose p is even, then W0 = I ⊕W ′
0 and, from (4.11), (4.12) and (4.14), we have

sop(V ) ∼= K−p ⊕ · · · ⊕K−p

︸ ︷︷ ︸
⌊ p

4 ⌋ times

,

sop(W ) ∼= Hom(W−p, I)⊕Hom(W−p,W
′
0)⊕K−p ⊕ · · · ⊕K−p

︸ ︷︷ ︸
⌊ p−2

4 ⌋ times

⊕Hom(W ′
0,K

−p)

and

Homp+1(W,V )⊗K ∼= Hom(W−p, I)⊕K−p ⊕ · · · ⊕K−p

︸ ︷︷ ︸
p
2−1 times

.

Thus, sop(V )⊕ sop(W ) ∼= Hom(W−p,W
′
0)⊕Homp+1(W,V )⊗K.

If p
2 is even and (α, β) ∈ sop(V )⊕ sop(W ), then

α = (α1−p, . . . , α−
p
2−1,−α∗

−
p
2−1, . . . ,−α∗

1−p) and β = (β−p, . . . , β−
p
2−2, 0,−β∗

−
p
2−2, . . . ,−β∗

−p) .

Using the decomposition of η from (4.20) and (4.21), we see that ad(α, β) is given by

(η0β−p − α1−pη−p, β2−p − α3−p, . . . , β−p
2−2 − α− p

2−1, α
∗
−

p
2−1,−β∗

−
p
2−2 + α∗

−
p
2−3, . . . ,−β∗

2−p + α∗
1−p).

If we write β−p =
(

βI
−p

β′

−p

)
: W−p → I ⊕W ′

0, then η0β−p = ( 1 0 )
(

βI
−p

β′

−p

)
= βI

−p. Hence Hom(W−p,W
′
0)

is in the kernel of adη and η0β−p − α1−pη−p = βI
−p − α1−pη−p. We conclude that the map induced by

adη on (sop(V )⊕ sop(W ))/Hom(W−p,W
′
0) → Homp+1(W,V )⊗K is given by

adη : Hom(W−p,W
′
0)⊕ (sop(V )⊕ sop(W ))/Hom(W−p,W

′
0)

( 0 δ )
−−−→ Homp+1(W,V )⊗K
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with δ an isomorphism. In particular, this implies that

H0(C•
p )

∼= H0(Hom(W−p,W
′
0)), H1(C•

p )
∼= H1(Hom(W−p,W

′
0)) and H2(C•

p ) = 0.

Moreover, H0(Hom(W−p,W
′
0)) was shown to vanish in the proof of Lemma 3.11. The proof for p

2 odd
follows from similar arguments. �

Now we consider negative odd weights different from −p.

Lemma 4.11. The map adη : so2k+1(V )⊕ so2k+1(W ) → Hom2k+2(W,V )⊗K is an isomorphism for
2k + 1 < 0 and 2k + 1 6= −p. In particular,

H0(C•
2k+1) = 0, H1(C•

2k+1) = 0 and H2(C•
2k+1) = 0.

Proof. First, note that so2k+1(V ) = 0. Also, if p is even or 2k + 1 < −p, then so2k+1(W ) = 0 and
Hom2k+2(W,V ) = 0. For p odd and 2k + 1 > −p,

so2k+1(W ) = {(β−2k−1,−β∗
−2k−1) ∈ Hom(W−2k−1,W0)⊕Hom(W0,W2k+1)}

and Hom2k+2(W,V )⊗K = Hom(W0, V2k+2)⊗K. Moreover, adη : so2k+1(W ) → Hom2k+2(W,V )⊗K
is given by

W0
//

−β∗

−2k−1
))❘

❘❘
❘❘

❘ V2k+2 ⊗K

W2k+1
1

44✐✐✐✐✐✐

which is an isomorphism. �

Next we deal with negative even weights different from −p and −2p.

Lemma 4.12. For 2k < 0 and 2k /∈ {−p,−2p}, Hom2k+1(W,V ) ⊗K ∼= so2k(W ) ⊕ so2k(V ) ⊕K−2k

and adη decomposes as

adη = ( a
b ) : so2k(W )⊕ so2k(V ) →

(
so2k(W )⊕ so2k(V )

)
⊕K−2k,

where a is an isomorphism. In particular,

H0(C•
2k) = 0, H1(C•

2k)
∼= H0(K−2k) and H2(C•

2k) = 0.

Proof. Using (4.14), we have that

Hom2k+1(W,V )⊗K ∼=





Hom(Wp, IK
−p−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
p+k times

if p odd or 2k < −p

Hom(Wp, IK
−p−2k)⊕Hom(W ′

0, IK
−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
p+k times

otherwise .

If p+ k is even, then by (4.16) and (4.17) we have

so2k(V ) ∼=
{
(αp−1, . . . , α−k+1,−α∗

−k+1, . . . ,−α∗
p−1) ∈

p−1+k⊕

j=0

Hom(Vp−1−2j , Vp−1−2j+2k)
}

so2k(W ) ∼=
{
(βp, . . . , β−k+2, 0,−β∗

−k+2, . . . ,−β∗
p) ∈

p+k⊕

j=0

Hom(Wp−2j ,Wp−2j+2k)
}
.

Thus,

so2k(V ) ∼= K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
p+k
2 times
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and

so2k(W ) ∼=





Hom(Wp, IK
−p−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
p+k
2 −1 times

if p odd or 2k < −p

Hom(Wp, IK
−p−2k)⊕Hom(W ′

0, IK
−2k)⊕K−2k ⊕ · · · ⊕K−2k

︸ ︷︷ ︸
p+k
2 −1 times

otherwise .

Hence we conclude that Hom2k+1(W,V ) ⊗K ∼= so2k(W ) ⊕ so2k(V ) ⊕K−2k. By a similar argument,
the conclusion also holds for the case p+ k odd.

For the form of adη in this splitting, first assume p is odd or 2k < −p. If p+ k is even, then the map
adη : so2k(V )⊕ so2k(W ) → Hom2k+1(W,V )⊗K is given by

adη(α, β) = (βp, βp−2 − αp−1, . . . , β−k+2 − α−k+3,−α−k+1,−β∗
−k+2 + α∗

−k+1, . . . , α
∗
p−1 − η−pβ

∗
p).

(4.27)

Consider the summand K−2k ∼= Hom(W−k, Vk+1) ⊗ K of Hom2k+1(W,V ) ⊗ K and take the corre-
sponding quotient (Hom2k+1(W,V ) ⊗ K)/K−2k. Then Hom2k+1(W,V ) ⊗ K = (Hom2k+1(W,V ) ⊗
K)/K−2k ⊕K−2k and, from (4.27), we conclude that adη can be written as

adη = ( ab ) : so2k(V )⊕ so2k(W ) →
(
Hom2k+1(W,V )⊗K)/K−2k ⊕K−2k

where a is an isomorphism. If p+ k is odd, a similar conclusion holds.

If p is even and −p < 2k, the only difference is that we have the following decompositions

β0 =
(
βI
0 β′

0

)
: I ⊕W ′

0 → W2k and β∗
0 =

(
(βI

0)
∗

(β′

0)
∗

)
: W−2k → I ⊕W ′

0.

With these decompositions, the terms of adη which involve β0 and β∗
0 are given by

(4.28) V1 ⊗K
α1⊗IdK

((P
PP

PP
P

I ⊕W ′
0

( 1 0 ) 77♣♣♣♣♣

β0
''◆

◆◆
◆◆

V2k+1 ⊗K

W2k
1

66♥♥♥♥♥♥

and

V−2k+1 ⊗K
−α∗

−1⊗IdK

((◗
◗◗

◗◗
◗

W−2k

1 66♥♥♥♥♥

−β∗

0
((P

PP
PP

V1 ⊗K.

I ⊕W ′
0

( 1 0 )

66♠♠♠♠♠♠

The map I ⊕ W ′
0 → V2k+1 ⊗ K is given by ( βI

0−α1 β′

0 ) and the map W−2k → W1 ⊗ K is given by
−(βI

0)
∗ + α−1. In particular, we have adη = ( a

b ) : so2k(W )⊕ so2k(V ) →
(
so2k(W )⊕ so2k(V )

)
⊕K−2k

with a an isomorphism.

This implies that in the long exact sequence (4.19), for 2k < 0 and 2k /∈ {−p,−2p}, we have

H0(C•
2k) = 0, H1(C•

2k)
∼= H0(K−2k) and H2(C•

2k) = H1(K−2k) = 0,

completing the proof. �

The next lemma deals with H∗(C•
−p) and H∗(C•

−2p).

Lemma 4.13. In weight −2p we have H
0(C•

−2p) = 0, H2(C•
2k) = 0 and

(4.29) 0 // H0(so−2p(W ))
η−p

// H0(Hom(Wp,K
p)) // H1(C•

−2p) // H1(so−2p(W )) // 0,

where so−2p(W ) = {β ∈ Hom(Wp,W−p)|β + β∗ = 0}. For p odd, we have

H
0(C•

−p) = 0, H
1(C•

−p)
∼= H

1
−p and H

2(C•
−p) = 0,

where

(4.30) 0 // H0(Hom(Wp,W
′
0))

η−p
// H0(Hom(W ′

0,K
p)) // H1

−p
// H1(Hom(Wp,W

′
0)) // 0.

For p even,

so−p(V )⊕ so−p(W ) ∼= Hom(Wp,W
′
0)⊕A and Hom1−p(W,V )⊗K = Kp ⊕Hom(W ′

0,K
p)⊕A ,
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and with respect to this splitting adη =
(

0 b
η−p 0
0 a

)
, where a : A → A is an isomorphism. In particular,

for p even,

H
0(C•

−p) = 0, H
1(C•

−p)
∼= H0(Kp)⊕H

1
−p and H

2(C•
−p) = 0.

Proof. For weight −2p we have so−2p(V ) = 0, so−2p(W ) = {β ∈ Hom(Wp,W−p)|β + β∗ = 0} and
Hom−2p+1(W,V ) ⊗ K ∼= Hom(Wp, IK

p). The map adη : so−2p(W ) → Hom(Wp,K
p) is given by

adη(β) = η−pβ. The result now follows from Lemmas 3.10 and 3.11.

If p is odd, then by (4.18) and (4.15) we have

so−p(V ) = 0, so−p(W ) ∼= Hom(Wp,W
′
0) and Hom1−p(W,V )⊗K = Hom(W ′

0, IK
p).

The map adη : Hom(Wp,W
′
0) → Hom(W ′

0, IK
p) is given by adη(βp) = −η−pβ

∗
p . Again, the result now

follows from Lemmas 3.10 and 3.11.

If p is even, then

so−p(V ) ∼= Kp ⊕ · · · ⊕Kp

︸ ︷︷ ︸
⌊ p

4 ⌋ times

,

so−p(W ) ∼= Hom(Wp, I)⊕Hom(Wp,W
′
0)⊕Kp ⊕ · · · ⊕Kp

︸ ︷︷ ︸
⌊ p−2

4 ⌋ times

,

Hom1−p(W,V )⊗K ∼= Hom(Wp, I)⊕Hom(W ′
0, IK

p)⊕Kp ⊕ · · · ⊕Kp

︸ ︷︷ ︸
p
2 times

.

Setting A = Hom(Wp, I) ⊕ Kp ⊕ · · · ⊕Kp

︸ ︷︷ ︸
p
2−1 times

we have so−p(V ) ⊕ so−p(W ) ∼= Hom(Wp,W
′
0) ⊕ A and

Hom−p(W,V )⊗K ∼= Kp ⊕ Hom(W ′
0, IK

p) ⊕ A. The map adη is analogous to the one in the proof of
Lemma 4.12 except that (4.28) is given by

V1 ⊗K
α1⊗IdK

((◗
◗◗

◗◗
◗

I ⊕W ′
0

( 1 0 ) 88♣♣♣♣♣

−β∗

p
&&▼

▼▼
▼▼

V−p+1 ⊗K

W−p

η−p

66♥♥♥♥♥♥

and Wp

βp
$$❏

❏
❏
❏

V1 ⊗K.

I ⊕W ′
0

( 1 0 )

88♣♣♣♣♣

Thus, adη restricted to Hom(Wp,W
′
0) is given by β′

p 7→ −η−pβ
′∗
p . Hence,

adη =
(

0 b
η−p 0
0 a

)
: Hom(Wp,W

′
0)⊕A −→ Kp ⊕Hom(W ′

0,K
p)⊕A

where a : A → A is an isomorphism.

Since H1(Kp) = 0, we have H2(C•
−p) = 0. As in the odd case, we also find that H0(C•

−p) = 0.

Moreover, H1(C•
−p)

∼= H0(Kp)⊕H1
−p where H1

−p is given by (4.30). �

The final case concerns the weight zero subcomplex.

Lemma 4.14. There is a bundle A so that

so0(V )⊕ so0(W ) ∼= so(W ′
0)⊕ End(W−p)⊕A and Hom1(W,V )⊗K ∼= Hom(W−p, IK

p)⊕A ,

where so(W ′
0) is the bundle of skew-symmetric endomorphisms of W ′

0 (with respect to to QW ′

0
). With

respect to this splitting,

adη =
(
0 η−p 0
0 b a

)
: so(W ′

0)⊕ End(W−p)⊕A // Hom(W−p, IK
p)⊕A ,

where a : A → A is an isomorphism. In particular,

H2(C•
0 ) = 0, H0(C•

0 ) = H0(so(W ′
0)) and H1(C•

0 ) = H1(so(W ′
0))⊕H1

0,p ,
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where

0 // H0(End(W−p))
η−p

// H0(Hom(W−p, IK
p)) // H1

0,p
// H1(End(W−p)) // H1(Hom(W−p, IK

p) // 0.

Proof. By (4.14) we have

Hom1(W,V )⊗K ∼=





Hom(W−p, IK
p)⊕O ⊕ · · · ⊕ O︸ ︷︷ ︸

p−1 times

p odd

Hom(W−p, IK
p)⊕O ⊕ · · · ⊕ O︸ ︷︷ ︸

p−1 times

⊕Hom(W ′
0, I) p even

and by (4.16) and (4.17),

so0(V )⊕ so0(W ) ∼=





End(W−p)⊕O ⊕ · · · ⊕ O︸ ︷︷ ︸
p−1 times

⊕ so(W ′
0) p odd

End(W−p)⊕O ⊕ · · · ⊕ O︸ ︷︷ ︸
p−1 times

⊕Hom(W ′
0, I)⊕ so(W ′

0) p even.

Hence, setting A to be

A =





O ⊕ · · · ⊕ O︸ ︷︷ ︸
p−1 times

p odd

O ⊕ · · · ⊕ O︸ ︷︷ ︸
p−1 times

⊕Hom(W ′
0, I) p even

yields so0(V )⊕ so0(W ) = so(W ′
0)⊕ End(W−p)⊕A and Hom(W,V )1 ⊗K = Hom(W−p, IK

p)⊕A.

Since, W ′
0 is an invariant bundle, the restriction of the map adη : so0(W )⊕so0(V ) → Hom1(W,V )⊗K

to so(W ′
0) is identically zero. The restriction of the map adη to End(W−p)⊕A is similar to (4.25) with

the exception that the term W−p → V1−p ⊗K is given by

V1−p ⊗K
α1−p⊗IdK

((❘
❘❘

❘❘

W−p

η−p 77♣♣♣♣

β−p
''◆

◆◆
◆◆

V1−p ⊗K.

W−p
η−p

66❧❧❧❧❧❧

In particular, it is given by
(
η−p 0
b a

)
: End(W−p)⊕A → Hom(W−p, IK

p)⊕A where a is an isomorphism.

The hypercohomology complex for C• splits as a direct sum of the following two complexes

0 // H0
0,′

// H0(so(W ′
0)) // 0 // H1

0,′
// H1(so(W ′

0)) // 0,

and

0 // H0
0,p

// H0(End(W−p)) // H0(Hom(W−p, IK
p)) // H1

0,p ��BC
GF�� // H1(End(W−p)) // H1(Hom(W−p, IK

p)) // H
2
0,p

// 0.

By Lemma 3.9, (Wp ⊕ I ⊕W−p,

(
0 0 0

η−p 0 0

0 η∗

−p 0

)
) is a stable Kp-twisted O(2 rk(Wp) + 1,C)-Higgs bundle,

so the hypercohomology groups H0
0,p and H2

0,p both vanish and H1(C•
0 ) = H1(so(W ′

0))⊕H1
0,p. �

4.3. Proof of Theorem 4.1. We are now set up to prove Theorem 4.1. We start by describing a
neighborhood of the image of the map Ψ which is open in M(SO(p, q)).

Proposition 4.15. For each (I, Ŵ , η̂, q2, . . . , q2p−2) in MKp(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(K2j), the

second hypercohomology group for the associated SO(p, q)-Higgs bundle vanishes

H
2(C•(Ψ(I, Ŵ , η̂, q2, . . . , q2p−2))) = 0.
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In particular, an open neighborhood of Ψ(I, Ŵ , η̂, q2, . . . , q2p−2) in M(SO(p, q)) is isomorphic to an
open neighborhood of zero in

H
1(C•(Ψ(I, Ŵ , η̂, q2, . . . , q2p−2)) � Aut(Ψ(I, Ŵ , η̂, q2, . . . , q2p−2)).

Proof. By Lemma 3.3, it suffices to prove the above proposition at the fixed points of the C∗-action
in the image of Ψ. These are the Higgs bundles given in Lemma 4.8. In Lemmas 4.9, 4.10, 4.11, 4.12,
4.13 and 4.14 it is shown that if (W,V, η) is a fixed point of the C∗-action in the image of Ψ, then each
of the graded pieces of H2(C•(W,V, η)) vanish. �

Proposition 4.16. For all Ψ((I, Ŵ , η̂), 0, . . . , 0) which are fixed points of the C∗-action we have

H
1(C•(Ψ(I, Ŵ , η̂, 0, . . . , 0))�Aut(Ψ(I, Ŵ , η̂, 0, . . . , 0)) ∼=

(
H

1(C•(I, Ŵ , η̂))�Aut(Ŵ )
)
×

p−1⊕

j=1

H0(K2j).

Proof. Let Ψ(I, Ŵ , η̂, 0, . . . , 0) be a fixed point of the C∗-action. For the SO(1, q− p+1)-Higgs bundle

(I, Ŵ , η̂), the first hypercohomology group H1(C•(I, Ŵ , η̂)) of the deformation complex was computed
in Lemma 3.11. In Lemmas 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 it was shown that the first hypercoho-
mology group of the deformation complex of the SO(p, q)-Higgs bundle is given by

H
1(C•(Ψ(I, Ŵ , η̂, 0, . . . , 0)) ∼= H

1(C•(I, Ŵ , η̂))×

p−1⊕

j=1

H0(K2j).

By Lemma 4.5, every S(O(1,C)×O(q−p+1,C)) automorphism (det(g
Ŵ
), g

Ŵ
) of (I, Ŵ , η̂) determines

a unique automorphism of Ψ(I, Ŵ , η̂, 0 . . . , 0)

(gV , gW ) = (det(g
Ŵ
) IdKp−1 ,

(
g
Ŵ

0

0 det(g
Ŵ

) IdKp−2

)
) .

Moreover, the action of such an automorphism on the holomorphic differentials in the above description

of H1(C•(Ψ(I, Ŵ , η̂, 0, . . . , 0)) is trivial. Thus,

H
1(C•(Ψ(I, Ŵ , η̂, 0, . . . , 0))�Aut(Ψ(I, Ŵ , η̂, 0, . . . , 0)) ∼=

(
H

1(C•(I, Ŵ , η̂))�Aut(Ŵ )
)
×

p−1⊕

j=1

H0(K2j)

as claimed. �

Theorem 4.17. The image of the map Ψ from (4.1) is open and closed.

Proof. By Proposition 4.15 and Proposition 4.16 the map Ψ is open at all fixed points of the C∗-action.
For (V,W, η) in the image of Ψ, there is λ sufficiently close to zero such that (V,W, λη) is in a sufficiently
small open neighborhood of a fixed point of the C∗-action. Thus, Ψ is open at all points.

To show the image of Ψ is closed, we use the properness of the Hitchin fibration. Namely, suppose

(I, Ŵi, η̂i, q
i
2, . . . , q

i
2p−2) is a sequence of points in MKp(SO(1, q−p+1))×

p−1⊕
j=1

H0(K2j) which diverges.

Denote the associated Hitchin fibrations by

hp : MKp(SO(1, q − p+ 1)) → H0(K2p) and h : M(SO(p, q)) →

p⊕

j=1

H0(K2j) .

By the properness of hp, (q
i
2, . . . , q

i
2p−2, hp(I, Ŵi, η̂i)) diverges in

p⊕
j=1

H0(K2j). Moreover, by the defi-

nition of the map Ψ, applying the SO(p, q)-Hitchin fibration to the image sequence yields

h(Ψ(I, Ŵi, η̂i, q
i
2, . . . , q

i
2p−2)) = (qi2, . . . , q

i
2p−2, hp(I, Ŵi, η̂i)) .

Since h is proper, we conclude that Ψ(I, Ŵi, η̂i, q
i
2, . . . , q

i
2p−2) also diverges in M(SO(p, q)). �
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5. Classification of local minima of the Hitchin function for M(SO(p, q))

In this section we will prove Theorem 5.9 which classifies all local minima of the Hitchin function
(3.1) on M(SO(p, q)). The strategy of proof is to divide the objects into the following three families:

(1) stable SO(p, q)-Higgs bundles with H
2(C•(V,W, η)) = 0,

(2) stable SO(p, q)-Higgs bundles whose corresponding SO(p+q,C)-Higgs bundle is strictly polystable,
(3) strictly polystable SO(p, q)-Higgs bundles.

The first family consists of points which are either smooth or orbifold points of M(SO(p, q)). For these
points we can use Proposition 3.2 to classify such local minimum. The local minima in the other two
families will be described by a direct study of their deformations.

Recall from (3.2) that the deformation complex (2.6) of an SO(p, q)-Higgs bundle (V,W, η) which is
a fixed point of the C∗-action decomposes as

(5.1) C•
k : so(V )k ⊕ so(W )k

adη
−−−−−→ Hom(W,V )k+1 ⊗K.

Each graded piece gives rise to the long exact sequence (3.3) in hypercohomology.

5.1. Stable minima with vanishing H2(C•). By Proposition 3.5, polystable fixed points of the
C∗-action are given by holomorphic chains of the form (3.6) or (3.7). The holomorphic chains (3.6)
will be important for us, they are given by

· · ·
η−3

// V−2

η∗

1 // W−1

η−1
// V0

η∗

−1
// W1

η1
// V2

η∗

−3
// · · ·

⊕

· · ·
η∗

2 // W−2

η−2
// V−1

η∗

0 // W0
η0

// V1

η∗

−2
// W2

η2
// · · ·

We start by studying the constraints on these chains imposed by the local minima condition for stable
SO(p, q)-Higgs bundles with vanishing H2(C•). This will be done by first proving two lemmas.

Lemma 5.1. Let (V,W, η) be a stable SO(p, q)-Higgs bundle with η 6= 0 and H2(C•(V,W, η)) = 0. If
(V,W, η) is a local minimum of f , then the direct sum of holomorphic chains given by (3.6) must have
one of the following forms:

(5.2) V−s

η∗

s−1
// W1−s

η1−s
// · · ·

η−2
// V−1

η∗

0 // W0
η0

// V1

η∗

−2
// · · ·

η∗

1−s
// Ws−1

ηs−1
// Vs

(5.3) W−r

η−r
// V1−r

η∗

r−2
// · · ·

η∗

1 // W−1

η−1
// V0

η∗

−1
// W1

η1
// · · ·

ηr−2
// Vr−1

η∗

−r
// Wr

(5.4) V−r

η∗

r−1
// W1−r

η1−r
// · · ·

η∗

1 // W−1

η−1
// V0

η∗

−1
// W1

η1
// · · ·

η∗

1−r
// Wr−1

ηr−1
// Vr,

⊕

W0

(5.5) W−s

η−s
// V1−s

η∗

s−2
// · · ·

η−2
// V−1

η∗

0 // W0
η0

// V1

η∗

−2
// · · ·

ηs−2
// Vs−1

η∗

−s
// Ws

⊕

V0

Proof. Since (V,W, η) is stable and a fixed point of the C∗-action, it is of the form (3.6) by Proposition
3.7. If one of the chains vanishes we are done, so assume there are two non-zero chains. Let r > 0 be
the maximal weight of the first chain in (3.6) and s > 0 be the maximal weight of the second chain.
We have r > 0 or s > 0 since η 6= 0. Since (V,W, η) is a stable local minimum of the Hitchin function
with H2(C•) = 0, the subcomplexes from (5.1) are isomorphisms for k > 1 by Proposition 3.2.

If r and s have different parity, then both of the chains start and end with a summand of W if r is
even and start and end with a summand of V if r is odd. In either case, Homr+s+1(W,V ) ⊗ K = 0
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but sor+s(W ) ⊕ sor+s(V ) is nonzero. Hence, the subcomplex C•
r+s from (5.1) is not an isomorphism

for k = r + s, contradicting (V,W, η) being a stable minima with H2(C•) = 0.

Now assume r and s have the same parity, so the first chain starts and ends with a summand of
W if and only if r is odd and the second chain starts and ends with a summand of W if only only if
s is even. If r > s, then Hom2r+1(W,V ) ⊗ K = 0 and so2r(V ) ⊕ so2r(W ) = Λ2Vr ⊕ Λ2Wr . So the
isomorphism of C•

2r implies rk(Wr) = 1 or rk(Vr) = 1. Since r + s− 1 is odd, we have:

sor+s−1(V ) =

{
{(α,−α∗) ∈ Hom(V−s, Vr−1)⊕Hom(V1−r , Vs)} if r is odd

{(α,−α∗) ∈ Hom(V−r , Vs−1)⊕Hom(V1−s, Vr)} if r is even

sor+s−1(W ) =

{
{(β,−β∗) ∈ Hom(W−r,Ws−1)⊕Hom(W1−s,Wr)} if r is odd

{(β,−β∗) ∈ Hom(W−s,Wr−1)⊕Hom(W1−r,Ws)} if r is even

Homr+s(W,V )⊗K ∼=

{
Hom(Wr, V−s)⊗K if r is odd

Hom(W−s, Vr)⊗K if r is even .

If s > 0, then r + s− 1 > 1 and the isomorphism C•
r+s−1 gives

{
rk(Vs) rk(Vr−1) + rk(Ws−1) = rk(Vs) if r is odd

rk(Ws) rk(W1−r) + rk(Vs−1) = rk(Ws) if r is even .

This implies either rk(W1−s) = 0 or rk(Vr−1) = 0, both of which contradict Proposition 3.7. Thus,
we conclude that r is even and s = 0, so the holomorphic chain is given by (5.4). A similar argument
shows that for s > r, the holomorphic chain is of the form (5.5). �

Lemma 5.2. Let (V,W, η) be a stable SO(p, q)-Higgs bundle which is a local minimum of the Hitchin
function with η 6= 0 and H2(C•(V,W, η)) = 0; the associated holomorphic chain is given by (5.2), (5.3),
(5.4) or (5.5). For all j 6= 0, we have rk(Wj) = 1 and rk(Vj) = 1. Moreover:

• In case (5.2), Vj
∼= V−1K

−j−1 and Wj
∼= V−1K

−j−1 for 0 < |j| < s.
• In case (5.3), Vj

∼= W−1K
−j−1 and Wj

∼= W−1K
−j−1 for 0 < |j| < r.

• In case (5.4), rk(V0) = 1, and Vj
∼= V0K

−j and Wj
∼= V0K

−j for 0 < |j| < r.
• In case (5.5), rk(W0) = 1, and Vj

∼= V0K
−j and Wj

∼= V0K
−j for 0 < |j| < s.

Proof. The proof involves an inductive argument on the weights. We first consider the case where
(V,W, η) is the holomorphic chain (5.4). We have the following decompositions

End(V ) =

2r⊕

j=−2r

Endk(V ) , End(W ) =

2r−2⊕

k=2−2r

Endk(W ) and Hom(W,V ) =

2r−1⊕

k=1−2r

Homk(W,V ).

For 2k > 0 we have Hom2k+1(W,V ) =

r−k−1⊕

j=0

Hom(W1−r+2j ,W2−r+2j+2k),

(5.6)

End2k(V ) =
r−k⊕

j=0

Hom(V2j−r , V2j+2k−r) and End2k(W ) =
r−k−1⊕

j=0

Hom(W1−r−2j ,W1−r+2j+2k).

With respect to these splittings, so(V ) =
⊕

sok(V ) and so(W ) =
⊕

sok(W ) where, for k > 0

(5.7) so2k(V ) = {(α0, . . . , αr−k) ∈ End2k(V ) | αi + α∗
r−k−i = 0},

so2k(W ) = {(β0, . . . , βr−k−1) ∈ End2k(V ) | βi + β∗
r−k−1−i = 0} .

Since (V,W, η) is a stable minima of the Hitchin function with H2(C•) = 0, for all k > 0 we have
sok(V )⊕sok(W ) ∼= Hom2k+1(W,V )⊗K. Note that r is even and nonzero. The isomorphism for k = 2r
implies Λ2Vr

∼= 0, hence rk(Vr) = 1.
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The isomorphism for k = 2r − 2 implies Hom(V−r, Vr−2)⊕ Λ2W1−r
∼= Hom(W1−r , Vr)⊗K. Thus,

rk(Vr−2) + rk(Λ2W1−r) = rk(W1−r),

which implies rk(W1−r) is either one or two. If rk(W1−r) = 2, taking the determinant of the iso-
morphism C•

2r−2 implies VrK
2 = Vr−2. Also, the kernels of the maps ηr−1 : Wr−1 → Vr ⊗ K and

η1−r : W1−r → V2−r ⊗K have negative degree by stability. Using V ∗
j
∼= V−j and W ∗

j
∼= W−j , we have

deg(Vr−2)− 2g + 2 < deg(Wr−1) < deg(Vr) + 2g − 2,

which contradicts VrK
2 = Vr−2. So rank Wr−1 = 1 and the isomorphism for C•

2r−2 gives the base case
of our induction:

1 = rk(V−r) = rk(W1−r) = rk(V2−r) and W1−r
∼= V2−rK .

If r = 2 we are done, so assume r > 4 and that for an integer k ∈ [1, r
2 − 1] we have

(5.8) W1−r
∼= V2−rK ∼= W3−rK

2 ∼= · · · ∼= W2k−1−rK
2k−2 ∼= V2k−rK

2k−1 .

We will prove that V2k−r
∼= W2k+1−rK ∼= V2k+2−rK

2.

The isomorphism C•
2r−2−2k gives

(5.9)

⌊k
2 ⌋⊕

j=0

Hom(V2j−r , Vr+2j−2−2k)⊕

⌊ k−1
2 ⌋⊕

j=0

Hom(W2j+1−r ,Wr+2j−1−2k)

∼=

k⊕

j=0

Hom(W2j+1−r , Vr+2j−2k)⊗K.

since Λ2Vr−k−1 = 0 for k odd and Λ2Wr−k−1 = 0 for k even by (5.8). Using (5.8), computing the
ranks of both sides gives rk(V2k+2−r) +

⌊
k
2

⌋
+ rk(W2k+1−r) +

⌊
k−1
2

⌋
= k + rk(W2k+1−r). Thus,

rk(V2k+2−r) = 1.

The isomorphism C•
2r−2−4k implies

k⊕

j=0

Hom(V2j−r , Vr+2j−2−4k)⊕

k−1⊕

j=0

Hom(W2j+1−r ,Wr+2j−1−4k)⊕ Λ2Wr−1−2k

∼=

2k⊕

j=0

Hom(W2j+1−r , Vr+2j−4k)⊗K.

Using (5.8), this gives the following equality on ranks

k∑

j=0

rk(Vr+2j−2−4k) +
k−1∑

j=0

rk(Wr+2j−1−4k) + rk(Λ2Wr−1−2k) =
k−1∑

j=0

rk(Vr+2j−4k) +
2k∑

j=k

rk(W2j+1−r).

Simplifying, yields rk(V4k+2−r) + rk(Λ2W2k+1−r) = rk(W2k+1−r). Thus, rk(W2k+1−r) is one or two.

If rk(W2k+1−r) = 2, then the determinant of the isomorphism in (5.9) gives

(5.10)

⌊ k
2 ⌋⊗

j=0

Vr−2jVr+2j−2−2k ⊗W 2
r−1Λ

2Wr−1−2k ⊗

⌊k−1
2 ⌋⊗

j=1

Wr−2j−1Wr+2j−1−2k

∼=

k−1⊗

j=0

Wr−2j−1Vr+2j−2kK ⊗ V 2
r K

2 ⊗ Λ2Wr−1−2k .



36 Aparicio-Arroyo, Bradlow, Collier, Garćıa-Prada, Gothen, Oliveira

By (5.8), the above terms satisfy

(5.11) V 2
r−2kK

2−2k ∼=





Vr−2jVr+2j−2−2k, for j = 1, . . . , ⌊
k

2
⌋

Wr−2j−1Wr+2j−1−2k, for j = 1, . . . , ⌊
k − 1

2
⌋

Wr−2j−1Vr+2j−2kK, for j = 0, . . . , k − 1.

Hence, simplifying (5.10) yields Vr−2k−2
∼= VrK

2+2k. The Higgs field gives rise to nonzero maps
Vr−2k−2 → Vr−2kK

2 and Vr−2k → VrK
2k by Proposition 3.7. Thus, deg(Vr−2k−2) − deg(Vr−2k) =

4g− 4. As in the base case, this leads to a contradiction of stability. Namely, stability implies that the
kernels of η2k+1−r : W2k+1−r → V2k+2−rK and of ηr−1−2k : Wr−1−2k → Vr−2kK have negative degree,
so that deg(V2k−r)− 2g + 2 < deg(W2k+1−r) < deg(V2k+2−r) + 2g − 2. So rk(W2k+1−r) = 1.

Using rk(W2k+1−r) = 1, (5.8) and (5.11), the determinant of (5.9) gives

VrVr−2k−2 ⊗

⌊ k
2 ⌋⊗

j=1

(V 2
r−2kK

2−2k)⊗ Vr−2kK
1−2kWr−1−2k ⊗

⌊ k−1
2 ⌋⊗

j=1

(V 2
r−2kK

2−2k)

∼=

k−1⊗

j=0

(V 2
r−2kK

2−2k)⊗Wr−1−2kVrK ,

which simplifies to V2k−r
∼= V2k+2−rK

2. The Higgs field defines a nonzero map V2k−r → W2k+1−rK →
V2k+2−rK

2. Thus,

(5.12) V2k−r
∼= W2k+1−rK ∼= V2k+2−rK

2 .

Recall that k was an integer between 1 and r−2
2 . Since r is even, we can take k = (r− 2)/2, and hence

(5.12) gives V−2
∼= W−1K ∼= V0K

2. This completes the proof for the chain (5.4).

The difference for the chain (5.3) is that r is odd and instead of (5.8) we must assume

V1−r
∼= W2−rK ∼= V3−rK

2 ∼= · · · ∼= V2k−1−rK
2k−2 ∼= W2k−rK

2k−1,

where k is an integer satisfying 1 6 k 6 (r − 3)/2. The same proof as above shows that W2k−r
∼=

V2k+1−rK ∼= W2k+2−rK
2. By taking k = (r− 3)/2 we have W−3

∼= V−2K ∼= W−1K
2, and no condition

on V0 is imposed. Switching the roles of V and W gives the proof for the chains (5.2) and (5.4). �

We can now complete the classification of the stable minima with with vanishing H
2(C•).

Theorem 5.3. A stable SO(p, q)-Higgs bundle (V,W, η) with p 6 q, η 6= 0 and H
2(C•(V,W, η)) = 0

defines a local minimum of the Hitchin function if and only if it is a holomorphic chain of the form
(5.2), (5.3), (5.4) or (5.5) which satisfies one of the following:

(1) The chain is given by (5.2) with p = 2 and 0 < deg(V−1) < 2g − 2.
(2) The chain is given by (5.2) with s = p − 1 and the bundle W0 decomposes as W0 = I ⊕ W ′

0,
where W ′

0 is a stable O(q − p + 1,C)-bundle with det(W ′
0) = I. Moreover, Vj = IK−j and

Wj = IK−j for all j 6= 0, and with respect to the splitting of W0, the chain is given by

(5.13) I
V−s

η∗

s−1
// W1−s

η1−s
// · · ·

η−2
// V−1

(
η∗

0
0

)

// ⊕
( η0 0 )

// V1

η∗

−2
// · · ·

η∗

1−s
// Ws−1

ηs−1
// Vs ,

W ′
0

(3) The chain is of the form (5.3) with q = p + 1, Vj = K−j and Wj = K−j for all |j| < p and
W−p is a line bundle satisfying deg(W−p) ∈ (0, p(2g − 2)].

(4) The chain is of the form (5.4) where W0 is a stable O(q − p+ 1,C)-bundle with det(W0) = I,
and Vj = IK−j and Wj = IK−j for all j 6= 0.

(5) The chain is of the form (5.5) with q = p+ 1, V0 = 0, W0
∼= O, Vj = K−j and Wj = K−j for

0 < |j| < p and W−p is a line bundle satisfying deg(W−p) ∈ (0, p(2g − 2)].
(6) The chain is of the form (5.5) with q = p, and for some torsion 2 line bundle I, Vj = IK−j

and Wj = IK−j for all j.
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Remark 5.4. The cases (2)-(6) are special cases of the fixed points considered in Lemma 4.8. In case
(2), note that if the stable invariant bundle W ′

0 is instead strictly polystable, then the Higgs bundle is
still at a local minimum of the Hitchin function. Similarly, for case (4) replacing the stable orthogonal
bundle W0 with a strictly polystable orthogonal bundle still gives rise to a local minimum. We will
prove that these are the only local minima apart from η = 0. Note also that none of the above cases
have p = 1 and q > 2.

Proof. We first show that cases (1) and (2) are sufficient for the chain (5.2) to be a stable minima with
H2(C•) = 0 by invoking Proposition 3.2. For case (1), C•

2 is the only isomorphism to consider. We
have so2(V )⊕ so2(W ) = Λ2V−1 and Hom3(W,V )⊗K = 0, which is an isomorphism since rk(V−1) = 1.
For case (2), the holomorphic chain (5.13) is a fixed point considered in Lemma 4.8 with Wp = 0. By

Lemma 4.9, C•
k : sok(V )⊕ sok(W )

adη
−−→ Homk+1(W,V )⊗K is an isomorphism for all k > 0.

We now show that cases (1) and (2) are necessary for chains of the form (5.2). We have a chain

V−s

η∗

s−1
// W1−s

η1−s
// · · ·

η−2
// V−1

η∗

0 // W0
η0

// V1

η∗

−2
// · · ·

η∗

1−s
// Ws−1

ηs−1
// Vs ,

with s > 1 odd. By Lemma 5.2 each of the bundles in the chain is line bundle except W0. So p = s+1
is even and rk(W0) = q − p+ 2 > 2. Note that O = det(V ) = det(W ) = det(W0).

If N = ker(η0), then η∗0 maps V−1 to N⊥K ⊂ W0 ⊗K. By Proposition 3.7, η∗0 is nonzero, hence
deg(N⊥)−deg(V−1)+2g−2 > 0. If N is coisotropic N ⊥ is isotropic, and stability implies deg(V−1)+
deg(N⊥) < 0, which implies deg(V−1) < g − 1. If N is not coisotropic, then η0η

∗
0 is a nonzero section

of the line bundle V 2
1 K

2. Thus,

(5.14) deg(V−1) 6 2g − 2 .

If p = 2 and deg(V−1) < 2g− 2 we are done. If deg(V−1) = 2g− 2, then η0η
∗
0 is a nowhere vanishing

section of the line bundle V 2
1 K

2, and hence the kernel of η0 is a holomorphic orthogonal bundle
W ′

0 ⊂ W0 of rank q−p+1. Furthermore, stability of (V,W, η) forces W ′
0 to be stable. Taking orthogonal

complements gives a decomposition W0 = W ′
0 ⊕ I where KV1 = I = det(W ′

0) since O = det(W0). By
Lemma 5.2, the holomorphic chain is given by (5.13). Thus, for p = 2 we are done. For p > 2 we will
show that stability forces deg(V−1) = 2g − 2 and V−s = KsI.

For p > 4 and even, we have s > 3 and odd. Using decompositions analogous to (5.6) and (5.7) and
rk(Vj) = rk(Wj) = 1 for j 6= 0, the isomorphism of C•

s−1 gives

sos−1(V )⊕ sos−1(W ) ∼=

⌊ s−1
4 ⌋⊕

j=0

Hom(V2j−s, V2j−1)⊕

⌊ s−3
4 ⌋⊕

j=0

Hom(W2j+1−s,W2j)

∼= Homs(W,V )⊗K ∼=

s−1
2⊕

j=0

Hom(W2j+1−s, V2j+1)⊗K .

Since det(W0) = O, the determinant of both sides of the isomorphism C•
s−1 is given by

(5.15) VsV−1⊗

⌊ s−1
4 ⌋⊗

j=1

Vs−2jV2j−1⊗W
rk(W0)
s−1 ⊗

⌊ s−3
4 ⌋⊗

j=1

Ws−1−2jW2j
∼=

s−3
2⊗

j=0

Ws−1−2jV2j+1K⊗(VsK)rk(W0).

From Lemma 5.2, we have Ws−1
∼= V1K

2−s and

V 2
1 K

3−s ∼=





Vs−2jV2j−1, for j = 1, . . . , ⌊(s− 1)/4⌋

Ws−1−2jW2j , for j = 1, . . . , ⌊(s− 3)/4⌋

Ws−1−2jV2j+1K, for j = 0, . . . , (s− 3)/2.

This simplifies (5.15) to (VsV−1K
s−1)p−q−1 ∼= (V1K)2. As in the proof of Lemma 5.2, the Higgs field

gives a nonzero map V1 → VsK
s−1. Therefore,

0 > (p− q − 1)(deg(Vs)− deg(V1) + (s− 1)(2g − 2)) = 2(deg(V1) + 2g − 2),
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and hence deg(V1) 6 2− 2g. By (5.14), we conclude that deg(V−1) = 2g− 2 and deg(Vs) = −s(2g− 2).
As above, since deg(V−1) = 2g − 2, the bundle W0 decomposes as W ′

0 ⊕ I, where W ′
0 is the kernel of

η0 and det(W0)
′ = I = V1K. Moreover, we have Vs = IK−s since, by Lemma 5.2, Ws−1 = K1−sI and

ηs−1 : Ws−1 → Vs ⊗K is nonzero. This completes the proof of (2).

Cases (3) and (5) are almost identical, we will prove (3). By Lemma 5.2, the holomorphic chain
(5.3) is given by

W−r
η−r

// V1−r

η∗

r−2
// · · ·

η∗

1 // W−1
η−1

// V0

η∗

−1
// W1

η1
// · · ·

ηr−2
// Vr−1

η∗

−r
// Wr ,

where rk(Wj) = 1 for all j. Thus, r = q − 1 and either rk(V0) = 1 and q = p + 1 or rk(V0) = 2 and
q = p. If q = p, then, by switching the roles of V and W , we can assume we are in case (2). Thus we
may assume rk(V0) = 1 and q = p + 1. Moreover, V0 = O since O ∼= det(V ) ∼= V0. Since the Higgs
field defines a nonzero maps W−1 → O⊗K and W−1 → W1 ⊗K2 we conclude that W−1

∼= K. Thus,
Wj = K−j and Vj = K−j for all |j| < r by Lemma 5.2. Since Wp is an invariant isotopic subbundle
and the Higgs field η−p : W−p → V−p+1K is nonzero, we conclude

0 < deg(W−p 6 p(2g − 2).

Thus, the conditions in case (3) are necessary.

The holomorphic chain from case (3) is a fixed point considered in Lemma 4.8 with W ′
0 = 0 and

rk(W−p) = 1. By Lemmas 4.9 and 4.10, C•
k : sok(V )⊕ sok(W )

adη
−−→ Homk+1(W,V )⊗K is an isomor-

phism for all k > 0. Thus, the conditions in case (3) are also sufficient.

The holomorphic chain from case (4) is a fixed point considered in Lemma 4.8 with W−p = 0. By

Lemma 4.9, C•
k : sok(V )⊕ sok(W )

adη
−−→ Homk+1(W,V )⊗K is an isomorphism for all k > 0. Thus, the

conditions in case (4) are sufficient.

To show the conditions of (4) are necessary, note that the holomorphic chain (5.4) is given by

V−r

η−r
// W1−r

η∗

r−2
// · · ·

η∗

1 // W−1

η−1
// V0

η∗

−1
// W1

η1
// · · ·

ηr−2
// Wr−1

η∗

−r
// Vr .

⊕

W0

By Lemma 5.2, rk(Vj) = 1 for all j, thus r = p− 1 and rk(W0) > 1. Also, if V0 = I, then I = det(V ) =
det(W ) = det(W0), and Vj = IK−j for all |j| < p − 1 and Wj = K−1I for all j 6= 0. Since W0 6= 0,
sop−2(V ) ⊕ sop−2(W ) ∼= Hom(W1−r,W0) and Homp−1(W,V ) ⊗ K ∼= Hom(W0, Vp−1K). Taking the
determinant of this isomorphism and using W2−p = Kp−2I we conclude that V1−p = IKp−1, finishing
the proof of case (4).

Finally, for case (6) the holomorphic chain (5.5) is given by

W−s

η−s
// V1−s

η∗

s−2
// · · ·

η−2
// V−1

η∗

0 // W0
η0

// V1

η∗

−2
// · · ·

ηs−2
// Vs−1

η∗

−s
// Ws

⊕

V0

.

By Lemma 5.2, rk(Wj) = 1 for all j. Thus s = q − 1 = p− 1 and V0 is a rank one orthogonal bundle
I with I = det(V ) = det(W ) = W0, Vj = IK−j for all j and Wj = IK−j for all |j| < s. Similar to
case (4), we have sop−2(V )⊕sop−2(W ) ∼= Hom(V0, Vp−2) and Homp−1(W,V )⊗K ∼= Hom(W1−p, V0K).
Thus, the isomorphism C•

p−2 implies W1−p
∼= IKp−1. Thus, the conditions of (6) are necessary. As

with the other cases, the conditions of case (6) are sufficient by Lemmas 4.8 and 4.9. �

5.2. Stable minima with non-vanishing H2(C•). We now classify stable SO(p, q)-Higgs bundles
such that the associated SO(p + q,C)-Higgs bundle is strictly polystable. By Remark 2.17, these
are exactly the stable SO(p, q)-Higgs bundles which may have H2(C•) 6= 0. We will prove that such
SO(p, q)-Higgs bundles define minima of the Hitchin function if and only if the Higgs field η is zero.
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The SO(p+ q,C)-Higgs bundle associated to an SO(p, q)-Higgs bundle (V,QV ,W,QW , η) is

(5.16) (E,Q,Φ) =
(
V ⊕W,

(
QV 0
0 −QW

)
,
(

0 η
η∗ 0

))
.

Recall that a GL(p,R)-Higgs bundle is defined by a triple (V,Q, η) where (V,Q) is a rank p orthogonal
vector bundle and η : V → V ⊗K is a holomorphic map satisfying η∗ = Q−1ηTQ = η. Given such a
GL(p,R)-Higgs bundle we can construct an SO(p, p)-Higgs bundle

(V,QV ,W,QW , η) = (V,QV , V,QV , η) .

Using the symmetry η∗ = η, the corresponding SO(2p,C)-Higgs bundle is

(E,Q,Φ) =
(
V ⊕ V,

(
QV 0
0 −QV

)
,
( 0 η
η 0

) )
.

Even if the SO(p, p)-Higgs bundle (V, V, η) is stable, the above SO(2p,C)-Higgs bundle is strictly
polystable. Indeed, the following pair of disjoint degree zero isotropic subbundles are both Φ-invariant:

V
i1 // V ⊕ V and V

i2 // V ⊕ V

v ✤ // (v, v) v ✤ // (v,−v)

.

The following proposition shows that this example characterizes stable SO(p, q)-Higgs bundles which
are not stable as SO(p+ q,C)-Higgs bundles.

Proposition 5.5. Let (V,W, η) be a stable SO(p, q)-Higgs bundle. The associated SO(p+ q,C)-Higgs
bundle (5.16) is strictly polystable if and only if

(5.17) (V,QV ,W,QW , η) ∼=
(
V1 ⊕ V2,

(
QV1 0

0 QV2

)
, V1 ⊕W2,

(
QV1 0

0 QW2

)
,
( η1 0

0 η2

) )
,

where (V1, QV1 , V1, QV1 , η1) is a stable SO(p1, p1)-Higgs bundle with η∗1 = η1 and (V2, QV2 ,W2, QW2 , η2)
is a stable SO(p2, q2)-Higgs bundle.

Proof. By the above discussion, the condition (5.17) is sufficient. We now show that it is necessary.
Let (V,W, η) be a stable SO(p, q)-Higgs bundle and suppose the associated SO(p+ q,C)-Higgs bundle
(E,Q,Φ) given by (5.16) is strictly polystable. Let U ⊂ V ⊕ W be a degree zero proper subbundle
which is isotropic with respect to Q and satisfies Φ(U) ⊂ U ⊗ K. Let V1 ⊂ V and W1 ⊂ W be the
respective image sheafs of the projection of U onto each summand of V ⊕W. The subsheaf V1 ⊕W1

is preserved by Φ, thus deg(V1) + deg(W1) 6 0 by polystability of the associated SL(p + q,C)-Higgs
bundle (V ⊕W,Φ).

Consider the sequences

0 // Uw // U // V1
// 0 and 0 // Uv // U // W1

// 0 ,

where the subsheaf Uv ⊂ V is QV isotropic, the subsheaf Uw ⊂ W is QW isotropic, η(Uw) ⊂ Uv ⊗K
and η∗(Uv) ⊂ Uw ⊗ K. Stability of the SO(p, q)-Higgs bundle gives deg(Uv) + deg(Uw) < 0, which
implies deg(V1) + deg(W1) > 0. But, since V1 ⊕ W1 is preserved by Φ, deg(V1) + deg(W1) 6 0 by
polystability of the Higgs bundle (V ⊕W,Φ). This contradiction implies

V1
∼= U ∼= W1 .

We claim that V1 and W1 are both orthogonal subbundles. Let QV1 and QW1 be the restrictions of
QV and QW to V and W respectively. Consider the following sequences

0 // V
⊥V1
1

// V1
// V1/V

⊥V1
1

// 0 and 0 // W⊥W1 // W1
// W1/W

⊥W1
1

// 0 .

Since V
⊥V1
1 and W

⊥W1
1 are maximally isotropic subbundles of V1 and W1 respectively, both V1/V

⊥V1
1

and W1/W
⊥W1
1 are orthogonal bundles. In particular, V

⊥V1
1 and W

⊥W1
1 are degree zero isotropic

subbundles of V and W respectively. Moreover, we have

η(W
⊥W1

1 ) ⊂ V
⊥V1

1 ⊗K and η∗(V
⊥V1

1 ) ⊂ W
⊥W1

1 ⊗K .
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Again, stability of the SO(p, q)-Higgs bundle (V,W, η) implies both V
⊥V1
1 and W

⊥W1
1 are zero, which

implies V1 ⊂ V and W1 ⊂ W are both orthogonal subbundles.

If p1 = rk(W1) = rk(V1), then (V1,W1, η|W1) is an SO(p1, p1)-Higgs bundle. Note that isomorphism
between V1 andW1 is given by including V1 into V ⊕W and projecting ontoW. Denote this isomorphism
by g : V1 → W1, we have η|W1g = (g−1 ⊗ 1K)η|∗W1

. Moreover, g is orthogonal since for any x, y ∈ V1

we have (x, g(x)), (y, g(y)) ∈ U , and

0 = Q((x, g(x)), (y, g(y))) = QV1(x, y)−QW1(g(x), g(y))

since U is isotropic. Therefore the pair (IdV , g
−1) defines an isomorphism between (V1,W1, η|W1) and

(V1, V1, η1) with η1 = η|W1g. In particular, η1 = η∗1 .

Let V2 and W2 be the orthogonal compliments of V1 and W1 respectively and let η2 : W2 → V2 ⊗K
be the restriction of η to W2. By the above discussion, we obtain the desired decomposition (5.17) of
the SO(p, q)-Higgs bundle (V,W, η). �

Now, if a stable SO(p, q)-Higgs bundle

(V,QV ,W,QW , η) ∼=
(
V1 ⊕ V2,

(
QV1 0

0 QV2

)
, V1 ⊕W2,

(
QV1 0

0 QW2

)
,
( η1 0

0 η2

) )
,

with η∗1 = η1 is a local minimum of the Hitchin function, then (V1, QV1 , η1) is a local minimum local min-
imum of the Hitchin function on the GL(p1,R)-Higgs bundle moduli space and (V2, QV2 ,W2, QW2 , η2)
is a local minimum of the Hitchin function on the SO(p2, q2)-Higgs bundle moduli space.

Recall from Example 3.4 that Hitchin proved the local minima in the GL(p,R)-Higgs bundle moduli
space with nonzero Higgs field are given by the minima in the Hitchin components. The holomorphic
chain of such a Higgs bundle is given by

V 1−p
2

// V 3−p
2

// · · · // V p−3
2

// V p−1
2

where Vj = IK−j for all j and some torsion two line bundle I. The holomorphic chain of the associated
SO(p, p)-Higgs bundle is given by

(5.18)

V 1−p
2

// V 3−p
2

// · · · // V p−3
2

// V p−1
2

⊕

V 1−p
2

// V 3−p
2

// · · · // V p−3
2

// V p−1
2

By Proposition 3.7, such an SO(p, p)-Higgs bundle is not stable if p is even. Thus, the following
proposition shows that the only stable SO(p, q)-Higgs bundles with nonzero Higgs field are classified
by Theorem 5.3.

Proposition 5.6. For p-odd, the SO(p, p)-Higgs bundle given by (5.18) with Vj = IK−j for all j and
some torsion two line bundle I is not a minimum of the Hitchin function.

Proof. By assumption r = p−1
2 is a positive integer. Set V =

2r⊕
j=0

Vj−r and W =
2r⊕
j=0

Wj−r with

Vj = IK−j and Wj = IK−j for all j and some torsion two line bundle I. The holomorphic chain (5.18)
is given by

V−r
1 // W1−r

1 // · · ·
1 // V−1

1 // W0
1 // V1

1 // · · ·
1 // Vr−1

1 // Wr

⊕

W−r
1 // V1−r

1 // · · ·
1 // W−1

1 // V0
1 // W1

1 // · · ·
1 // Wr−1

1 // Vr

Consider the complex C•
2r−1 : so2r−1(V )⊕ so2r−1(W )

adη
−−→ Hom2r(W,V )⊗K. We have

so2r−1(V ) ∼= {(α,−α) ∈ Hom(V−r , Vr−1)⊕Hom(V1−r , Vr)} ,

so2r−1(W ) ∼= {(β,−β) ∈ Hom(W−r,Wr−1)⊕Hom(W1−r,Wr)} ,

Hom2r(W,V ) ∼= Hom(W−r, Vr) ,
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Using Vj = IK−j and Wj
∼= IK−j for all j, the induced map on first cohomology is

(5.19) adη : H1(K1−2r)⊕H1(K1−2r) // H1(K1−2r)

([α], [β])
✤ // [β] + [α]

.

In particular, H2(C•
2r−1) = 0 since this map is surjective and the kernel is given by [α] = −[β].

Let β ∈ Ω0,1(K1−2r) which is nonzero in cohomology and, with respect to the above splittings of V
and W, consider the deformed orthogonal holomorphic structures:

∂̄β
V =




∂̄Kr

0 ∂̄Kr−1

. . .
β 0 ··· ∂̄K1−r

0 −β ··· 0 ∂̄K−r


 and ∂̄β

W =




∂̄Kr

0 ∂̄Kr−1

. . .
−β 0 ··· ∂̄K1−r

0 β ··· 0 ∂̄K−r


 .

In the above splittings of V and W , the Higgs field is given by

η =

(
0
1 0

. . .
. . .
1 0

)
: W → V ⊗K ,

and a calculation shows that η is still holomorphic with respect ∂̄β
W and ∂̄β

V . Since this deformation is in
the positive weight space, it decreases the Hitchin function and we conclude that such an SO(p, p)-Higgs
bundle is not a local minimum of the Hitchin function. �

5.3. Strictly polystable minima. Recall from Proposition 2.20 that a strictly polystable SO(p, q)-
Higgs bundle is isomorphic to

(
E ⊕ E∗ ⊕ V,

(
0 Id 0
Id 0 0
0 0 QV

)
, F ⊕ F ∗ ⊕W,

(
0 Id 0
Id 0 0
0 0 QW

)
,

(
β 0 0
0 γ∗ 0
0 0 η

))
,

where (E,F, β, γ) is a polystable U(p1, q1)-Higgs bundle, with deg(E) + deg(F ) = 0, and (V,W, η) is a
stable SO(p2, q2)-Higgs bundle.

Proposition 5.7. Let (E,F, β, γ) be a polystable U(p, q)-Higgs bundle which is a fixed point of the
C∗-action. The associated SO(2p, 2q)-Higgs bundle

(5.20)
(
E ⊕ E∗,

(
0 Id
Id 0

)
, F ⊕ F ∗,

(
0 Id
Id 0

)
,
(

β 0
0 γ∗

))

is a minimum of the Hitchin function if and only if β = γ = 0 or p 6 1 or q 6 1.

Proof. If β = γ = 0 or p = 0 or q = 0 the Higgs field is identically zero and we have a minimum. Now
suppose p > 0 and q > 0 and that the SO(2p, 2q)-Higgs bundle (5.20) is a minimum of the Hitchin
function with nonzero Higgs field. This implies that the U(p, q)-Higgs bundle (E,F, β, γ) is a minimum
of the Hitchin function with β and γ not both zero. Recall from Example 3.4, that this implies either
β = 0 or γ = 0. Up to switching the roles of E, F , E∗ and F ∗, the relevant holomorphic chain is

E

F

(
β
0

)

// ⊕
( 0 β∗ )

// F ∗ .

E∗

Since the U(p, q)-Higgs bundle (E,F, β, 0) is a polystable minimum with β 6= 0, we must have [6]
deg(E) < 0 < deg(F ).

The Lie algebra bundle so(F ⊕F ∗) decomposes as so−2(F ⊕F ∗)⊕ so0(F ⊕F ∗)⊕ so2(F ⊕F ∗) where

so0(F ⊕ F ∗) = {(d,−d∗) ∈ End(F )⊕ End(F ∗)} ,

so2(F ⊕ F ∗) ∼= Λ2F ∗ ∼= so−2(F ⊕ F ∗)∗.

Moreover,

so(E ⊕ E∗) = so0(E ⊕ E∗) ∼= {(a, b, c,−c∗) ∈ Λ2E ⊕ Λ2E∗ ⊕ End(E)⊕ End(E∗)},
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and

Hom1(F ⊕ F ∗, E ⊕ E∗) ∼= Hom(F,E) ⊕Hom(F,E∗).

Also, the map adη : so2(F ⊕ F ∗) → Hom3(F,E)⊗K = 0 is zero and

adη : so(E ⊕ E∗)⊕ so0(F ⊕ F ∗) // Hom(F,E) ⊗K ⊕Hom(F,E∗)⊗K

(a, b, c, d)
✤ // (βd − cβ,−bβ)

.

If rk(F ) = 1, then soj(F ⊕ F ∗) = 0 for all j > 0, hence (since so(E ⊕ E∗) = so0(E ⊕ E∗)) we have
that H1(C•

j ) = 0 for every j > 0. In particular, such a SO(2p, 2)-Higgs bundle is a local minimum
of the Hitchin function. Now suppose rk(F ) > 1. Since deg(F ∗) < 0, Riemann-Roch implies that
H1(Λ2F ∗) 6= 0. Thus we may consider a nonzero extension 0 → F ∗ → W → F → 0 given by an
element of H1(Λ2F ∗). Moreover, the Higgs field η =

(
β 0
0 0

)
is still holomorphic. Such a deformation

breaks the U(p, q) symmetry of the SO(2p, 2q)-Higgs bundle and decreases the Hitchin function. �

By Remark 5.4, the following proposition is the final step in classifying all strictly polystable minima
of the Hitchin function.

Proposition 5.8. Let (E,F, β, γ) be a polystable U(m,n)-Higgs bundle with m = 1 or n = 1 and
β = 0 or γ = 0. Let (V ′,W ′, η′) be a stable SO(p, q)-Higgs bundle which is a minimum of the Hitchin
function with η′ 6= 0. The SO(p+ 2m, q + 2n)-Higgs bundle

(V,QV ,W,QW , η) =
(
E ⊕ E∗ ⊕ V ′,

(
0 Id 0
Id 0 0
0 0 QV ′

)
, F ⊕ F ∗ ⊕W ′,

(
0 Id 0
Id 0 0
0 0 QW ′

)
,

(
β 0 0
0 γ∗ 0
0 0 η′

))

is a minimum of the Hitchin function if and only if p = 0 and m = 1 or q = 0 and n = 1.

Proof. First note that if p = 0 or q = 0, then we have a local minimum. Now suppose p 6= 0, q 6= 0
and (V,W, η′) is a stable minimum from Theorem 5.3. Up to switching the roles of E, V ′, F, and W ′,
it suffices holomorphic chains of one of the following six types (recall that we suppress the twisting by
K from the notation):

(5.21) F

E
( γ0 ) // ⊕

( 0 γ∗ )
// E∗

F ∗

⊕

V−1

η∗

0 // W0
η0

// V1

or

E

F

(
β
0

)

// ⊕
( 0 β∗ )

// F ∗

E∗

⊕

V−1

η∗

0 // W0
η0

// V1

where rk(V−1) = 1 and 0 < deg(V−1) 6 2g − 2.

(5.22) F

E
( γ0 ) // ⊕

( 0 γ∗ )
// E∗

F ∗

⊕

V1−p
1 // W2−p

1 // · · ·
1 // Wp−2

1 // Vp−1

or

E

F

(
β
0

)

// ⊕
( 0 β∗ )

// F ∗

E∗

⊕

V1−p
1 // W2−p

1 // · · ·
1 // Wp−2

1 // Vp−1

where Vj = IK−j and Wj = IK−j for all j and some I with I2 ∼= O.

(5.23) F

E
( γ0 ) // ⊕

( 0 γ∗ )
// E∗

F ∗

⊕

W−p

η−p
// V1−p

1 // · · ·
1 // V1−p

η∗

−p
// Wp

or

E

F

(
β
0

)

// ⊕
( 0 β∗ )

// F ∗

E∗

⊕

W−p

η−p
// V1−p

1 // · · ·
1 // V1−p

η∗

−p
// Wp

where Vj = K−j and Wj = K−j for all |j| < p, rk(W−p) = 1, 0 < deg(W−p) 6 p(2g − 2) and η−p 6= 0.
Furthermore, in (5.21), (5.22) and (5.23), the first chain has rk(E) = 1, 0 < deg(E) and deg(F ) 6 0,
while the second chain has rk(F ) = 1, 0 < deg(F ) and deg(E) 6 0.
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We will show that each of the above holomorphic chains is not a minimum. For the first chain of
(5.21) and the first chain of (5.22), the summand of so(V ) given by

{(α,−α∗) ∈ Hom(E, Vp−1)⊕Hom(V1−p, E
∗)}

lies in the kernel of adη : so(V )⊕ so(W ) → Hom(W,V )⊗K. Since deg(E) > 0 and deg(Vp−1) < 0, we
have H1(Hom(E, Vp−1)) 6= 0 by Riemann-Roch. Thus, we may thus deform the holomorphic structure
on V by a nonzero extension of the summand E ⊕ Vp−1 of the form

0 → Vp−1 → Ṽ → E → 0.

Such a deformation decreases the Hitchin function. Similarly, for the second chain in (5.23) the sum-
mand of so(W ) isomorphic to Hom(F,Wp) is in the kernel of adη. As above, since deg(F ) > 0 and
deg(Wp) < 0, Riemann-Roch implies H1(Hom(F,Wp)) 6= 0. Hence, again, deforming the holomorphic
structure by a nonzero element of H1(Hom(F,Wp)) decreases the Hitchin function.

For the second chain in (5.21) and the second chain in (5.22), the summand of so(V ) given by

{(α,−α∗) ∈ Hom(E∗, Vp−1)⊕Hom(V1−p, E)}

is in the kernel of adη. As above, H
1(Hom(E∗, Vp−1)) 6= 0, since deg(E) 6 0 and deg(Vp−1) < 0, hence

a nonzero element of H1(Hom(E∗, Vp−1)) can be used to deform the Higgs bundle and decrease the
Hitchin function. Similarly, for the first chain in (5.23) the summand of so(W ) given by {(β,−β∗) ∈
Hom(F ∗,Wp) ⊕ Hom(W−p, F )} is in the kernel of adη . Since deg(F ) 6 0 and deg(Wp) < 0, we have
H1(Hom(F ∗,Wp)) 6= 0 by Riemann-Roch. Again, a nonzero element of H1(Hom(F ∗,Wp)) can be used
to deform the Higgs bundle and decrease the Hitchin function. �

5.4. Summary of classification of minima of Hitchin function on M(SO(p, q)). Putting ev-
erything together, the following theorem classifies all polystable minima of the Hitchin function in the
moduli space of SO(p, q)-Higgs bundles for p 6 q.

Theorem 5.9. For 1 6 p 6 q, let f : M(SO(p, q)) → R be the Hitchin function on the moduli space
of polystable SO(p, q)-Higgs bundles given by (3.1). A polystable SO(p, q)-Higgs bundle (V,W, η) is a
local minimum of f if and only if η = 0 or (V,W, η) is isomorphic to a holomorphic chains of one of
the following mutually exclusive types, where we have suppressed the twisting by K in the Higgs field
from the notation:

(1) p = 2 and (V,W, η) is of the form

V−1

η∗

0 // W
η0

// V1 ,

where V = V−1 ⊕V1 with V−1 is a line bundle having 0 < deg(V−1) < 2g− 2, V1 = V ∗
−1 and η0

is nonzero.
(2) p > 2 and (V,W, η) is of the form

V1−p

η∗

p−2
// W2−p

η2−p
// V3−p

η∗

p−4
// · · ·

ηp−4
// Vp−3

η∗

2−p
// Wp−2

ηp−2
// Vp−1 ,

⊕

W ′
0

where W ′
0 is a polystable O(q− p+1,C)-bundle with det(W ′

0) = I, W = W ′
0 ⊕

p−1⊕
i=1

W−p+2i with

Wj = IK−j for all j, V =
p−1⊕
i=0

V1−p+2i with Vj = IK−j for all j, and each ηj is nonzero.

(3) p = q − 1 and (V,W, η) is of the form

W−p

η−p
// V1−p

η∗

p−2
// W2−p

η2−p
// V3−p

η∗

p−4
// · · ·

ηp−4
// Vp−3

η∗

2−p
// Wp−2

ηp−2
// Vp−1

η∗

−p
// Wp ,
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where V =
p−1⊕
i=0

V1−p+2i with Vj = K−j for all j, W =
p−1⊕
i=0

W−p+2i with Wj = K−j for all

|j| < p and W−p is a holomorphic line bundle with 0 < deg(W−p) 6 p(2g − 2), and each ηj is
nonzero.

Remark 5.10. Note that in case (2), det(V ) = Ip = det(W ). Thus, if p is even, a Higgs bundle defined
in case (2) of Theorem 5.9 is an SO(p, q)-Higgs bundle which reduces to SO0(p, q) if and only if I = O,
on the other hand, when p is even the Higgs bundle in case (2) always reduces to SO0(p, q).

Proof. If the η = 0, then we are done, so suppose η 6= 0. By Theorem 5.3 and Proposition 5.6, the
result holds if (V,W, η) is a stable SO(p, q)-Higgs bundle. Suppose (V,W, η) is a strictly polystable
SO(p, q)-Higgs bundle with p 6 q. By Proposition 2.20,

(V,W, η) ∼=
(
E ⊕ E∗ ⊕ V ′, F ⊕ F ∗ ⊕W ′,

(
γ

β∗

η′

))
,

where (E,F, β, γ) is a polystable U(p1, q1)-Higgs bundle and (V ′,W ′, η′) is a stable SO(p2, q2)-Higgs
bundle which does not necessarily have p2 6 q2. By Proposition 5.7 and Proposition 5.8 if such a Higgs
bundle is a minimum of the Hitchin function, then one of the following hold

(a) β = 0, γ = 0 and (V ′,W ′, η′) is a minimum from Theorem 5.3,
(b) p1 = 1, β = 0 or γ = 0 and η′ = 0,
(c) q1 = 1, β = 0 or γ = 0 and η′ = 0.

For case (a), note that if p2 = 0 or q2 = 0 then the Higgs field is zero and we are at a minimum.
Consider a holomorphic chain of the form

V ′
−r

// W ′
1−r

// · · · // W ′
r−1

// V ′
r

⊕

E ⊕ E∗

or W ′
−r

// V ′
1−r

// · · · // V ′
r−1

// W ′
r

⊕

F ⊕ F ∗

where V ′
−r and W ′

−r are holomorphic line bundles of positive degree. This does not define a minimum
of the Hitchin function since deg(E) = 0 and deg(V ′

−r) > 0 imply H1(Hom(V ′
−r , E)) 6= 0, thus we

may deform such a holomorphic chain down by considering a nonzero extension in H1(Hom(V ′
−r, E)).

Similarly, the second chain does not define a minimum.

Since q > p, the only way we can have a holomorphic chain

W ′
−r

// V ′
1−r

// · · · // V ′
r−1

// W ′
r

⊕

E ⊕ E∗

with rk(W ′
j) = rk(V ′

j ) = 1 for all j is if E = 0 and q = p+ 1. Such a holomorphic chain is stable. By
Theorem 5.3 such a holomorphic chain is a minimum of the Hitchin function if and only if it satisfies
the conditions of case (3) in the statement of the Theorem. To finish case (a), consider holomorphic
chains of the form

V ′
−r

// W ′
1−r

// · · · // W ′
r−1

// V ′
r

⊕

F ⊕ F ∗

.

By Theorem 5.3 and Remark 5.4, such a Higgs bundle is a polystable minimum if and only if it satisfies
the conditions of case (1) or case (2) in the statement of the theorem.

For case (b), we have rk(E) = 1 and up to switch E and E∗ the holomorphic chains are given by

(5.24) F

E
( γ0 ) // ⊕

( 0 γ∗ )
// E∗

F ∗

⊕

V ′ ⊕W ′ ,
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where 0 < deg(E). As above, (with the roles of E and V ′ switched) this does not define a local minimum
if V ′ 6= 0. When V ′ = 0, we have a local minimum satisfying case (1) of the statement of theorem.

For case (c), we have rk(F ) = 1 and the holomorphic chain is given by (5.24) with E and F switched.
As above, this is not a minimum if W ′ = 0. Since p 6 q and rk(V ) = rk(V ′) + 2 rk(E) 6 2, we have
V ′ = 0, giving a local minimum satisfying case (1) of the statement of theorem. �

6. The connected components of M(SO(p, q))

In this section we use the results from the previous sections to count the number of connected
components of the moduli space M(SO(p, q)), with 1 6 p 6 q. If p 6= 2 or if (p, q) = (2, 2) or
(p, q) = (2, 3) then we have enough information to give a precise count. In the remaining cases, namely
p = 2, q > 4, we give a lower bound on the number of connected components of M(SO(2, q)) and
conjecture that it this bound is sharp.

6.1. Connected components of M(SO(p, q)) for 2 < p 6 q. Recall from (2.14) that the moduli
space of SO(p, q)-Higgs bundles decomposes as

(6.1) M(SO(p, q)) =
∐

a,b,c

Ma,b,c(SO(p, q)),

where the indices (a, b, c) are classes in H1(X,Z2)×H2(X,Z2)×H2(X,Z2) and a polystable SO(p, q)-
Higgs bundle (V,QV ,W,QW , η) is in Ma,b,c(SO(p, q)) if a is the first Stiefel-Whitney class of (V,QV )
and (W,QW ), b is the second Stiefel-Whitney class of (V,QV ) and c is the second Stiefel-Whitney class
of (W,QW ). Notice that each Ma,b,c(SO(p, q)) is not necessarily connected.

When 2 < p 6 q, the maximal compact subgroup S(O(p) × O(q)) ⊂ SO(p, q) is semisimple. Thus
by Proposition 2.23 each of the spaces Ma,b,c(SO(p, q)) is nonempty and has a unique connected
component in which every Higgs bundle (V,QV ,W,QW , η) can be deformed to one with vanishing
Higgs field. Such components account for 22g+2 connected components of M(SO(p, q)). These are the
‘mundane’ components mentioned in the Introduction. Taking into account the ‘exotic’ components,
we obtain the following precise count of the connected components of M(SO(p, q)) for 2 < p 6 q.

Theorem 6.1. Let X be a compact Riemann surface of genus g > 2 and denote the moduli space of
SO(p, q)-Higgs bundles on X by M(SO(p, q)). For 2 < p 6 q, we have

|π0(M(SO(p, q)))| = 22g+2 +





22g if q = p

22g+1 − 1 + 2p(g − 1) if q = p+ 1

22g+1 if q > p+ 1 .

Proof. By the above discussion we only need to determine the number of connected components of
M(SO(p, q)) with the property that the Higgs field never vanishes. Recall that if Min(M(SO(p, q)))
is the subspace of M(SO(p, q)) where the Hitchin function (3.1) attains a local minimum, then

|π0(M(SO(p, q)))| 6 |π0(Min(M(SO(p, q))))|.

From Theorem 5.9, an SO(p, q)-Higgs bundle (V,W, η), with 2 < p 6 q and q 6= p+1, is a minimum
of the Hitchin function with nonzero Higgs field if and only if the holomorphic chain is given by:

(6.2) V1−p

η∗

p−2
// W2−p

η2−p
// V3−p

η∗

p−4
// · · ·

ηp−4
// Vp−3

η∗

2−p
// Wp−2

ηp−2
// Vp−1 ,

⊕

W ′
0

where the bundle W ′
0 is a polystable O(q − p + 1,C)-bundle with det(W ′

0) = I, Vj = IK−j and
Wj = IK−j for all j 6= 0, and each ηj is nonzero. When q = p+ 1, so that W ′

0 is a rank 2 orthogonal
bundle, there are also minima of the form

(6.3) W−p

η−p
// V1−p

η∗

p−2
// W2−p

η2−p
// V3−p

η∗

p−4
// · · ·

ηp−4
// Vp−3

η∗

2−p
// Wp−2

ηp−2
// Vp−1

η∗

−p
// Wp ,
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where Vj = K−j and Wj = K−j for all |j| < p, W−p is a holomorphic line bundle with 0 < deg(W−p) 6
p(2g − 2) and each ηj is nonzero.

For 2 < p = q, we only have minima of the form (6.2) with W0 = I. Each such minimum is labeled
by the choice of the 2-torsion line bundle I, yielding 22g connected components. For 2 < p < q,
the connected components of the minima subvarieties of the form (6.2) are labeled by the first and
second Stiefel-Whitney class of the bundle W ′

0 by Proposition 2.23. Thus, the number of connected
components of these minima subvarieties is given by |BunX(O(q − p+ 1))| = 22g+1 for 2 < p < q − 1.
For 2 < p = q− 1, when the first Stiefel-Whitney class of W ′

0 vanishes the second Stiefel-Whitney class
also vanishes since sw1(W

′
0) = 0 implies W ′

0 = L⊕ L−1 for some degree zero line bundle L. This gives
22g+1− 1 connected components of the minima subvarieties whose Higgs bundles are of the form (6.2).
There are p(2g − 2) connected components of minima subvarieties of type (6.3) since its connected
components are labeled by deg(W−p) ∈ (0, p(2g − 2)].

Finally, by Theorem 4.1, each of the above minima are in a different connected component of the

image the map Ψ : MKp(SO(1, q − p + 1)) ×
p−1⊕
j=1

H0(K2j) → M(SO(p, q)). Thus, each such minima

subvariety defines a connected component. �

The following is a direct corollary of the above proof. This formulation will be useful in Section 7.
Recall notation (2.11).

Corollary 6.2. Suppose 2 < p < q− 1. For polystable Higgs bundles (V,W, η) ∈ M(SO(p, q)) we have
the following dichotomy:

• Either (V,W, η) can be continuously deformed to a polystable (V ′,W ′, 0),

• or (V,W, η) can be continuously deformed to (Kp−1 ⊗ I, Ŵ ⊕ Kp−2 ⊗ I, (0 η0)), where Ŵ is

a polystable rank q − p + 1 orthogonal bundle with Λq−p+1Ŵ = I and (Kp−1,Kp−2, η0) is the
unique minimum in the SO(p− 1, p)-Hitchin component.

For minima of the form (6.2) or (6.3), the first and second Stiefel-Whitney classes of V and W are
readily computed. The results are shown in the table.

Type of min. a = sw1(W ) b = sw2(V ) c = sw2(W )

(6.2)
0 if p is even

sw1(W
′) if p is odd

0 sw2(W
′)

(6.3) 0 0 deg(W−p) (mod 2)

The following corollaries are now immediate.

Corollary 6.3. For 2 < p < q − 1, if Ma,b,c(SO(p, q)) is the union of connected components from
(6.1), then

|π0(M
a,b,c(SO(p, q)))| =





2 if p is odd and b = 0

22g + 1 if p is even, a = 0 and b = 0

1 otherwise .

Corollary 6.4. For p > 2 and q = p, if Ma,b,c(SO(p, p)) is the union of connected components from
(6.1), then

|π0(M
a,b,c(SO(p, p)))| =





2 if p is odd and b = c = 0

22g + 1 if p is even and a = b = c = 0

1 otherwise .

Corollary 6.5. For p > 2 and q = p+1, if Ma,b,c(SO(p, p+1)) is the union of connected components
from (6.1), then
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|π0(M
a,b,c(SO(p, p+ 1)))| =





2 if p is odd, b = 0 and a 6= 0

2 + p(g − 1) if p is odd and a = b = c = 0

1 + p(g − 1) if p is odd and a = b = 0 and c 6= 0

2 + 22g + p(g − 1) if p is even and a = b = c = 0

1 + 22g + p(g − 1) if p is even and a = b = 0 and c 6= 0

1 otherwise .

We observe finally that the following corollary is immediate since the map Ψ is injective.

Corollary 6.6. For p > 1, the number of connected components of MKp(SO(1, q)) are given by

|π0(MKp(SO(1, q)))| =





22g q = 1

22g+1 − 1 + p(2g − 2) q = 2

22g+1 q > 2 .

In particular, if q > 2 then every polystable Kp-twisted SO(1, q)-Higgs bundle can be continuously
deformed to one with zero Higgs field.

6.2. Connected components of M(SO(2, q)). In the previous section a complete component count
of M(SO(p, q)) when p 6 q and p 6= 2 was given. We now discuss the case p = 2. In this special case
the group SO(p, q) is a group of Hermitian type. Furthermore in this case the minima of type (1) from
Theorem 5.9 appear. These are given by holomorphic chains of the form

(6.4) V−1

η∗

0 // W
η0

// V1 ,

where 0 < deg(V−1) < 2g − 2 and η0 is nonzero.

Let (V,W, η) be an SO(2, q)-Higgs bundle. As in the general case, the first and second Stiefel-
Whitney classes of the orthogonal bundles provide primary topological invariants which help distinguish
the connected components of the moduli space. However, when the first Stiefel-Whitney class vanishes,
we have (V,QV ) ∼= (L ⊕ L−1, ( 0 1

1 0 )) for some line bundle L. The natural number | deg(L)| satisfies
| deg(L)| = sw2(V ) (mod 2) and provides a refinement of the second Stiefel-Whitney class invariant.
This natural number is the absolute value of the so-called Toledo invariant of the SO(2, q)-Higgs bundle.
Moreover, if such an SO(2, q)-Higgs bundle (V,W, η) is polystable then

| deg(L)| 6 2g − 2.

This inequality is usually referred to as the Milnor-Wood inequality and was derived in the proof of
Theorem 5.3 (see (5.14)). The special maximal case | deg(L)| = 2g− 2 will be discussed in Section 7.3.

Examining the minima classification of Theorem 5.9 and using Theorem 4.1, in the case 2 = p 6 q
we see that the only obstruction to obtaining a full connected component count of M(SO(2, q)) is the
connectedness of the fixed point set (6.4). In particular, for 2 = p < q, we get bounds, rather than
precise values, namely

|π0(M(SO(2, q))| >

{
22g+2 − 4 + 4(g − 1) + 22g+1 + 4g − 5 if q = 3

22g+2 − 4 + 4(g − 1) + 22g+1 if q > 4

It follows from [21], that the above inequality was shown to be an equality for q = 3:

(6.5) |π0(M(SO(2, 3))| = 3× 22g+1 + 8g − 13.

We conjecture that equality also holds above for q > 4.

For p = q = 2 we can use Proposition 3.8 to give a complete count of the connected components of
M(SO(2, 2)), as we now briefly explain, leaving the details for the reader.

Proposition 6.7. |π0(M(SO(2, 2))| = 3(22g+1 − 1) + 2g(2g − 3).
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Proof. If (V,W, η) is a polystable SO(2, 2)-Higgs bundle with sw1(V ) = sw1(W ) 6= 0 then, by Propo-
sition 3.8, it can only be a minima of the Hitchin function if η = 0. Hence the corresponding subspace
with the given topological types is connected. Taking into account sw2(V ) and sw2(W ), this gives rise
to 4(22g − 1) components.

If sw1(V ) = sw1(W ) = 0, then V ∼= L ⊕ L−1 and W ∼= M ⊕ M−1, with L and M isotropic line
subbundles, and η = ( a c

b d ) in these decompositions. Note that η∗ =
(
d c
b a

)
. Let l = deg(L) and

m = deg(M). We can assume l > 0 (or m > 0, but not both). Indeed, this follows from the fact that
π0(SO(2, 2)) ∼= Z2 acts nontrivially on π1(SO(2, 2)) ∼= Z×Z by simultaneously changing the sign of the
generators, hence identifies the topological types (l,m) and (−l,−m). As above, l determines sw2(V )
and m determines sw2(W ). Hence, supposing from now on that l > 0, polystability forces

(6.6) l − 2g + 2 6 m 6 2g − 2− l.

Indeed, suppose for instance that m > 2g − 2− l. Then we must have b = 0 in η, so η(M) ⊂ LK and
η∗(L) ⊂ MK, but deg(L)+deg(M) = l+m > 2g−2 > 0, contradicting polystability. If m < l−2g+2
the conclusion is similar.

Since l > 0, using (6.6), and recalling that the topological types (0,m) and (0,−m) are identified,
we conclude that there are precisely (2g− 1)2 − 2g+2 allowed topological types (l,m) in M(SO(2, 2))
with sw1 = 0.

Now, by Proposition 3.8, (V,W, η) is a minimum if and only if η = 0 or it is of the form (3.8), up
to switching the roles of L, M , L−1 and M−1. By polystability, the minima with vanishing Higgs field
can only arise when l = m = 0, giving one connected component. If (l,m) /∈ {(0, 2g − 2), (2g − 2, 0)},
the minima (3.8) can be described as certain connected coverings of (products of) certain symmetric
products of X , depending on l,m and on the divisors of the components a, b, c, d of η. This gives
(2g − 1)2 − 2g connected components. Finally, the minima of type (3.8) for (l,m) = (0, 2g − 2) or
(l,m) = (2g− 2, 0) are parameterized by the 2-torsion points of the Jacobian of X , thus have each 22g

connected components. Summing up everything yields the count of |π0(M(SO(2, 2))|. �

7. Positive surface group representations and Cayley partners

In this section, we recall the Non-Abelian Hodge correspondence between the Higgs bundle moduli
space and the moduli space of surface group representations. After proving some immediate conse-
quences of Theorem 6.1, we discuss how the exotic components of Theorem 4.1 are related to recent
work of Guichard and Wienhard on positive Anosov representations [25]. Finally, we show this relation
with positive Anosov representations can be seen as a generalization of the phenomenon which produces
the so-called Cayley partner of a G-Higgs bundle with maximal Toledo invariant for G a Hermitian
group of tube type.

7.1. Surface group representations. Let Γ be the fundamental group of a closed oriented surface S
of genus g > 2 and let G be a real reductive Lie group. A representation ρ : Γ → G is called reductive
if the composition of ρ with the adjoint representation of G is a completely reducible representations.

Denote the set of reductive representations by Homred(Γ,G). The conjugation action of G on
Hom(Γ,G) does not in general have a Hausdorff quotient. However, if we restrict to the set of re-
ductive representations, the quotient will be Hausdorff.

Definition 7.1. The G-representation variety R(Γ,G) of a surface group Γ is the space of conjugacy
classes of reductive representations of Γ in G:

R(Γ,G) = Homred(Γ,G)/G .

Example 7.2. The set of Fuchsian representations Fuch(Γ) ⊂ R(Γ, SO(2, 1)) is defined to be the subset
of conjugacy classes of faithful representations with discrete image. The space Fuch(Γ) defines one
connected components of R(Γ, SO(2, 1)) [20] and is in one to one correspondence with the Teichmüller
space of isotopy classes of marked Riemann surface structures on the surface S. Since the surface S is
assumed to be orientable, every Fuchsian representation reduces to SO0(2, 1).
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For G a split real form of a complex semisimple Lie group, there is a preferred embedding

(7.1) ι : SO0(2, 1) → G

called a principal embedding. When G is an adjoint group, the principal embedding is unique. For
the split real form G = SO0(p, p − 1), the principal embedding is given by taking the (p − 1)st-
symmetric product of the standard action of SO0(2, 1) on R3. The principal embedding defines a map
ι : R(Γ, SO0(2, 1)) → R(Γ,G), and the Hitchin component Hit(Γ,G) ⊂ R(Γ,G) is defined to be the
connected component containing ι(Fuch(Γ)).

Each representation ρ ∈ R(Γ,G) defines a flat G-bundle Eρ = (S̃×G)/Γ . This gives a decomposition
of the G representation variety:

R(Γ,G) =
⊔

a∈BunS(G)

Ra(G) ,

where a ∈ BunS(G) is the topological type of the flat G-bundle of the representations in Ra(G).
When G is a Hermitian Lie group BunS(G) is infinite. Such G-Higgs bundles and surface group
representations acquire a discrete invariant called the Toledo invariant. While the Toledo invariant
has several different descriptions, they all yield a finite set of allowed rational values, and hence give a
notion of maximality (see for example [14, 10, 5]). In particular, Ra(G) is nonempty for only finitely
many values of a ∈ BunS(G).

The following theorem links the G-representation variety and the K-twisted G-Higgs bundle mod-
uli space. It was proven by Hitchin [26], Donaldson [15], Corlette [13] and Simpson [38] in various
generalities. For the general statement below see [17].

Theorem 7.3. Let S be a closed oriented surface of genus g > 2 and G be a real reductive Lie
group. For each Riemann surface structure X on S there is a homeomorphism between the moduli
space MK(G) of G Higgs bundles on X and the G-representation variety R(Γ,G). Moreover, for each
a ∈ BunS(G), this homeomorphism identifies the spaces Ma

K(G) and Ra(G).

As in (6.1), for (a, b, c) ∈ H1(S,Z2)×H2(S,Z2)×H2(S,Z2), we have

R(SO(p, q)) =
∐

Ra,b,c(SO(p, q)).

Using Theorem 6.1 and the above correspondence we have a connected component count ofR(SO(p, q)).

Theorem 7.4. Let S be a closed surface of genus g > 2 and fundamental group Γ. For 2 < p 6 q, the
number of connected components of the representation variety R(Γ, SO(p, q)) is given by

|π0(R(Γ, SO(p, q)))| = 22g+2 +





22g if q = p

22g+1 − 1 + 2p(g − 1) if q = p+ 1

22g+1 if q > p+ 1 .

Remark 7.5. The connected components of Ra,b,c(SO(p, q)) are given by corollaries 6.3, 6.4 and 6.5.

Corollary 6.2 can now be interpreted as a dichotomy in terms of the SO(p, q) representation variety.

Theorem 7.6. Let S be a closed surface of genus g > 2 and fundamental group Γ. For 2 < p < q− 1,
the representation variety R(SO(p, q)) of S is disjoint union of two sets

(7.2) R(SO(p, q)) = Rcpt(SO(p, q)) ⊔Rex(SO(p, q)) ,

where

• [ρ] ∈ Rcpt(SO(p, q)) if and only if ρ can be continuously deformed to a compact representation,
• [ρ] ∈ Rex(SO(p, q)) if and only if ρ can be continuously deformed to a representation

(7.3) ρ′ = α⊕ (ι ◦ ρFuch)⊗ det(α) ,

where α is a representation of Γ into the compact group O(q − p + 1), ρFuch is a Fuchsian
representation of Γ into SO0(2, 1), and ι is the principal embedding from (7.1).
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Proof. For the first part, note that a representation ρ : Γ → SO(p, q) can be continuously deformed to
a compact representation if and only if the corresponding Higgs bundle can be continuously deformed
to one with vanishing Higgs field.

If ρ cannot be continuously deformed to a compact representation, then by Corollary 6.2, the
associated SO(p, q)-Higgs bundle (V,W, η) can be continuously deformed to (cf. (2.11))

(Kp−1 ⊗ I, Ŵ ⊕Kp−2 ⊗ I, (0 η0)),

where Ŵ is a polystable rank q − p+ 1 orthogonal bundle with Λq−p+1Ŵ = I and (Kp−1,Kp−2, η0) is
the unique minimum in the SO(p− 1, p)-Hitchin component. Through Theorem 7.3, the Higgs bundle
description of the Hitchin component from (2.21) is identified with the representation variety from
Example 7.2. In particular, if sH is the Hitchin section from (2.12), the representation associated to
sH(0) is ι ◦ ρFuch for a Fuchsian representation ρFuch [28]. In particular, the representation associated
to the unique minimum in the SO0(p, p− 1)-Hitchin component (Kp−1,Kp−2, η0) is given by ι ◦ ρFuch
for a Fuchsian representation ρFuch.

If A ∈ SO0(p, p− 1) and B ∈ O(q − p+ 1), then (A,B) 7→
(
det(B)·A 0

0 B

)
defines an embedding

SO0(p, p− 1)×O(q − p+ 1) →֒ SO(p, q).

If α : Γ → O(q − p + 1) is the representation associated to the polystable O(q − p+ 1,C)-bundle Ŵ ,

then the representation associated to the SO(p, q)-Higgs bundle (Kp−1 ⊗ I, Ŵ ⊕ Kp−2 ⊗ I, (0 η0)) is
given by α⊕ (ι ◦ ρFuch)⊗ det(α). �

7.2. Positive Anosov representations. Anosov representations were introduced by Labourie [31]
and have many interesting geometric and dynamic properties which generalize convex cocompact rep-
resentations into rank one Lie groups. Important examples of Anosov representations include Fuchsian
representations, quasi-Fuchsian representations, Hitchin representations into split real groups and max-
imal representations into Lie groups of Hermitian type. We will describe the necessary properties of
Anosov representations and refer the reader to [31, 24, 22, 29] for more details.

Let G be a semisimple Lie group and P ⊂ G be a parabolic subgroup. Let L ⊂ P be the Levi
factor (the maximal reductive subgroup) of P, it is given by L = P ∩ Popp, where Popp is the opposite
parabolic of P. The homogeneous space G/L is the unique open G orbit in G/P × G/P, and points
(x, y) ∈ G/P×G/P in this open orbit are called transverse.

Definition 7.7. Let Γ be the fundamental group of a closed surface of genus g > 2. Let ∂∞Γ be the
Gromov boundary of the group Γ. Topologically ∂∞Γ ∼= RP1. A representation ρ : Γ → G is P-Anosov
if there exists a unique continuous boundary map ξρ : ∂∞Γ → G/P which satisfies

• Equivariance: ξ(γ · x) = ρ(γ) · ξ(x) for all γ ∈ Γ and all x ∈ ∂∞Γ.
• Transversality: for all distinct x, y ∈ ∂∞Γ the generalized flags ξ(x) and ξ(y) are transverse.
• Dynamics preserving: see [31, 24, 22, 29] for the precise notion.

The map ξρ will be called the P-Anosov boundary curve.

One important property of Anosov representations is that they define an open subset of the repre-
sentation variety R(Γ,G). The set of Anosov representations is however not closed. For example, for
the group PSL(2,C) the set of Anosov representations corresponds to the non-closed set quasi-Fuchsian
representations of R(Γ,PSL(2,C)). The special cases of Hitchin representations and maximal repre-
sentations define connected components of Anosov representations. Both Hitchin representations and
maximal representations satisfy an additional “positivity” property which is a closed condition. For
Hitchin representations this was proven by Labourie [31] and Fock-Goncharov [16], and for maximal
representations by Burger-Iozzi-Wienhard [9]. These notions of positivity have recently been unified
and generalized by Guichard and Wienhard [25].

For a parabolic subgroup P ⊂ G, denote the Levi factor of P by L and the unipotent subgroup
by U ⊂ P. The Lie algebra p of P admits an AdL-invariant decomposition p = l ⊕ u where l and u
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are the Lie algebras of L and U respectively. Moreover, the unipotent Lie algebra u decomposes into
irreducible L-representation:

u =
⊕

uβ .

Recall that a parabolic subgroup P is determined by fixing a simple restricted root system ∆ of a
maximal R-split torus of G, and choosing a subset Θ ⊂ ∆ of simple roots. To each simple root βj ∈ Θ
there is a corresponding irreducible L-representation space uβj .

Definition 7.8. ([25, Definition 4.2]) A pair (G,PΘ) admits a positive structure if for all βj ∈ Θ, the
LΘ-representation space uβj has an LΘ

0 -invariant acute convex cone cΘβj
, where LΘ

0 denotes the identity

component of LΘ.

If (G,PΘ) admits a positive structure, then exponentiating certain combinations of elements in the
LΘ
0 -invariant acute convex cones give rise to a semigroup UΘ

>0 ⊂ UΘ [25, Theorem 4.5]. The existence
of the semigroup U>0 gives a well defined notion of positively oriented triples of pairwise transverse
points in G/PΘ. This notion allows one to define a positive Anosov representation.

Definition 7.9. ([25, Definition 5.3]) If the pair (G,PΘ) admits a positive structure, then a PΘ-
Anosov representation ρ : Γ → G is called positive if the Anosov boundary curve ξ : ∂∞Γ → G/PΘ

sends positively ordered triples in ∂∞Γ to positive triples in G/PΘ.

Conjecture 7.10. ([23, 25]) If (G,PΘ) admits a notion of positivity, then the set PΘ-positive Anosov
representations is an open and closed subset of R(Γ,G).

In particular, the aim of this conjecture is to characterize the connected components of R(Γ,G)
which are not labeled by primary topological invariants as being connected components of positive
Anosov representations, such connected components are referred as higher Teichmüller components.

Remark 7.11. When G is a split real form and Θ = ∆, the corresponding parabolic is a Borel subgroup
of G. In this case, the connected component of the identity of the Levi factor is L∆

0
∼= (R+)rk(G) and

each simple root space uβi is one dimensional. The L∆
0 -invariant acute convex cone in each simple root

space uβi is isomorphic to R+. The set of P∆-positive Anosov representations into a split group are
exactly Hitchin representations. When G is a Hermitian Lie group of tube type and P is the maximal
parabolic associated to the Shilov boundary of the Riemannian symmetric space of G, the pair (G,P)
also admits a notion of positivity [10]. In this case, the space of maximal representations into G are
exactly the P-positive Anosov representations. In particular, the above conjecture holds in these two
cases.

In general, the group SO(p, q) is not a split group and not a group of Hermitian type. Nevertheless,
if p 6= q, then SO(p, q) has a parabolic subgroup PΘ which admits a positive structure. Here PΘ is the
stabilizer of the partial flag V1 ⊂ V2 ⊂ · · · ⊂ Vp−1, where Vj ⊂ Rp+q is a j-plane which is isotropic with
respect to a signature (p, q) inner product with p < q. Here the subgroup LΘ

pos ⊂ LΘ ⊂ SO(p, q) which

preserves the cones cΘβj
is isomorphic to LΘ

pos
∼= R+ × SO(1, q− p+1) . We refer the reader to [25] and

[12, Section 7] for more details.

To construct examples of SO(p, q) positive Anosov representations we have the following proposition.

Proposition 7.12. Let p < q. Consider the signature (p, q)-inner product 〈x, x〉 =
p∑

j=1

x2
j −

p+q∑
j=p+1

x2
j .

If A ∈ SO0(p, p− 1) and B ∈ O(q − p+ 1), then the set matrices
(
det(B)·A 0

0 B

)
defines an embedding

SO0(p, p− 1)×O(q − p+ 1) →֒ SO(p, q).

If ρHit : Γ → SO0(p, p− 1) is a Hitchin representation and α : Γ → O(q− p+1) is any representation,
then

ρ = ρHit ⊗ det(α)⊕ α : Γ → SO(p, q)

is a PΘ-positive Anosov representation.
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This is proven for q = p + 1 in [12, Section 7], and the proof for general q is the same. For the
proof of the first part of the above proposition it suffices to show that the map SO(p, p− 1) → SO(p, q)
described above sends the positive semigroup U∆

>0 ⊂ SO(p, p−1) into the positive semigroup UΘ
>0. The

second part follows from the fact that a representation ρ is a P-Anosov representation if and only if
the restriction of ρ to any finite index subgroup is P-Anosov, and the fact that the centralizer of an
Anosov representation acts trivially on the Anosov boundary curve.

Using Proposition 7.12 and Theorem 7.6, we conclude that for q > p+1 the connected components
of R(Γ, SO(p, q)) from Theorem 4.1 contain PΘ-positive Anosov representations.

Proposition 7.13. Let PΘ ⊂ SO(p, q) be the stabilizer of the partial flag V1 ⊂ V2 ⊂ · · · ⊂ Vp−1, where
Vj ⊂ Rp+q is a j-plane which is isotropic with respect to a signature (p, q) inner product with p < q.
If q > p+ 1, then each connected component of Rex(SO(p, q)) from (7.2) contains PΘ-positive Anosov
representations.

Remark 7.14. When q = p + 1, this was shown in [12] for the analogous connected components
which contain minima of the form (6.2). The components which contain minima of the form (6.3) are
smooth, and one cannot use Proposition 7.12 to obtain positive representations in these components.
However, we note that if Conjecture 7.10 holds, then each of the these smooth connected components
of R(SO(p, p+ 1)) consists of positive representations since each component would be contained in a
component of positive representations into SO(p, p+ 2).

Proposition 7.13 gives further evidence for Conjecture 7.10, and it is thus natural to expect that all
representations in the connected components from Theorem 4.1 are positive Anosov representations.
Indeed, this would follow from Conjecture 7.10 and Proposition 7.13. Moreover, if Conjecture 7.10 is
true, then the connected components of Theorem 4.1 correspond exactly to those connected components
of R(Γ, SO(p, q)) which contain positive Anosov representations.

7.3. Positivity and a generalized Cayley correspondence. We conclude the paper by interpreting
the parameterization of the ‘exotic’ connected components of the SO(p, q)-Higgs bundle moduli space
from Theorem 4.1 as a generalized Cayley correspondence.

Let G be a simple adjoint Hermitian Lie group of tube type and let G/P be the Shilov boundary
of the symmetric space of G. In [5], it is proven that if L is the Levi factor of P, then the space of
Higgs bundles with maximal Toledo invariant is isomorphic to MK2(L). More generally, an analogous
statement holds when G′ → G is a finite cover such that a G-Higgs bundle with maximal Toledo
invariant lifts to a G′-Higgs bundle. This correspondence between maximal G-Higgs bundles and
K2-twisted L-Higgs bundles is called the Cayley correspondence.

Remark 7.15. In [5], the above statement is stated differently. We use the above interpretation because
it relates directly with the notions of positivity discussed in the previous section.

Note that the above parabolic and Levi factor are exactly the objects which appear in the notion
of positivity when G is Hermitian Lie group of tube type. When G is a split real form the Hitchin
components of M(G) admit an analogous interpretation. Namely, if G is such a split group, then
(G,P) admits a positive structure when P is a minimal parabolic subgroup. In this case, L ⊂ P is
(R∗)rk(G) and the identity component L0 is given by (R+)rk(G). Moreover, the moduli space of L-twisted
R+-Higgs bundles is isomorphic to H0(L) :

ML(R
+) ∼= H0(L).

Thus, when the Hitchin base is
rk(G)⊕
j=1

H0(Kmj+1), the Hitchin components are given by

MKm1+1(R+)× · · · ×M
K

mrk(G)+1(R+).

In particular, the Higgs bundles associated surface group to representations into split real groups which
are positive with respect the minimal parabolic subgroup also satisfy a ‘Cayley correspondence’.
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For the group SO(p, q), the Levi factor of the parabolic PΘ so that (SO(p, q),PΘ) has a positive
structure is LΘ = SO(1, q−p+1)× (R∗)p−1. Moreover, the subgroup LΘ

pos which preserves the positive
cones is

LΘ
pos

∼= R
+ × · · · × R

+

︸ ︷︷ ︸
(p−1)-times

×SO(1, q − p+ 1).

Recall that the ‘exotic’ connected components in the image of Ψ Theorem 4.1 are given by

MKp(SO(1, q − p+ 1))×

p−1∏

j=1

H0(K2j).

Using MK2j (R+) = H0(K2j), this is equivalent to

MKp(SO(1, q − p+ 1))×

p−1∏

j=1

MK2j (R+).

When 2 = p 6 q, we recover the Cayley correspondence for groups of Hermitian type [7, 5]. Hence,
for 2 < p 6 q we have established that the Higgs bundles associated to representations into SO(p, q)
which cannot be continuously deformed to compact representations satisfy a generalized Cayley cor-
respondence. Moreover, when p < q − 1 each such component of the representation variety contains
positive representations by Proposition 7.13. This suggests a general theorem for positive representa-
tions which relates the connected components of the subgroup of LΘ which preserves the cones with
the product of moduli spaces of appropriately twisted Lj-Higgs bundles.
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[12] Brian Collier. SO(n, n+ 1)-surface group representations and their Higgs bundles. ArXiv e-prints 1710.01287, Oc-
tober 2017.

[13] Kevin Corlette. Flat G-bundles with canonical metrics. J. Differential Geom., 28(3):361–382, 1988.
[14] Antun Domic and Domingo Toledo. The Gromov norm of the Kaehler class of symmetric domains. Math. Ann.,

276(3):425–432, 1987.
[15] Simon Donaldson. Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3), 55(1):127–

131, 1987.
[16] Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teichmüller theory. Publ. Math.

Inst. Hautes Études Sci., (103):1–211, 2006.



54 Aparicio-Arroyo, Bradlow, Collier, Garćıa-Prada, Gothen, Oliveira
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Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro, UTAD,
Quinta dos Prados, 5000-911 Vila Real, Portugal

E-mail address: andre.oliveira@fc.up.pt

agoliv@utad.pt


	1. Introduction
	2. Higgs bundle background
	2.1. General Definitions
	2.2. The Higgs bundle moduli space and deformation theory
	2.3. Stability and deformation complex for G=SO(p,q)
	2.4. The Hitchin fibration and Hitchin component
	2.5. Topological invariants

	3. The C*-action and its fixed points
	3.1. SO(p,q)-fixed points
	3.2. Fixed points on M(SO(2,2))
	3.3. SO(1,n)-fixed points and local structure of MKp(SO(1,n))

	4. Existence of exotic components of M(SO(p,q))
	4.1. Defining the map 
	4.2. Local structure of fixed points in the image of 
	4.3. Proof of Theorem 4.1

	5. Classification of local minima of the Hitchin function for M(SO(p,q))
	5.1. Stable minima with vanishing H2(C)
	5.2. Stable minima with non-vanishing H2(C)
	5.3. Strictly polystable minima
	5.4. Summary of classification of minima of Hitchin function on M(SO(p,q))

	6. The connected components of M(SO(p,q))
	6.1. Connected components of M(SO(p,q)) for 2< pq
	6.2. Connected components of M(SO(2,q))

	7. Positive surface group representations and Cayley partners
	7.1. Surface group representations
	7.2. Positive Anosov representations
	7.3. Positivity and a generalized Cayley correspondence

	References

