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RANK TWO QUADRATIC PAIRS AND SURFACE GROUP

REPRESENTATIONS

PETER B. GOTHEN AND ANDRÉ G. OLIVEIRA

Abstract. Let X be a compact Riemann surface. A quadratic pair on X

consists of a holomorphic vector bundle with a quadratic form which takes
values in fixed line bundle. We show that the moduli spaces of quadratic pairs
of rank 2 are connected under some constraints on their topological invariants.
As an application of our results we determine the connected components of
the SO0(2, 3)-character variety of X.

1. Introduction

Let X be a compact Riemann surface of genus g > 2. Many kinds of pairs (V, ϕ)
on X , consisting of a holomorphic vector bundle V → X and a holomorphic section
ϕ of an associated bundle, have been extensively studied. Important examples are
Bradlow pairs [3], where ϕ ∈ H0(X,E) lives in the fundamental representation and
Higgs bundles [20], where ϕ ∈ H0(X,End(E)⊗K) lives in the adjoint representation
(twisted by the canonical bundle K of X). Many more examples can be found in
the survey [4].

In this paper we focus on U -quadratic pairs (V, γ), where γ is a global section
of S2V ∗ ⊗ U for a fixed line bundle U → X . These are of interest for at least two
reasons. On the one hand they can be viewed as giving rise to bundles of quadrics
and hence form a very natural generalization of the linear objects of vector bundles.
On the other hand they arise naturally in the study of another kind of linear pairs,
namely G-Higgs bundles: these are the appropriate objects for studying character
varieties for the fundamental group of X in a real Lie group G through the non-
abelian Hodge theory correspondence (see for example [7] for a survey on this
topic).

Moduli spaces of quadratic pairs were constructed via GIT and studied by Gómez
and Sols in [16] and also by Schmitt in [26]. Moreover, Mundet in the appendix
to [16], showed that the stability condition used for constructing moduli is the
same one which allows to prove a Hitchin–Kobayashi correspondence for quadratic
pairs, relating stability of the quadratic pair to the existence of solutions to certain
gauge theoretic equations. This stability condition depends on a real parameter α
hence, for each value of this parameter, there is a moduli space which we denote
by Nα(n, d).

In the first part of this paper, we study the number of connected components
of the moduli spaces of U -quadratic pairs on X . Our strategy is the one pioneered
by Thaddeus [30] and subsequently used in many other cases, e.g. [6]. It consists
in studying the variation of the moduli space Nα(n, d) with the parameter α. As
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usually happens, when we run over α, the moduli spaces Nα(n, d) are isomorphic
for parameter values in intervals and only change at a discrete set of critical values.
In these cases, the difference between the moduli spaces are confined to subvarieties,
which are called the flip loci. For n = 2, we describe explicitly these subvarieties
and show that they have positive codimension in Nα(2, d). A necessary condition
for the non-emptiness of Nα(2, d) is α 6 d/2. Moreover, if d > dU = deg(U), then
Nα(2, d) is empty unless α = d/2 and Nd/2(2, d) is the moduli space of semistable
rank 2 and degree d vector bundles. So we consider only d < dU (the d = dU case
is special and not considered here). We show that there is an αm such that the
Nα(2, d)’s for α < αm are all isomorphic. Then, using the theory of the Hitchin
system, and in particular the results obtained in [18], we show that Nα−

m
(2, d) is

connected, where α−
m is any value less than αm. This, together with study of the

flip loci, provides a similar conclusion for the connectedness of the other spaces
Nα(2, d), whenever dU − d > g− 1 holds. Our result (Theorem 5.3) states then the
following:

Theorem. Let d and dU be such that dU − d > g − 1. Then, for every α 6 d/2,
the moduli space Nα(2, d) is connected.

In the last part of the paper we apply our results to counting the connected
components of the character variety

R(π1X, SO0(2, 3)) = Homred(π1X, SO0(2, 3))/SO0(2, 3),

i.e., the space of reductive representations ρ : π1X → SO0(2, 3) modulo the action
by simultaneous conjugation. Such a representation ρ has a topological invariant
c(ρ) = (τ(ρ), w2(ρ)) ∈ π1SO0(2, 3) ∼= Z × Z/2 given by the topological class of the
associated flat bundle. Now, for representations of π1X into any isometry group
of a hermitean symmetric space of non-compact type there is an integer invariant,
known as the Toledo invariant, and in the present case this invariant is just the first
coordinate τ(ρ) of the topological class. Moreover, the Toledo invariant is bounded
by the Milnor–Wood type inequality

|τ(ρ)| 6 2g − 2.

For (a, w) ∈ Z × Z/2, denote by Ra,w(π1X, SO0(2, 3)) ⊆ R(π1X, SO0(2, 3)) the
subspace of representations ρ such that c(ρ) = (a, w).

Our results on quadratic pairs then lead to the following (Theorem 6.26).

Theorem. For each (a, w) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space
Ra,w(π1X, SO0(2, 3)) is connected.

To put this result into perspective, recall that SO0(2, 3) is isomorphic to the
adjoint form PSp(4,R) of the real symplectic group Sp(4,R). It can be seen that
a representation ρ : π1X → SO0(2, 3) lifts to Sp(4,R) if and only if τ(ρ) = w2(ρ)
mod 2. Moreover, if this is the case, τ(ρ) coincides with the Toledo invariant of
the lifted representation and this in turn coincides with the topological invariant
in π1Sp(4,R) ∼= Z of the lifted representation. The connected components of the
character variety Ra(π1X, Sp(4,R)) of representations in Sp(4,R) with topological
invariant a ∈ Z have been determined in [17] for |a| = 0 and |a| = 2g − 2, and
for the remaining values of |a| by Garćıa–Prada and Mundet in [15]. In the case
of representations which lift to Sp(4,R) these results easily lead to the count of
connected components for representations in SO0(2, 3) (cf. [7]). Thus our Theorem
completes the count of the connected components for representations in SO0(2, 3)
and the novelty lies in the cases a 6= w mod 2.

This paper is organized as follows. In Section 2 we recall some basic facts about
quadratic pairs. In Section 3 we carry out the analysis of the variation of the moduli
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spaces Nα(2, d) with the parameter, leaving however the proof of connectedness of
Nα−

m
(2, d) for Section 4. Then, in Section 5, we put our results together to obtain the

main connectedness theorem for the moduli of quadratic pairs. Finally, in Section 6,
we give the application of our results to Higgs bundles and representations of surface
groups in the group SO0(2, 3).

2. Quadratic pairs

2.1. Quadratic pairs and their moduli spaces. Let X be smooth projective
curve over C of genus g > 2, and let U be a fixed holomorphic line bundle over X .
Write

dU = deg(U)

for the degree of U .

Definition 2.1. A U -quadratic pair on X is a pair (V, γ), where V is a holomorphic
vector bundle over X and γ is a global holomorphic non-zero section of S2V ∗ ⊗U ,
i.e., γ ∈ H0(X,S2V ∗ ⊗ U). The rank and degree of a quadratic pair are the rank
and degree of the underlying vector bundle V , respectively. We say that (V, γ) is
of type (n, d) if rk(V ) = n and deg(V ) = d.

We shall often refer to a U -quadratic pair simply as a quadratic pair. Quadratic
pairs are sometimes called conic bundles in the literature.

Definition 2.2. Two U -quadratic pairs (V, γ) and (V ′, γ′) are isomorphic if there
is an isomorphism f : V → V ′ such that γ′f = ((f t)−1 ⊗ 1U )γ, i.e., such that the
following diagram commutes:

V
f

//

γ

��

V ′

γ′

��

V ∗ ⊗ U
(ft)−1

⊗1U

// V ′∗ ⊗ U.

Quadratic pairs of rank n 6 3 were studied in [16] by Gómez and Sols. They
introduced an appropriate α-semistability condition, depending on a real param-
eter α1, and constructed moduli spaces of S-equivalence classes of α-semistable
quadratic pairs using GIT. The construction of the moduli spaces for general rank
is due to Schmitt [26, 28]. We denote the moduli space of S-equivalence classes of
α-semistable U -quadratic pairs on X of rank n and degree d by

NX,α(n, d) = Nα(n, d).

There is a Hitchin–Kobayashi correspondence for quadratic pairs. This follows
from the general results of [23], [8] and [12]; the Appendix to [16] treats the applica-
tion to the case of quadratic pairs. It says the a quadratic pair supports a solution
to a certain natural gauge theoretic equation if and only if it is α-polystable (see
below for the definition of this concept). Moreover, each S-equivalence class has
a unique α-polystable representative and thus S-equivalence of α-polystable pairs
reduces to isomorphism. We can therefore also consider Nα(n, d) as the moduli
space of isomorphism classes of α-polystable quadratic pairs.

1In fact a different parameter τ is used in [16]. In the cases of interest to us, the precise
definition of α-semistability is given below, as well as the relation between the parameters τ and
α.
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2.2. U-quadratic pairs of rank 1. Although we will be mainly interested in
quadratic pairs of type (2, d), we shall also need the description of the moduli
spaces of quadratic pairs on X of rank 1 and of their moduli spaces.

Definition 2.3. Fix a real parameter α. A U -quadratic pair (L, δ) of type (1, d)
is α-stable if α 6 d.

This definition is equivalent to the one used in [16] of τ -semistability for rank 1
pairs. The equivalence is obtained by taking τ = d− α.

Remark 2.4. There are no strictly α-semistable quadratic pairs of rank 1.

For quadratic pairs of type (1, d′), all the moduli spaces Nα(1, d
′) with α 6 d′

are isomorphic and there is only one so-called critical value of α, for which the
stability condition changes, namely α = d′.

Lemma 2.5. Let Nα(1, d
′) be the moduli space of α-stable quadratic pairs of type

(1, d′). Then,

(1) for all α > d′, Nα(1, d
′) = ∅;

(2) for all d′ > dU/2, Nα(1, d
′) = ∅.

Proof. The first item follows from the stability condition. For the second part, we
have that, if (M, δ) ∈ Nα(1, d

′), then δ :M →M−1U is non-zero and holomorphic,
so −2d′ + dU > 0. �

Proposition 2.6. Suppose that dU is even. If α 6 dU/2, then the moduli space
Nα(1, dU/2) is isomorphic to

S = {F ∈ PicdU/2(X) | F 2 ∼= U},
the set of the 22g square roots of U .

Proof. Let α 6 dU/2. If (M, δ) ∈ Nα(1, dU/2), then δ : M → M−1U must be
non-zero, hence an isomorphism. Moreover, it is defined up to a non-zero scalar so
the map Nα(1, dU/2) → S, (M, δ) 7→M is an isomorphism. �

It remains to describe Nα(1, d
′) for α 6 d′ and d′ < dU/2. Denote by Symn(X)

the nth symmetric product of X , the smooth variety which parametrizes the degree
n effective divisors on X .

Proposition 2.7. If d′ < dU/2 and α 6 d′, then Nα(1, d
′) is the 22g-fold cover of

the symmetric product SymdU−2d′

(X) obtained by pulling back, via the Abel-Jacobi
map, the cover Pic(X) → Pic(X) given by squaring of line bundles.

Proof. Consider the map π : Nα(1, d
′) → SymdU−2d′

(X), (M, δ) 7→ div(δ). Given

D ∈ SymdU−2d′

(X), π−1(D) is isomorphic to the set of square roots of U(−D).
The result follows. �

Corollary 2.8. Let d′ < dU/2 and α 6 d′. Then dimNα(1, d
′) = dU − 2d′.

2.3. Stability of quadratic pairs of rank 2. Our main objects of interest are
type (2, d) quadratic pairs (V, γ), where V is a holomorphic vector bundle of rank
2 and degree d, and γ ∈ H0(X,S2V ∗ ⊗ U). Most of the time we will think of γ as
a holomorphic map γ : V −→ V ∗ ⊗ U which is symmetric, i.e., γt ⊗ 1U = γ.

Given a rank 2 vector bundle V and a line subbundle L ⊂ V , we denote by L⊥

the kernel of the projection V ∗ → L−1. It is a line subbundle of V ∗ and V/L is
isomorphic to (L⊥)−1.

The general definition of stability from [23, 8, 12] specializes as follows in the
case of quadratic pairs. It is equivalent to the definition of τ -semistability of Gómez
and Sols [16] by taking τ = d/2− α.
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Definition 2.9. Fix α ∈ R. A U -quadratic pair (V, γ) of type (2, d) is:

• α-semistable if α 6 d/2 and, for every line subbundle L ⊂ V ,
(1) deg(L) 6 α if γ ∈ H0(X, (L⊥)2U);
(2) deg(L) 6 d/2 if γ ∈ H0(X,L⊥ ⊗S V

∗ ⊗ U);
(3) deg(L) 6 d− α if γ /∈ H0(X,L⊥ ⊗S V

∗ ⊗ U).
• α-stable if it is α-semistable and strict inequalities hold in (1), (2) and (3)
above.

• α-polystable if α 6 d/2 and, for every line subbundle L ⊂ V ,
(1) deg(L) 6 α if γ ∈ H0(X, (L⊥)2U). Moreover, if deg(L) = α, there is

L′ ⊂ V such that V = L⊕ L′;
(2) deg(L) 6 d/2 if γ ∈ H0(X,L⊥⊗S V

∗⊗U). Moreover, if deg(L) = d/2,
there is L′ ⊂ V such that V = L⊕L′ and γ′ ∈ H0(X,L−1L′−1U) such
that γ = γ′ ⊕ γ′;

(3) deg(L) 6 d−α if γ /∈ H0(X,L⊥⊗S V
∗⊗U). Moreover, if deg(L) = α,

there is L′ ⊂ V such that V = L⊕ L′.

Remark 2.10. The d/2-(semi)stability condition for (V, γ) is equivalent to the usual
(semi)stability condition for the vector bundle V .

An α-semistable quadratic pair (V, γ) is strictly α-semistable if it is not α-stable.
From the previous definition, we can separate strictly α-semistable quadratic pairs
into three types.

Definition 2.11. An α-semistable quadratic pair (V, γ) is strictly α-semistable of
type:

(A) if there is a holomorphic line bundle L ⊂ V such that γ ∈ H0(X, (L⊥)2U)
and deg(L) = α;

(B) if there is a holomorphic line bundle L ⊂ V such that γ ∈ H0(X,L⊥ ⊗S

V ∗ ⊗ U) and deg(L) = d/2;
(C) if there a holomorphic line bundle L ⊂ V such that deg(L) = d− α.

Definition 2.12. For a given type (2, d), the values of α for which strictly α-
semistable quadratic pairs of type (A) or (C) exist are called critical values, and
the other values of α are called generic values.

Remark 2.13. For generic α and for a pair (V, γ), if there is no L ⊂ V such that
γ(L) ⊂ L⊥U and deg(L) = d/2, then (V, γ) is α-semistable if and only if it is
α-stable. In particular, if d is odd there are no strictly α-semistable pairs of type
(B).

Lemma 2.14. Let (V, γ) be a U -quadratic pair of rank 2 and let L be a line sub-
bundle of V . Then,

(1) γ ∈ H0(X, (L⊥)2U) ⇐⇒ γ(L) = 0 ⇐⇒ γ(V ) ⊂ L⊥U ;
(2) γ ∈ H0(X,L⊥ ⊗S V

∗ ⊗ U) ⇐⇒ γ(L) ⊂ L⊥U .

Proof. This is an exercise in fibrewise linear algebra; see [24] for details. �

Using this lemma, we can rewrite the α-(poly,semi)stability condition in the
following way.

Proposition 2.15. Let (V, γ) be a quadratic pair.

• The pair (V, γ) is α-semistable if and only if α 6 d/2 and, for any line
bundle L ⊂ V , the following conditions hold:
(1) deg(L) 6 α, if γ(L) = 0;
(2) deg(L) 6 d/2, if γ(L) ⊂ L⊥U ;
(3) deg(L) 6 d− α, if γ(L) 6⊂ L⊥U .
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• The pair (V, γ) is α-stable if and only if it is α-semistable for any line bundle
L ⊂ V , the conditions (1), (2) and (3) above hold with strict inequalities.

• The pair (V, γ) is α-polystable if and only if α 6 d/2 and, for any line
bundle L ⊂ V , the following conditions hold:
(1) deg(L) 6 α, if γ(L) = 0. Moreover, if deg(L) = α, there is an L′ ⊂ V

such that V = L⊕ L′ and with respect to this decomposition,

γ =

(
0 0
0 γ′

)

with γ′ ∈ H0(X,L′−2U) non-zero;
(2) deg(L) 6 d/2, if γ(L) ⊂ L⊥U . Moreover, if deg(L) = d/2, there is

L′ ⊂ V such that V = L⊕ L′ and with respect to this decomposition,

γ =

(
0 γ′

γ′ 0

)

with γ′ ∈ H0(X,L−1L′−1U) non-zero;
(3) deg(L) 6 d−α, if γ(L) 6⊂ L⊥U . Moreover, if deg(L) = d−α, there is

L′ ⊂ V such that V = L⊕ L′ and with respect to this decomposition,

γ =

(
γ′ 0
0 0

)

with γ′ ∈ H0(X,L−2U) non-zero.

Definition 2.16. Let (V, γ) be a quadratic pair. A subbundle L ⊂ V is α-
destabilizing of type:

(A) if deg(L) > α and γ(L) = 0;
(B) if deg(L) > d/2 and γ(L) ⊂ L⊥U ;
(C) if deg(L) > d− α and γ(L) 6⊂ L⊥U .

Proposition 2.17. Let (V, γ) be a quadratic pair and let α < d/2.

(1) There is at most one α-destabilizing subbundle L ⊂ V of type (A) and at
most one α-destabilizing subbundle M ⊂ V of type (C). Moreover, if such
L and M both exist, then V ∼= L⊕M .

(2) There are at most two distinct α-destabilizing subbundles L1, L2 ⊂ V of type
(B). Moreover, if there exist such distinct L1 and L2, then V ∼= L1 ⊕ L2

and γ(L1) ⊂ L−1
2 U .

(3) There cannot exist simultaneously α-destabilizing subbundles of type (A)
and (B).

(4) There cannot exist simultaneously α-destabilizing subbundles of type (C)
and (B).

Proof. Since rk(V ) = 2 and γ is holomorphic and non-zero, there is at most one
subbundle L ⊂ V with γ(L) = 0. This proves the first statement in (1). For
the second statement in (1), note that deg(M) > d − α > d/2 = µ(V ). Thus the
claim about the destabilizing bundleM follows from the uniqueness of destabilizing
subbundles of ordinary rank 2 vector bundles (cf. Proposition 10.38 of [22]). If such
L and M both exist, then clearly L ≇ M so the composite M → V → Λ2V L−1 is
non-zero, and − deg(M) + d − deg(L) > 0. But deg(M) > d − α and deg(L) > α,
therefore Λ2V L−1 ∼=M and V ∼= L⊕M .

The proof of (2) is similar. Let L1, L2 ⊂ V be two different destabilizing sub-
bundles of (V, γ) of type (B). Then L2

∼= Λ2V L−1
1 as before, and V = L1 ⊕ L2. In

this case, L−1
2

∼= L⊥
1 and γ(L1) ⊂ L−1

2 U . It is clear that there cannot exist a third
subbundle satisfying the same conditions.

The proof of (3) is similar to the proof of the first statement of (1) because
γ(L) = 0 is equivalent to γ(V ) ⊂ L⊥U . The proof of (4) is analogous to the proof
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of the second statement in (1), observing that there cannot exist simultaneously a
destabilizing subbundle of V and another subbundle with degree d/2. Indeed, if
there is anM ⊂ V with deg(M) > d/2 and if F ⊂ V is different fromM then there
is a non-zero homomorphism F → Λ2VM−1, so deg(F ) 6 d− deg(M) < d/2. �

Recall that dU = deg(U) and that Nα(2, d) denotes the moduli space of α-
polystable U -quadratic pairs of rank 2 and degree d.

Proposition 2.18.

(1) If d > dU , then Nα(2, d) = ∅ for all α.
(2) If d 6 dU , then Nα(2, d) = ∅ for all α > d/2.

Proof. Let (V, γ) be a quadratic pair of rank 2 and degree d > dU . If rk(γ) = 2
(generically), then det(γ) is a non-zero section of Λ2V −2U2 so d 6 dU . Hence, since
γ 6= 0, we must have rk(γ) = 1. Take any α and suppose moreover that the pair
(V, γ) is α-semistable. Since V is locally free, the sheaf N = ker(γ) ⊂ V is torsion
free. For the same reason, the quotient V/N ∼= im(γ) ⊂ V ∗ ⊗ U is torsion free.
Thus N is a line subbundle of V . Let I ⊂ V ∗ be such that IU is the saturation of
the image sheaf im(γ). From the α-semistability condition,

(2.1) deg(N) 6 α

and, since γ(I⊥) = 0,

(2.2) deg(I) 6 α− d.

On the other hand, γ induces a non-zero map of line bundles V/N → IU , so

(2.3) − d+ deg(N) + deg(I) + dU > 0.

But, from (2.1) and (2.2), we have

(2.4) − d+ deg(N) + deg(I) + dU < 0

because d > dU and α 6 d/2. From (2.3) and (2.4) we conclude that there is no
such (V, γ) and this finishes the proof of the first part.

The second part is immediate, since α 6 d/2 is part of the definition of α-
semistability. �

This result deals with the cases d > dU and any α, and d 6 dU and α > d/2.
From now on we will restrict ourselves to the study of U -quadratic pairs of type
(2, d) with d < dU . When d = dU , the map γ becomes an isomorphism, making this
a special case in what concerns the connected components of the moduli space. In
the next remark we give a very brief explanation of this phenomenon, which can be
seen as somewhat similar to the difference between the situations in Propositions
2.6 and 2.7.

Remark 2.19. If dU is odd and d = dU , then it will follow from Proposition 3.3
below (see also Figure 1 in section 3.1) that Nα(2, dU ) = ∅. Assume hence, that
dU is even and that d = dU . In this case γ : V → V ∗ ⊗ U is an isomorphism. If
we choose a square root U ′ of U , then γ gives rise to a symmetric isomorphism
q : V ⊗U ′∗ ∼= V ∗⊗U ′ i.e. to a non-degenerate quadratic form on the vector bundle
V ⊗U ′∗. Moreover, it can be seen that the O(2,C)-bundle (V ⊗U ′∗, q) is semistable
(i.e. the degree of any isotropic subbundle of V ⊗U ′∗ is less or equal than 0) if and
only if (V, γ) is α-semistable for any α 6 d/2. Hence Nα(2, dU ) is isomorphic to the
moduli space MO(2,C) of orthogonal bundles and this gives rise to the existence of
extra connected components (cf. [7, 13, 17]).
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2.4. Deformation theory of quadratic pairs. The deformation theory of a qua-
dratic pair (V, γ) is governed by the following complex of sheaves on X (see, e.g.,
Biswas–Ramanan [2]):

C•(V, γ) : End(V )
ρ(γ)−−−→ S2V ∗ ⊗ U,

where

ρ(γ)(ψ) = −(ψt ⊗ 1U )γ − γψ.

In particular, the infinitesimal deformation space of a quadratic pair (V, γ) is iso-
morphic to H1(X,C•(V, γ)). Moreover, one has a long exact sequence

0 −→ H0(X,C•(V, γ)) −→ H0(X,End(V )) −→ H0(X,S2V ∗ ⊗ U) −→
−→ H1(X,C•(V, γ)) −→ H1(X,End(V )) −→ H1(X,S2V ∗ ⊗ U) −→
−→ H2(X,C•(V, γ)) −→ 0

(2.5)

where the maps Hi(X,End(V )) → Hi(X,S2V ∗ ⊗ U) are induced by ρ(γ). It
is immediate from this long exact sequence that the infinitesimal automorphism
space (defined for general pairs in [12]) of a quadratic pair (V, γ) can be canonically
identified with H0(X,C•(V, γ)).

Definition 2.20. A quadratic pair (V, γ) is infinitesimally simple if the vanishing
H0(X,C•(V, γ)) = 0 holds. A quadratic pair (V, γ) is simple if the group Aut(V, γ)
of automorphisms of (V, γ) is equal to {±1V }.

The following is a standard fact.

Proposition 2.21.

(1) An α-stable quadratic pair is infinitesimally simple.
(2) An α-stable quadratic pair (V, γ) represents a smooth point in the moduli

space if it is simple and H2(X,C•(V, γ)) = 0.

This motivates the following definition.

Definition 2.22. The expected dimension of Nα(2, d) is dimH1(X,C•(V, γ)).

Using (2.5), the expected dimension can be calculated as follows:

(2.6) dimH1(X,C•(V, γ)) = χ(S2V ∗ ⊗ U)− χ(End(V )) = 3(dU − d) + g − 1.

Remark 2.23. If a (local) universal family exists over a component of the moduli
space, then this component has the expected dimension. Notice, however, that
the actual dimension of the moduli space can be strictly smaller than the expected
dimension (see [5] for an example of this phenomenon, in the Higgs bundle context).

3. Variation of the moduli with the parameter

The purpose of this section is to study the variation of the moduli spacesNα(2, d)
with the stability parameter α. As in the case of holomorphic triples [6, 30] we
have critical values αk — for which the moduli spaces Nα(2, d) change — and
corresponding flip loci Sα±

k

(2, d) ⊂ Nα±(2, d), where the change takes place. We

shall see that, in contrast with the case of holomorphic triples, there is no symmetry
between Sα+

k

(2, d) and Sα−

k

(2, d). This is due to the non-linear nature of quadratic

pairs.



QUADRATIC PAIRS AND SURFACE GROUP REPRESENTATIONS 9

3.1. Critical values. We begin by determining precisely the critical values of the
parameter α.

Proposition 3.1. If (V, γ) is an α-semistable pair with α < d− dU/2, then gener-
ically rk(γ) = 2.

Proof. Recall that we always have γ 6= 0. If rk(γ) = 1, considering again the line
bundles N = ker(γ) ⊂ V and I ⊂ V ∗ such that IU is the saturation of the image
sheaf im(γ), we have, as in the proof of Proposition 2.18, that

0 6 −d+ deg(N) + deg(I) + dU 6 2α− 2d+ dU ,

i.e., α > d− dU/2. �

The next result shows that the injectivity parameter d − dU/2 of Proposition
3.1 is also a stabilization parameter, in the sense that after it the moduli spaces
Nα(2, d), for different values of α, are all isomorphic.

Proposition 3.2. If α2 6 α1 < d − dU/2, then a quadratic pair (V, α) is α1-
semistable if and only if it is α2-semistable, and hence Nα1

(2, d) ≃ Nα2
(2, d).

Proof. Let (V, γ) ∈ Nα1
(2, d). Since α2 6 α1, the existence of an α2-destabilizing

subbundle implies that it must be of type (A), which in turn implies that rk(γ) = 1
generically. But this is impossible due to Proposition 3.1, since α1 < d − dU/2.
Hence Nα1

(2, d) ⊆ Nα2
(2, d).

Conversely, if (V, γ) ∈ Nα2
(2, d), then (V, γ) ∈ Nα1

(2, d) unless there is an α1-
destabilizing subbundle of (V, γ). Hence L is such that d− α1 < deg(L) 6 d− α2,

and γ(L) 6⊂ L⊥U , therefore the composite L→ V
γ−→ V ∗ ⊗ U → L−1U is non-zero.

Thus

−2 deg(L) + dU > 0.

On the other hand, d− α1 < deg(L) together with α1 < d− dU/2, gives

−2 deg(L) + dU < 0.

It follows that no such line subbundle L can exist. �

From the definition of α-semistability and from the previous proposition, the
following is immediate.

Proposition 3.3. The critical values of U -quadratic pairs of type (2, d) are the
elements of the following set:

{d/2} ∪ {[d/2] + k | k ∈ {d− [d/2]− [dU/2], . . . , 0}} .
Moreover, on each open interval between consecutive critical values,

( [d/2] + k,min {d/2, [d/2] + k + 1} )
the α-semistability condition is the same; hence the corresponding moduli spaces
are isomorphic.

Notation 3.4. For each integer d− [d/2]− [dU/2] 6 k 6 0, we define

αk = [d/2] + k.

Also, let

αM = d/2 and αm = αd−[d/2]−[dU/2] = d− [dU/2],

and let α+
k denote the value of any parameter between the critical values αk and

αk+1, and let α−
k denote the value of any parameter between the critical values

αk−1 and αk.
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Proposition 3.2 means that we can write without ambiguity

Nα+

k

(2, d)

for the moduli space of α+
k -semistable U -quadratic pairs of rank 2 and degree d,

for any α between the critical values [d/2] + k and min {d/2, [d/2] + k + 1}. Note
that, with this notation, we always have Nα+

k

(2, d) = Nα−

k+1

(2, d).

The information obtained so far on the variation of Nα(2, d) with α and d is
summarized in Figure 1.

[dU/2]

α = d/2

α = d− [dU/2]

d = dU

α

d

Figure 1. Variation regions of Nα(2, d). Above the line d = dU ,
Nα(2, d) = ∅ as well as on the right of the line α = d/2. Also,
Nα(2, dU ) = ∅ whenever dU is odd. The dotted region, on the left
of the line α = d− [dU/2], is the region where there are no critical
values, hence there is no change of the moduli spaces and, also, γ
is non-degenerate. The critical values lie in the region between the
lines α = d− [dU/2] and α = d/2.

3.2. Flip loci. We shall now study what are the differences between moduli spaces
of U -quadratic pairs of type (2, d), which are separated by a critical value of the
parameter α.

Definition 3.5. For each k ∈ {d− [d/2]− [dU/2], . . . , 0}, let Sα+

k

(2, d) be the set

of pairs of degree d which are α+
k -semistable but α−

k -unstable, i.e.,

Sα+

k

(2, d) =
{
(V, γ) ∈ Nα+

k

(2, d) | (V, γ) /∈ Nα−

k

(2, d)
}
.
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Similarly, define Sα−

k

(2, d) to be the set of pairs of degree d which are α−

k -semistable

but α+
k -unstable,

Sα−

k

(2, d) =
{
(V, γ) ∈ Nα−

k

(2, d) | (V, γ) /∈ Nα+

k

(2, d)
}
.

The spaces Sα±

k

(2, d) are called the flip loci for the critical value αk.

As a direct consequence of this definition, we have

(3.1) Nα+

k

(2, d)r Sα+

k

(2, d) = Nα−

k

(2, d)r Sα−

k

(2, d).

Proposition 3.6. Any quadratic pair (V, γ) in Sα±

k

(2, d) is α±

k -stable. Hence, for

αk 6= αM ,

(3.2) Sα+

k

(2, d) =
{
(V, γ) ∈ N s

α+

k

(2, d) | (V, γ) /∈ Nα−

k

(2, d)
}

and

(3.3) Sα−

k

(2, d) =
{
(V, γ) ∈ N s

α−

k

(2, d) | (V, γ) /∈ Nα+

k

(2, d)
}

where N s
α±

k

(2, d) stands for the stable locus of Nα±

k

(2, d).

Proof. If (V, γ) is strictly α±

k -semistable then, since α±

k is a generic value, the desta-
bilizing subbundle must be of type (B). Since such a subbundle is destabilizing for
all values of α, (3) and (4) of Proposition 2.17 imply that there are no destabi-
lizing subbundles of type (A) or (C). The conclusion is now immediate from the
definition of Sα±

k

(2, d). �

Proposition 3.7. Let αk 6= αM . Then:

(1) Sα+

k

(2, d) is a subvariety of N s
α+

k

(2, d).

(2) Sα−

k

(2, d) is a subvariety of N s
α−

k

(2, d).

Proof. From (3.2), Sα+

k

(2, d) ⊂ N s
α+

k

(2, d). From [16] we know that there is a

(universal) family of quadratic pairs parametrized by N s
α+

k

(2, d). By definition,

the restriction of this family to Sα+

k

(2, d) parametrizes the pairs which are not α−
k -

semistable. Since α−
k -semistability is an open condition (cf. Proposition 3.1 of [16]),

it follows that Sα+

k

(2, d) is Zariski closed in N s
α+

k

(2, d). This proves (1). The proof

of (2) is the same, but now using (3.3). �

Remark 3.8. In the next two sections we shall see that the flip loci Sα±

k

(2, d) are

compact and therefore also closed in Nα±

k

(2, d). Hence the Sα±

k

(2, d) are in fact

subvarieties of Nα±

k

(2, d).

3.3. The flip locus Sα+

k

(2, d). From (2) of Proposition 2.18, Sα+

M

(2, d) = ∅, so we

shall study the flip loci Sα+

k

(2, d) for the other critical values.

Proposition 3.9. Let (V, γ) ∈ Nα+

k

(2, d) with αk < d/2. If (V, γ) ∈ Sα+

k

(2, d),

then V is a non-trivial extension

0 −→ L −→ V −→M −→ 0

where L ⊂ V is a line bundle such that deg(L) = αk and γ(L) = 0. Moreover, γ
induces γ′ ∈ H0(X,M−2U) such that the quadratic pair (M,γ′) of type (1, d− αk)
is (d− α+

k )-stable.
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Proof. Let (V, γ) ∈ Sα+

k

(2, d). Then it must be strictly αk-semistable and, from the

definition of Sα+

k

(2, d) and Proposition 2.15, the destabilizing subbundle must be

an L ⊂ V such that γ(L) = 0 and deg(L) = αk.
Write

(3.4) 0 −→ L −→ V −→ Λ2V L−1 −→ 0

and define M = Λ2V L−1. If we had V = L ⊕ M , then M would be an α+
k -

destabilizing subbundle of (V, γ) (of type (C)), which is not possible. The extension
(3.4) is thus non-trivial.

Using the symmetry of γ and the fact that γ(L) = 0, we see that γ induces a
map γ′ : M → M−1U and hence we obtain the pair (M,γ′) of type (1, d − αk).
From Definition 2.3, it is clearly (d− α+

k )-stable. �

Proposition 3.10. Let αk < d/2. There is a morphism

Sα+

k

(2, d) −→ Nd−α+

k

(1, d− αk)× Jacαk(X)

with fibre isomorphic to Pd−2αk+g−2.

Proof. From Proposition 3.9, we see that there is a map

p : Sα+

k

(2, d) −→ Nd−α+

k

(1, d− αk)× Jacαk(X)

defined by
p(V, γ) = ((M,γ′), L).

where L is the destabilizing subbundle andM is the quotient bundle,M ∼= Λ2V L−1.
Let

((M,γ′), L) ∈ Nd−α+

k

(1, d− αk)× Jacαk(X).

The fibre of p over ((M,γ′), L) is given by the isomorphism classes of non-trivial
extensions of M by L. Indeed, if V is such an extension then, defining

γ = (πt ⊗ 1U )γ
′π

where π : V →M is the projection, we obtain a quadratic pair (V, γ). This pair is
strictly αk-semistable and α−

k -unstable (with L being the destabilizing subbundle)

and as we go from Nα−

k

(2, d) to Nα+

k

(2, d), then (V, γ) gets α+
k -stable unless V has

also a destabilizing subbundle M ′ such that deg(M ′) = d− αk. But then M
′ ∼=M

and V = L⊕M , which contradicts the non-triviality of the extension V .
The fibre of p over ((M,γ′), L) is then the space PExt1(M,L) ∼= PH1(X,M−1L).

Since αk < d/2, deg(M−1L) = 2αk − d < 0, so H0(X,M−1L) = 0 and

dimH1(X,M−1L) = d− 2αk + g − 1 > 0.

Hence p is surjective, with fibre isomorphic to Pd−2αk+g−2.
It remains to check that p is a morphism. For that we proceed as follows.
Let pX : Nd−α+

k

(1, d − αk) ×X → X be the projection. From Remark 2.4 and

Theorem I of [16], there is a universal p∗XU -quadratic pair (L1, γγγ
′) overNd−α+

k

(1, d−
αk)×X . On the other hand, we have the Poincaré line bundle L2 over Jac

αk(X)×X .
Let

pr13 : Nd−α+

k

(1, d− αk)× Jacαk(X)×X −→ Nd−α+

k

(1, d− αk)×X

pr23 : Nd−α+

k

(1, d− αk)× Jacαk(X)×X −→ Jacαk(X)×X

and

pr12 : Nd−α+

k

(1, d− αk)× Jacαk(X)×X −→ Nd−α+

k

(1, d− αk)× Jacαk(X)

be the projections. Consider the first direct image sheaf R1pr12∗(pr
∗
13L−1

1 ⊗pr∗23L2).
This sheaf is locally free since its fibres have constant dimension (because αk < d/2).
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If

S̃((L1, γγγ
′),L2) = PR1pr12∗(pr

∗
13L−1

1 ⊗ pr∗23L2)

there is then a morphism S̃((L1, γγγ
′),L2) → Nd−α+

k

(1, d − αk) × Jacαk(X). More-

over, in a similar manner to [21] (see also Proposition 3.2 of [30] and Proposition

5.10 of [14]), one sees that S̃((L1, γγγ
′),L2) is base of a family parametrizing all α+

k -

semistable U -quadratic pairs over X which are α+
k -stable but α−

k -unstable. Hence,
from the universal property of the coarse moduli space Nα+

k

(2, d), there is a mor-

phism S̃((L1, γγγ
′),L2) → Nα+

k

(2, d) which factors through Sα+

k

(2, d) and yields an

isomorphism S̃((L1, γγγ
′),L2) ∼= Sα+

k

(2, d) such that the following diagram commutes:

S̃((L1, γγγ
′),L2)

∼=
//

**T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Sα+

k

(2, d)

p

��

Nd−α+

k

(1, d− αk)× Jacαk(X).

So p is a morphism and the result follows. �

Since Nd−α+

k

(1, d − αk) is compact, one concludes from this proposition that

Sα+

k

(2, d) is compact as well. It follows from Proposition 3.7 (see also Remark 3.8)

that it is a subvariety of Nα+

k

(2, d).

From the previous proposition and from Proposition 2.7 (in the case of Sα+
m
(2, d)

use instead Proposition 2.6), we have:

Corollary 3.11. For every αk < d/2, dimSα+

k

(2, d) = dU − d+ 2g − 2.

3.4. The flip locus Sα−

k

(2, d). Now we turn our attention to the other flip loci,

Sα−

k

(2, d). As in the case of Sα+

k

(2, d), the behaviour of Sα−

k

(2, d) depends on

whether αk = αM = d/2 or not. On the other hand, for αk < d/2, the description of
Sα−

k

(2, d) is more involved than that of Sα+

k

(2, d), with several difficulties appearing

due to the fact that the αk-destabilizing subbundle is of type (C).
Let us begin by studying Sα−

M

(2, d) and see why it is a separate case. Indeed,

Sα−

M

(2, d) = Nα−

M

(2, d)

and one cannot compare this flip locus with the others because in this extreme case
the cause of the destabilization after d/2 is not related with subbundles of V .

We have that α−
M is any value in the open interval ([d/2], d/2) if d is odd, or

(d/2−1, d/2) if d is even. So we can write α−
M = d/2− ǫ for sufficiently small ǫ > 0.

Lemma 3.12. If a U -quadratic pair (V, γ) of type (2, d) is α−
M -semistable then V

is semistable.

Proof. Suppose (V, γ) is α−
M -semistable and let L ⊂ V be a line subbundle. Then:

• deg(L) < α−
M 6 d/2 if γ(L) = 0 (note that α−

M is not a critical value, so we

could not have deg(L) = α−
M );

• deg(L) 6 d/2 if γ(L) ⊂ L⊥U ;
• deg(L) < d − α−

M = d/2 + ǫ if γ(L) 6⊂ L⊥U (again we could not have

deg(L) = d − α−
M ). Since we can take ǫ > 0 as small as wanted, it follows

that deg(L) 6 d/2.

In any case, deg(L) 6 d/2, and thus V is semistable. �
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Proposition 3.13. Let M(2, d) be the moduli space of rank 2 semistable vector
bundles over X. There is a map π : Nα−

M

(2, d) → M(2, d) which, if dU − d > g− 1,

is surjective and the fibre over a stable vector bundle V is PH0(X,S2V ∗ ⊗ U).

Proof. Using the previous lemma, define π : Nα−

M

(2, d) → M(2, d) as π(V, γ) = V .

For the map to be surjective, given any semistable vector bundle V in M(2, d),
there must exist a non-zero holomorphic section γ of S2V ∗ ⊗ U such that (V, γ)
is α−

M -semistable. Suppose that V is stable. Since dU − d > g − 1, we have
χ(S2V ∗ ⊗U) > 0, where χ is the Euler characteristic, hence H0(X,S2V ∗ ⊗U) 6= 0
and this yields a pair (V, γ). For any L ⊂ V , deg(L) < d/2. Hence deg(L) 6 d/2−1
if d is even or deg(L) 6 [d/2]. In any case, deg(L) 6 α−

M , hence (V, γ) is α−
M -stable.

The image of π contains therefore the open dense subspace of stable vector bundles.
Since Nα−

M

(2, d) is compact (cf. Theorem I of [16]) it follows that π is surjective.

To compute the fibre over a stable vector bundle, we only have to note that
(V, γ) ∼= (V, γ′) if and only if γ = θγ′ for some θ ∈ C∗. If (V, γ) ∼= (V, γ′), then
there is an automorphism λ : V → V such that γ′λ = ((λt)−1 ⊗ 1U )γ. But, as V is
stable, λ is a non-zero scalar so γ = λ2γ′. On the other hand, if γ = θγ′ for some
θ ∈ C∗ then the scalar automorphism of V given by

√
θ ∈ C∗ is an isomorphism

between (V, γ) and (V, γ′). �

We now move on to the description of the flip loci Sα−

k

(2, d) with αk < d/2.

If (V, γ) ∈ Sα−

k

(2, d), then it is α−

k -stable and α+
k -unstable hence strictly αk-

semistable. The destabilizing subbundle must be a line subbundle M ⊂ V such
that

deg(M) = d− αk

and

γ(M) 6⊂M⊥U.

Therefore γ induces a non-zero holomorphic map

(3.5) γ′ :M −→ V
γ−→ V ∗ ⊗ U −→M−1U

i.e.

γ′ ∈ H0(X,M−2U).

The description of the flip loci Sα−

k

(2, d), with αk < d/2, will be done by carrying

out a detailed analysis of this information.
Write V as an extension

(3.6) 0 −→M −→ V −→ L −→ 0

where L = Λ2VM−1.
What we have is already enough to describe Sα−

m
(2, d) for U -quadratic pairs such

that dU is even.

Proposition 3.14. Suppose that dU is even. If (V, γ) ∈ Sα−
m
(2, d) then the exten-

sion (3.6) is trivial,

V =M ⊕ L,

and with respect to this decomposition,

γ =

(
γ′ 0
0 γ′′

)

where γ′ is defined in (3.5) and γ′′ ∈ H0(X,L−2U)r {0}.
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Proof. If (V, γ) ∈ Sα−
m
(2, d), then deg(M) = d − αm = dU/2, thus deg(M−1U) =

dU/2.
Consider the map

ϕ : V −→M−1U

defined by

ϕ = (it ⊗ 1U )γ,

where i :M →֒ V is the inclusion. Since γ(V ) 6⊂M⊥U , then rk(ϕ) = 1 generically.
Consider the line subbundle N = ker(ϕ) of V . We have the induced non-zero

map

ϕ̃ : V/N −→M−1U

i.e., ϕ̃ ∈ H0(X, (V/N)−1M−1U), hence

deg(N) > d− deg(M−1U) = d− dU/2 = deg(L).

On the other hand, since N ≇M , we have a non-zero map N → L, so

deg(N) 6 deg(L).

We conclude that deg(N) = deg(L) and that the map N → L is an isomorphism,
L ∼= N , from which follows that extension (3.6) is trivial:

V =M ⊕ L.

Since L ∼= N = ker(ϕ), we have that γ(L) ⊂ M⊥U ∼= L−1U , thus the form of γ
with respect to the decomposition V =M ⊕ L is

γ =

(
γ′ 0
0 γ′′

)
.

γ′′ 6= 0 otherwise L would be an α−
m-destabilizing subbundle of (V, γ) of type

(A), contradicting the assumption (V, γ) ∈ Sα−
m
(2, d) (or, alternatively, because of

Proposition 3.1). �

Corollary 3.15. If U has even degree dU , Sα−
m
(2, d) is isomorphic to

NdU/2−(1, dU/2)×N(d−dU/2)−(1, d− dU/2).

Proof. Given (V, γ) ∈ Sα−
m
(2, d), the pair (V, γ) determines and is determined by the

pairs (M,γ′) and (L, γ′′) obtained in the previous proposition. These are (d−α+
m)-

stable and α−
m-stable, respectively, therefore the map (V, γ) 7→ ((M,γ′), (L, γ′′)) is

an isomorphism between Sα−
m
(2, d) and Nd−α+

m
(1, d− αm)×Nα−

m
(1, αm). �

So, from Proposition 2.6, in this case Sα−
m
(2, d) is isomorphic to

S ×N(d−dU/2)−(1, d− dU/2)

where S is the set of square roots of U .

Now we pass to the analysis of Sα−

k

(2, d), with αk 6= αm, αM if dU is even or just

αk 6= αM if dU is odd. We start by noticing some constrains of its elements.
In the cases we are now considering, the map γ′ : M → M−1U as defined in

(3.5) is not an isomorphism. Let D be its divisor

(3.7) D = div(γ′)

and consider the structure sheaf OD of X restricted to D (or structure sheaf of the
scheme D).
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Remark 3.16. If D =
∑m

i=1 nipi, then, choosing a local coordinate zi centred at

pi, a global section of OD can be written as
∑m

i=1 fi(z) where fi(z) =
∑ni−1

k=0 akz
k
i .

One has then a short exact sequence of sheaves

(3.8) 0 −→ O(−D) −→ O r(D)−→ OD −→ 0

where, for each open U such that there is only one point p ∈ Supp(D) in U ,

(3.9) r(D)(U)(s) = r(D)(U)

(
∞∑

k=0

akz
k

)
=

D(p)−1∑

k=0

akz
k,

for s ∈ O(U) such that, in a local coordinate z centred at p, s(z) =
∑∞

k=0 akz
k.

Proposition 3.17. There is a well defined section

(3.10) θγ ∈ H0(D,M−1L−1U).

given by restriction of γ|M to D.

Proof. For any sheaf F , write F|D for F ⊗ OD. From (3.8), we obtain the short
exact sequence of sheaves

(3.11) 0 −→ V ∗ ⊗M−1U(−D) −→ V ∗ ⊗M−1U
r(D)−→ V ∗ ⊗M−1U |D −→ 0

and we have a map, which we still denote by r(D),

r(D) : H0(X,V ∗ ⊗M−1U) −→ H0(D,V ∗ ⊗M−1U).

Now, γ|M ∈ H0(X,V ∗ ⊗M−1U) so consider r(D)(γ|M ) ∈ H0(D,V ∗ ⊗M−1U).
But, since D = div(γ′), we have in fact that r(D)(γ|M ) ∈ H0(D,M−1L−1U), so
we define

θγ = r(D)(γ|M ) ∈ H0(D,M−1L−1U),

as claimed. �

If we also denote by r(D) the map inH0 of the restriction Λ2V −2U2 → Λ2V −2U2|D,
we see that

(3.12) r(D)(det(γ)) = −θ2γ ∈ H0(D,M−2L−2U2).

This section θγ ∈ H0(D,M−1L−1U), obtained in the previous proposition, will be
very important in the description of Sα−

k

(2, d) and the next result is a first instance

of this.

Proposition 3.18. Let (V, γ) ∈ Sα−

k

(2, d). Then θγ = 0 if and only if extension

(3.6) is trivial,

V =M ⊕ L,

and with respect to this decomposition,

γ =

(
γ′ 0
0 γ′′

)
,

where γ′ is defined in (3.5) and γ′′ ∈ H0(X,L−2U)r {0}.
Proof. As in the proof of Proposition 3.14, consider the map ϕ : V → M−1U given
by ϕ = (it ⊗ 1U )γ, and its kernel N .

We have the induced non-zero map

ϕ̃ : V/N −→M−1U

i.e., ϕ̃ ∈ H0(X, (V/N)−1M−1U) and let

D̃ = div(ϕ̃)
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so that

(3.13) deg(D̃) = deg(N)− 2d+ αk + dU .

Let p be any point in Supp(D) and choose a local coordinate z of X centred at
p. Locally, we can write V =M ⊕ L and, with respect to this decomposition,

γ(z) =

(
f1(z) f2(z)
f2(z) f3(z)

)

hence

ϕ(z) =
(
f1(z) f2(z)

)

so

(3.14) D̃(p) > min{ord0 f1(z), ord0 f2(z)} = min{D(p), ord0f2(z)}.

Since θγ = 0, then

(3.15) θγ(p) = 0

but, by the definition of θγ in (3.10),

θγ(p) = r(D)(U)(f2(z))

and from this, (3.9) and (3.15), we see that ord0f2(z) > D(p). It follows from (3.14)
that

(3.16) D̃ > D

so

deg(D̃) > deg(D) = −2 deg(M) + dU = −2d+ 2αk + dU .

From this and (3.13), we see that

(3.17) deg(N) > αk = deg(L).

On the other hand, since N ≇M , we have a non-zero map N → L so (3.17) implies
L ∼= N . Extension (3.6) is hence trivial:

V =M ⊕ L.

From L ∼= N = ker(ϕ), it follows that γ(L) ⊂ M⊥U ∼= L−1U , thus the form of γ
with respect to the decomposition V =M ⊕ L is

γ =

(
γ′ 0
0 γ′′

)
.

γ′′ 6= 0 otherwise L would be an α−
k -destabilizing subbundle of (V, γ) of type (A),

contradicting the assumption (V, γ) ∈ Sα−

k

(2, d). �

We shall write Sα−

k

(2, d) as a disjoint union

(3.18) Sα−

k

(2, d) = S0
α−

k

(2, d) ⊔ S1
α−

k

(2, d)

where

• S0
α−

k

(2, d) is the space of pairs in Sα−

k

(2, d) with θγ = 0;

• S1
α−

k

(2, d) is the space of pairs in Sα−

k

(2, d) with θγ 6= 0.

Let us now study each of the spaces S0
α−

k

(2, d) and S1
α−

k

(2, d).
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3.4.1. From Proposition 3.18, S0
α−

k

(2, d) is precisely the space of pairs in Sα−

k

(2, d)

such that extension (3.6) is trivial and γ has the given form. So we have the
following corollary.

Corollary 3.19. Let αk 6= αM . Then S0
α−

k

(2, d) is isomorphic to

Nd−α+

k

(1, d− αk)×Nα−

k

(1, αk).

Proof. Given (V, γ) ∈ S0
α−

k

(2, d), the pair (V, γ) determines and is determined by the

pairs (M,γ′) and (L, γ′′) obtained in the previous proposition. These are (d−α+
k )-

stable and α−

k -stable, respectively, therefore the map (V, γ) 7→ ((M,γ′), (L, γ′′)) is
an isomorphism between S0

α−

k

(2, d) and Nd−α+

k

(1, d− αk)×Nα−

k

(1, αk). �

Remark 3.20. We have seen that in the case of Sα−
m
(2, d), the section θγ is always

zero. Hence Sα−
m
(2, d) = S0

α−
m

(2, d) and therefore the similarity of Corollaries 3.15

and 3.19.

3.4.2. S1
α−

k

(2, d). We move on to the description of S1
α−

k

(2, d). From Proposition

3.18, S1
α−

k

(2, d) is the space of pairs in Sα−

k

(2, d) such that extension (3.6) is non-

trivial.
Before going to the analysis of S1

α−

k

(2, d) we first need the following proposition.

Proposition 3.21. Let αk < d/2. If (V, γ) ∈ Sα−

k

(2, d), then generically rk(γ) = 2.

Proof. As always, γ 6= 0. Suppose that rk(γ) = 1. Then, det(γ) = 0, hence, from
(3.12), θγ = 0. From Proposition 3.18, V =M ⊕ L and

γ =

(
γ′ 0
0 γ′′

)

with γ′′ 6= 0. Since also γ′ 6= 0, it follows that det(γ) 6= 0 and this is a contradiction
with rk(γ) = 1. �

Given ((M,γ′), L) ∈ Nd−α+

k

(1, d−αk)×Jacαk(X) and recalling thatD = div(γ′),

consider the subvariety

C((M,γ′), L)

of

H0(D,M−1L−1U)r {0} ×H0(X,M−2L−2U2)r {0}
whose elements (q, η) satisfy the equation

q2 + η|D = 0.

C∗ acts freely on C((M,γ′), L) as

λ · (q, η) = (λq, λ2η)

and we denote the quotient by

(3.19) Q((M,γ′), L) = C((M,γ′), L)/C∗.

Proposition 3.22. Let dU even and αk 6= αm, αM or dU odd and αk 6= αM .
Suppose that dU − d > g − 1. Then there is a morphism

S1
α−

k

(2, d) −→ Nd−α+

k

(1, d− αk)× Jacαk(X)

whose fibre over ((M,γ′), L) is isomorphic to Q((M,γ′), L) as defined in (3.19).
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Proof. If (V, γ) ∈ S1
α−

k

(2, d), we already know that we can write V as the extension

(3.6), and that the pair (M,γ′) is (d− α+
k )-stable. So we have the map

p : S1
α−

k

(2, d) −→ Nd−α+

k

(1, d− αk)× Jacαk(X)

given by

p(V, γ) = ((M,γ′), L).

Let (V, γ) ∈ p−1((M,γ′), L) and D = div(γ′). Then

θγ ∈ H0(D,M−1L−1U)r {0}

because (V, γ) ∈ S1
α−

k

(2, d) and, by the previous proposition,

det(γ) ∈ H0(X,M−2L−2U2)r {0}.

Moreover,

θ2γ + det(γ)|D = 0

so we have the map

(3.20) p−1((M,γ′), L) −→ Q((M,γ′), L)

given by

(3.21) (V, γ) 7→ [(θγ , det(γ))].

Let us now see that we also have a map the other way around and which is inverse
of the above one. As we are assuming dU − d > g− 1, we have χ(M−2L−2U2) > 0,
hence H0(X,M−2L−2U2) 6= 0 and then

Q((M,γ′), L) 6= ∅.

Take [(q, η)] ∈ Q((M,γ′), L) and choose a representative (q, η). We construct a pair
(V, γ) as follows.

Consider the following complexes

C•
1 : L−1M

∼=−→ L−1M−1U(−D)

C•
2 : L−1M

c−→ L−1M−1U

and

C•
3 : 0 −→ L−1M−1U |D

where

(3.22) c(ψ) = γ′ψ.

We have the short exact sequence

0 −→ C•
1 −→ C•

2

r(D)−→ C•
3 −→ 0
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given by the commutative diagram of sheaves of holomorphic sections

0

��

0

��

L−1M
∼=

//

=

��

L−1M−1U(−D)

c

��

L−1M
c

//

��

L−1M−1U

r(D)

��

0
0

//

��

L−1M−1U |D

��

0 0.

From this we obtain a long exact sequence in hypercohomology of the complexes

0 −→ H0(X,C•
1 ) −→ H0(X,C•

2 )
r(D)−→ H0(X,C•

3 ) −→ H1(X,C•
1 ) −→ H1(X,C•

2 )

r(D)−→ H1(X,C•
3 ) −→ H2(X,C•

1 ) −→ H2(X,C•
2 )

r(D)−→ H2(X,C•
3 ) −→ 0

(3.23)

from which it follows that r(D) yields a natural isomorphism

(3.24) H1(X,C•
2 )

r(D)∼= H1(X,C•
3 )

∼= H0(D,L−1M−1U).

Consider the element (0, q) ∈ H1(X,C•
3 ) and the corresponding class r(D)−1(0, q) ∈

H1(X,C•
2 ). With respect to some open covering (Ua)a of X , choose a representative

(λab, γ
′′
a )

of the class r(D)−1(0, q) ∈ H1(X,C•
2 ). Recall then that γ′λab = γ′′b − γ′′a .

Let V be the vector bundle defined by taking on each open Ua the direct sum

(3.25) M |Ua
⊕ L|Ua

and gluing over Uab through the map

(3.26) fab =

(
1M λab
0 1L

)
.

Also over each open Ua, consider the section of H0(Ua, S
2(M ⊕L)∗ ⊗U) given,

with respect to the decomposition (3.25), by

(3.27) γa =

(
γ′ γ′′a

γ′′ta ⊗ 1U (γ′′ta ⊗ 1U )γ
′−1γ′′a + ηγ′−1

)
.

Observe that, since r(D)(Ua)(γ
′′
a ) = q|D∩Ua

and q2 + η|D = 0, then

(γ′′ta ⊗ 1U )γ
′−1γ′′a + ηγ′−1

is defined over D. One has γb = f t
abγafab, so the collection of symmetric maps

(γa)a yields a global symmetric map γ : V → V ∗ ⊗ U .
So, from ((M,γ′), L) ∈ Nd−α+

k

(1, d − αk) × Jacαk(X) and (q, η) both non-zero

and such that q2+η|D = 0, we have built a U -quadratic pair (V, γ) overX such that
det(γ) = η, θγ = q, which lies in S1

α−

k

(2, d) and which is mapped onto ((M,γ′), L)

by the map p.
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Suppose now that we had a different choice of the representative of the class
[(q, η)] ∈ Q((M,γ′), L), say (βq, β2η) with β ∈ C∗. From (3.24), this pair defines a

new class in H1(X,C•
2 ) whose representative is (βλab, βγ

′′
ab). The vector bundle Ṽ

constructed again from (3.25) and gluing by
(
1M βλab
0 1L

)
= f̃ab

is isomorphic to V through the isomorphism g : Ṽ → V defined locally by

ga =

(
1M 0
0 β

)

because fabga = gbf̃ab. Moreover, we consider the section ofH0(Ua, S
2(M⊕L)∗⊗U)

given by (
γ′ βγ′′a

βγ′′ta ⊗ 1U β2((γ′′ta ⊗ 1U )γ
′−1γ′′a + ηγ′−1)

)
= γ̃a

and we have again γ̃b = f̃ t
abγ̃af̃ab, so we have the pair (Ṽ , γ̃) ∈ p−1((M,γ′), L).

Since gtaγaga = γ̃a the isomorphism g is indeed an isomorphism between (Ṽ , γ̃) and
(V, γ).

In other words, we have a map

Q((M,γ′), L) −→ p−1((M,γ′), L)

defined by

[(q, η)] 7→ isomorphism class of (V, γ) defined by (3.25), (3.26) and (3.27).

Clearly, this map is inverse of that defined in (3.20) and (3.21) and this gives
an isomorphism Q((M,γ′), L) ∼= p−1((M,γ′), L). We have then seen that p is
surjective with fibre isomorphic to Q((M,γ′), L). It remains to check that p is a
morphism.

Let pX : Nd−α+

k

(1, d − αk) ×X → X be the projection. From Remark 2.4 and

Theorem I of [16], there is a universal p∗XU -quadratic pair (L1, γγγ
′) overNd−α+

k

(1, d−
αk)×X . Consider also the Poincaré line bundle L2, of degree αk, over Jac

αk(X)×X .
Let

pr13 : Nd−α+

k

(1, d− αk)× Jacαk(X)×X −→ Nd−α+

k

(1, d− αk)×X

pr23 : Nd−α+

k

(1, d− αk)× Jacαk(X)×X −→ Jacαk(X)×X

and

pr12 : Nd−α+

k

(1, d− αk)× Jacαk(X)×X −→ Nd−α+

k

(1, d− αk)× Jacαk(X)

be the projections. Consider the following sheaves overNd−α+

k

(1, d−αk)×Jacαk(X):

R0pr12∗(pr
∗
13L−1

1 pr∗23L−1
2 p∗XU |∆)

where ∆ ⊂ SymdU−2d+2αk(X)×X is the universal divisor, and

R0pr12∗(pr
∗
13L−2

1 pr∗23L−2
2 p∗XU

2).

Since we are assuming dU − d > g− 1, these spaces have constant dimension, hence

are locally free. We consider the subsheaf C̃((L1, γγγ
′),L2) (of sets) of

R0pr12∗(pr
∗
13L−1

1 pr∗23L−1
2 p∗XU |∆)r {0} ×R0pr12∗(pr

∗
13L−2

1 pr∗23L−2
2 p∗XU

2)r {0}
consisting of pairs of non-zero sections (q, ηηη) satisfying the equation

q2 + ηηη|∆ = 0.

If Q̃((L1, γγγ
′),L2) denotes the sheaf obtained from C̃((L1, γγγ

′),L2) by identifying
sections of the form (q, ηηη) and (λq, λ2ηηη) for some λ ∈ C∗, then this is a locally trivial
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fibration over Nd−α+

k

(1, d − αk) × Jacαk(X) such that its fibre over ((M,γ′), L) is

Q((M,γ′), L), as defined in (3.19). As in the proof of Proposition 3.10 (see also
Proposition 3.4 of [30]), we have the following commutative diagram:

Q̃((L1, γγγ′),L2)
∼=

//

**T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Sα−

k

(2, d)

p

��

Nd−α+

k

(1, d− αk)× Jacαk(X).

So p is a morphism and the result follows. �

One consequence of Corollary 3.19 and of the previous proposition is that Sα−

k

(2, d) =

S0
α−

k

(2, d) ⊔ S1
α−

k

(2, d) is compact. It follows from Proposition 3.7 (see also Remark

3.8) is a disconnected subvariety ofNα−

k

(2, d). Hence we can compute its dimension.

From Corollaries 2.8 and 3.19, we have

(3.28) dimS0
α−

k

(2, d) = 2dU − 2d.

On the other hand, for S1
α−

k

(2, d), we have:

Corollary 3.23. If dU − d > g − 1, then dimS1
α−

k

(2, d) = 3dU − 4d+ 2αk.

Proof. Since dU − d > g − 1, Proposition 3.22 holds. From Corollary 2.8 we have

(3.29) dim(Nd−α+

k

(1, d− αk)× Jacαk(X)) = 2αk − 2d+ dU + g.

Given ((M,γ′), L) ∈ Nd−α+

k

(1, d− αk)× Jacαk(X), we now compute

dimQ((M,γ′), L) = dim C((M,γ′), L)− 1.

If F : H0(D,M−1L−1U)r {0}×H0(X,M−2L−2U2)r {0} → H0(D,M−2L−2U2)
is given by

F (q, η) = q2 + η|D
then C((M,γ′), L) = F−1(0). Linearising the map F at a point (q, η), we are lead
to F(q,η)∗ : H0(D,M−1L−1U)×H0(X,M−2L−2U2) → H0(D,M−2L−2U2) with

F(q,η)∗(q̇, η̇) = 2qq̇ + η̇|D.
Choose (q, η) such that F∗ is surjective (for instance, (1, η), where q = 1 means
that q(p) = 1 for each p ∈ Supp(D)). Then dim C((M,γ′), L) is

dimker(F(1,η)∗) = dimH0(X,M−2L−2U2) = 2(dU − d) + 1− g

because dU − d > g − 1 implies dimH1(X,M−2L−2U2) = 0. Hence

(3.30) dimQ((M,γ′), L) = 2(dU − d)− g.

The result now follows from (3.29) and (3.30). �

From this, from (3.28) and from αk > αm = d− [dU/2] follows that

dimS1
α−

k

(2, d) > dimS0
α−

k

(2, d)

with equality if and only if αk = αm and dU even. Hence from (3.18) and the
previous corollary, we conclude the following.

Corollary 3.24. Let α 6= αM and d such that dU −d > g−1. Then each connected
component of Sα−

k

(2, d) has dimension less or equal than 3dU − 4d+ 2αk.
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4. The space Nα−
m
(2, d)

Having examined the differences which occur on the moduli spaces when we
cross a critical value of α, we now address the problem of studying the number of
connected components of one of them. This will be done in this section and the
moduli space which will be analysed is Nα−

m
(2, d), the one for which the parameter

α is less than the minimum critical value αm = d − [dU/2]. In Section 5 we join
the results of this and the previous sections to achieve the goal of computing the
number of connected components of Nα(2, d), for any α 6 d/2.

The method we shall employ to give the desired description of Nα−
m
(2, d) is the

theory of spectral curves together with an analogue of the Hitchin map which is
slightly outlined in the next sections.

4.1. The spectral curve. We shall give a rough description of the spectral curve
of X corresponding to a line bundle L and a section of L2. Then we shall see how
to associate a spectral curve to a quadratic pair (V, γ), with γ generically non-
degenerate. The classical references for this theory, particularly its relations with
Higgs bundles, are [1, 19].

Let then L be a holomorphic line bundle over X with deg(L) > 0. We begin
by reviewing the construction of the spectral curve Xs,L associated to a section
s ∈ H0(X,L2). Consider the complex surface T given by the total space of the line
bundle L, and let π : T → X be the projection. The pullback π∗L of L to its total
space has a tautological section

λ ∈ H0(T, π∗L)

defined by λ(x) = x.

Definition 4.1. Let s ∈ H0(X,L2). The spectral curve Xs,L associated to s is the
zero scheme in the surface T of the section

λ2 + π∗s ∈ H0(T, π∗L2).

Remark 4.2. In the present case, the spectral curve Xs,L is always reduced, but it
may be singular and reducible. In fact, it is smooth if and only if s only has simple
zeros and it is irreducible if and only if s is not the square of a section of L.

Remark 4.3. The above definition of spectral curve is a very particular case of a
general definition. In fact, one can define a spectral curve associated to an element
of the sum

⊕n
k=1H

0(X,Lk). See [1, 19].

4.2. An analogue of the Hitchin map and its generic fibre. Consider a
U -quadratic pair (V, γ) ∈ Nα−

m
(2, d). By Proposition 3.1, det(γ) is a non-zero

holomorphic section of Λ2V −2U2 and one can consider its divisor div(det(γ)) ∈
Sym2dU−2d(X). Let

PX

be the 22g-cover of Sym2dU−2d(X) which fits in the commutative diagram

(4.1) PX
//

��

JacdU−d(X)

L 7→L2

��

Sym2dU−2d(X)
D 7→O(D)

// Jac2dU−2d(X).

In other words,

PX = Sym2dU−2d(X)×Jac2dU−2d(X) Jac
dU−d(X)
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i.e., it is the fibred product of Sym2dU−2d(X) and JacdU−d(X) over Jac2dU−2d(X),

and its elements are pairs (D,L) ∈ Sym2dU−2d(X)× JacdU−d(X) such that

O(D) ∼= L2.

In order to describe Nα−
m
(2, d), we shall use the following map, which is analogue

to the so-called Hitchin map defined for the first time by Hitchin in [19]. Consider
then the map

(4.2)
h : Nα−

m
(2, d) −→ PX

(V, γ) 7−→ (div(det(γ)),Λ2V −1U).

Definition 4.4. An L-twisted Higgs pair of type (n, d) over X is a pair (V, ϕ),
where V is a holomorphic vector bundle over X , with rk(V ) = n and deg(V ) = d,
and ϕ is a global holomorphic section of End(V )⊗ L, called the Higgs field.

Two L-twisted Higgs pairs (V, ϕ) and (V ′, ϕ′) are isomorphic if there is a holo-
morphic isomorphism f : V → V ′ such that ϕ′f = (f ⊗ 1L)ϕ.

Definition 4.5. Let (V, γ) be a U -quadratic pair of type (2, d) over X and let
ξ = Λ2V −1U . The ξ-twisted Higgs pair (V, ϕ) associated to (V, γ) is the one induced
from (V, γ) and from the isomorphism

(4.3) g : V ⊗ ξ
∼=−→ V ∗ ⊗ U

given by
g(v ⊗ φ⊗ u) = φ(v ∧ −)⊗ u,

where v ⊗ φ⊗ u ∈ V ⊗ ξ = V ⊗ Λ2V −1U . In other words, ϕ = g−1γ.

Lemma 4.6. Suppose that V and V ′ are rank 2 holomorphic vector bundles with
the same determinant. Let ξ = Λ2V −1U . Let (V, γ) and (V ′, γ′) be two U -quadratic
pairs, and (V, ϕ) and (V ′, ϕ′) be, respectively, the associated ξ-twisted Higgs, as in
Definition 4.5.

(1) If (V, ϕ) is isomorphic to (V ′, ϕ′) as ξ-twisted Higgs pairs, then (V, γ) is
isomorphic to (V ′, γ′) as U -quadratic pairs.

(2) If (V, γ) is isomorphic to (V ′, γ′) as U -quadratic pairs, then there is some
λ ∈ C∗ such that (V, ϕ) is isomorphic to (V ′, λϕ′) as ξ-twisted Higgs pairs.

Proof. Let f : V → V ′ be an isomorphism between (V, ϕ) and (V ′, ϕ′), that is,

(4.4) ϕ′f = (f ⊗ 1ξ)ϕ.

Since Λ2V = Λ2V ′, then det(f) = λ ∈ C∗.
Let g : V ⊗ξ → V ∗⊗U be the isomorphism (4.3), and define g′ : V ′⊗ξ → V ′∗⊗U

similarly. Now, we have that

(f t ⊗ 1U )g
′(f ⊗ 1ξ)(v ⊗ φ⊗ u) = (f t ⊗ 1U )g

′(f(v)⊗ φ⊗ u)

= (f t ⊗ 1U )(φ(f(v) ∧ −)⊗ u)

= φ(f(v) ∧ f(−))⊗ u

= (φdet(f))(v ∧−)⊗ u

= λφ(v ∧ −)⊗ u

so we conclude, from the definition of g in (4.3), that

(f t ⊗ 1U )g
′(f ⊗ 1ξ) = λg.

From this, from (4.4) and noticing that gϕ = γ and g′ϕ′ = γ′, we conclude that

(f t ⊗ 1U )γ
′f = λγ.

Thus
√
λ−1f is an isomorphism between (V, γ) and (V ′, γ′) and this settles the first

item.
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For the second item, if f : V → V ′ is an isomorphism between (V, γ) and (V ′, γ′)
then (f t ⊗ 1U )γ

′f = γ. It follows, as above, that ϕ′f = λ−1(f ⊗ 1ξ)ϕ where
C∗ ∋ λ = det(f). So

(λϕ′)f = (f ⊗ 1ξ)ϕ

and f is an isomorphism between (V, ϕ) and (V ′, λϕ′). �

Definition 4.7. A ξ-twisted Higgs pair (V, ϕ) of type (2, d) is semistable if deg(L) 6
d/2 for any line subbundle L ⊂ V such that ϕ(L) ⊂ Lξ.

Proposition 4.8. Let (V, γ) be a U -quadratic pair of type (2, d) and ξ = Λ2V −1U .
Let (V, ϕ) be the corresponding ξ-twisted Higgs pair, in the sense of Definition 4.5.
Then (V, γ) is α−

m-semistable if and only if (V, ϕ) is semistable.

Proof. Assume that (V, ϕ) is semistable and let L ⊂ V . As (V, γ) is α−
m-semistable,

then Proposition 3.1 says that γ(L) 6= 0. Suppose that γ(L) ⊂ L⊥U . It is easy to
see that

(4.5) γ(L) ⊂ L⊥U ⇐⇒ ϕ(L) ⊂ Lξ,

and since (V, ϕ) is semistable, it follows that deg(L) 6 d/2.
Finally, suppose that γ(L) 6⊂ L⊥U , and deg(L) > d − α−

m. Then L is a desta-
bilizing subbundle for α−

m. So by Proposition 3.2, (V, γ) is α-unstable for every
α < α−

m and, from above, the destabilizing subbundle must also be of type (C).
We see that for any α < αm, there is L′ ⊂ V such that deg(L′) > d − α. Letting
α→ −∞ this contradicts the fact that the degrees of subbundles of V are bounded
above (see Corollary 10.9 of [22]). We conclude that (V, γ) is α−

m-semistable.
The proof of the other direction is straighforward, using (4.5). �

If ξ = Λ2V −1U and (V, ϕ) is a ξ-twisted Higgs pair, consider the sections defined
by the coefficients of the characteristic polynomial of ϕ:

(− tr(ϕ), det(ϕ)) ∈ H0(X, ξ)⊕H0(X, ξ2).

We have det(ϕ) = det(γ) and, as γ is symmetric, ϕ has trace zero. Hence one can
view h(V, γ) = (div(det(γ)),Λ2V −1U) in (4.2) as given by ξ and by the divisor of
the section given by the characteristic polynomial of ϕ. The spectral curve Xs,ξ

associated to ξ and to the section s = det(γ) ∈ H0(X, ξ2) is the curve inside the
total space T of ξ defined by the equation

λ2 + π∗ det(γ) = 0.

Now, let (D, ξ) be any pair in PX , defined in (4.1). We want to describe the fibre
of h over (D, ξ), i.e., the space of isomorphism classes of α−

m-semistable U -quadratic
pairs (V, γ) with div(det(γ)) = D and Λ2V isomorphic to Uξ−1.

From (D, ξ) we have a section s ∈ H0(X,O(D)) = H0(X, ξ2), defined up to a
non-zero scalar, and one can construct the spectral curve associated to this section
s. We denote this spectral curve by

XD,ξ

(in Remark 4.10 below we give an explanation of this notation).
Given a line bundle ξ, let

MUξ−1

ξ

denote the moduli space of ξ-twisted Higgs pairs of rank two, with fixed determinant
Uξ−1 and with traceless Higgs field. In [18], we carry out a study of the singular
fibre of the Hitchin map H defined in MΛ

L for any L with positive degree and any
Λ:

H : MΛ
L −→ H0(X,L2)

(V, ϕ) 7−→ det(ϕ).
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Moreover we have the following proposition, which is immediate from Lemma
4.6 and Proposition 4.8:

Proposition 4.9. Let (D, ξ) ∈ PX . Then h−1(D, ξ) ∈ Nα−
m
(2, d) is isomorphic to

H−1(s) ∈ MUξ−1

ξ , where s ∈ H0(X, ξ2) is such that div(s) = D.

Remark 4.10. Recall that we made a choice of a section s associated to the divisor
D and this choice induces a choice of the corresponding spectral curve, as explained
in section 4.1. However, the fibre of h does not depend of this choice, due to Lemma
4.6. In fact, if we had a different choice λs, for some λ ∈ C∗, then we would be
working on the spectral curve Xλs,ξ : x2 + π∗λs = 0 and we would be working

with ξ-Higgs pairs of the form (V,
√
λϕ), where (V, ϕ) is a ξ-Higgs pair coming from

Xs,ξ. But, although these two ξ-Higgs pairs are not isomorphic, the corresponding

U -quadratic pairs (V, γ) and (V,
√
λγ) are isomorphic. This yields an isomorphism

between the fibres of h using Xs,ξ and Xλs,ξ. This is the reason why we denote
“the” spectral curve associated to (D, ξ) by XD,ξ.

The study of H−1(s) in [18] is done by considering the cases where Xs,ξ is
smooth, singular and irreducible, and singular and reducible. The smooth case is
the generic one, and it is well known that the fibre H−1(s) in that case is a torsor
for the Prym variety of the spectral curve (cf. [1, 19]). The case of singular and
irreducible spectral curve is carried out by a careful study of the compactification
of the Jacobian of the singular spectral curve associated to s, using the relation
between this Jacobian with that of its desingularization. Finally, the study of
H−1(s) when Xs,ξ is reducible is done by a direct analysis of the eigenbundles of ϕ.

Theorem 8.1 in [18] and Proposition 4.9 imply the following:

Theorem 4.11. Let (D, ξ) ∈ PX . Then the fibre of h : Nα−
m
(2, d) → PX over

(D, ξ) is connected and has dimension dU − d+ g − 1.

5. Components of Nα(2, d)

From Theorem 4.11 and from the fact that PX is connected and dimPX =
2dU − 2d, one concludes the following:

Theorem 5.1. For every d < dU , the space Nα−
m
(2, d) is connected and has di-

mension 3(dU − d) + g − 1.

Hence the dimension of Nα−
m
(2, d) is the expected dimension given in (2.6).

Before stating our main result, we need one final lemma. In the following all
spaces are assumed to be second countable and Hausdorff (and thus metrizable).
Thus compactness is equivalent to sequential compactness.

Lemma 5.2. Let N± be compact spaces and let S± ⊂ N± be proper closed sub-
spaces. Assume that (N± r S±) = N± and that there is a homeomorphism N+ r

S+ ∼= N− r S−. If N− and S+ are connected, then so is N+.

Proof. Let U± = N± r S±. Then U± are non-compact.
Suppose now that N+ is not connected. Then, since the closure of a connected

set is connected, U+ is not connected. Let N+ = N+
1 ∪ N+

2 be a decomposition
into disjoint non-empty closed subsets. Then U+

1 = U+ ∩N+
1 and U+

2 = U+ ∩N+
2

are disjoint non-empty open subsets of U+ ∼= U−. By the connectedness of N−,

the intersections U+
i ∩S− are non-empty, where we are considering closures in N−.

As above, this implies that U+
i is non-compact for i = 1, 2. Considering now the

closures in N+, we have U+
i = N+

i and it follows that N+
i ∩ S+ is non-empty for

i = 1, 2. This shows that S+ is disconnected, a contradiction. �
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Now we reach our main result about the moduli of quadratic pairs.

Theorem 5.3. Let d be such that dU − d > g − 1. For every α 6 d/2, the moduli
space Nα(2, d) is connected.

Proof. By Theorem 5.1, Nα(2, d) is connected, for every α < αm. We will see the
flip loci described in Section 3.2 have sufficient high codimension so that they do
not affect the number of components of adjacent moduli spaces.

Again by Theorem 5.1, Nα−
m
(2, d) has dimension 3(dU − d) + g − 1.

From Corollary 3.11 we have

dimSα+
m
(2, d) = dU − d+ 2g − 2

hence, as dU − d > g − 1, we have

(5.1) dimSα+
m
(2, d) < dimNα−

m
(2, d).

On the other hand, from Corollary 3.24 every point in Sα−
m
(2, d) is contained in a

component whose dimension is less or equal than

3dU − 4d+ 2αm = 3dU − 2[dU/2]− 2d

hence,

(5.2) dimSα−
m
(2, d) < dimNα−

m
(2, d).

Using (3.1), we conclude that dimNα+
m
(2, d) = dimNα−

m
(2, d) = 3(dU − d) + g − 1.

Now, observe that (5.1) and (5.2) are valid for all critical value αk < αM and
not just αm. Hence we conclude that, for all α < αM ,

(5.3) dimNα(2, d) = 3(dU − d) + g − 1.

So, for all αk < αM = d/2,

(5.4) codimSα+

k

(2, d) = 2(dU − d)− g + 1 > g − 1 > 1

and, from Corollary 3.24, every point in Sα−

k

(2, d) is contained in a component

whose codimension is greater or equal than

(5.5) d+ g − 1− 2αk > g − 1 > 1.

Recall that the flip loci measure the difference between two moduli spaces whose
parameter lie on opposite sides of a critical value. From Theorem 5.1, (5.4) and
(5.5), we see that the spaces Nα±

k

(2, d) and Sα±

k

satisfy the conditions of Lemma

5.2. From this it follows that Nα(2, d) is connected for every generic α.
If αk 6= αM is a critical value, we have two obvious continuous maps

π± : Nα±

k

(2, d) −→ Nαk
(2, d).

From the definition of the flip loci

Nαk
(2, d) = π−(Nα−

k

(2, d)) ∪ π+(Nα+

k

(2, d)).

From above, π−(Nα−

k

(2, d))∩π+(Nα+

k

(2, d)) is non-empty and the images of π± are

connected. The conclusion is that Nαk
(2, d) is also connected. �
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6. An application to surface group representations

6.1. Higgs bundles. Let H ⊂ G be a maximal compact subgroup, and let HC be
the complexification of H . The Cartan decomposition, g = h ⊕ m, of g, yields a
decomposition gC = hC ⊕ mC of the corresponding complexified Lie algebra. Then
mC is a representation of HC via the isotropy representation

(6.1) ι : HC −→ Aut(mC)

obtained by restricting the adjoint representation of GC on gC. If EHC is a principal
HC-bundle overX , we denote by EHC(mC) = E×HCmC the vector bundle, with fibre
mC, associated to the isotropy representation. Let K = T ∗X1,0 be the canonical
line bundle of X .

Definition 6.1. A G-Higgs bundle over a compact Riemann surface X is a pair
(EHC , ϕ) where EHC is a principal holomorphic HC-bundle over X and ϕ is a global
holomorphic section of EHC(mC)⊗K, called the Higgs field.

A G-Higgs bundle (EHC , ϕ) is topologically classified by the topological invariant
of the corresponding HC-bundle EHC and, as the maximal compact subgroup of
HC is H , the topological classification of G-Higgs bundles is the same as the one
of H-principal bundles. Thus, whenever G is connected, the topological class of a
G-Higgs bundle is given by an element in H2(X, π1H) ∼= π1H .

In [12], a general notion of (semi,poly)stability ofG-Higgs bundles was developed,
allowing for proving a Hitchin–Kobayashi correspondence between polystable G-
Higgs bundles and solutions to certain gauge theoretic equations known as Hitchin’s
equations. On the other hand, Schmitt [26, 27, 28] introduced stability conditions
for decorated bundles and used these in his general Geometric Invariant Theory
construction of moduli spaces. In particular, Schmitt’s constructions give moduli of
G-Higgs bundles for the groups considered in this paper, and his stability conditions
coincide with the ones relevant for the Hitchin–Kobayashi correspondence. It should
be noted that the stability conditions depend on a parameter α ∈

√
−1h∩ z, where

z is the centre of hC. We denote by

Md(X,G)

the moduli space of semistable (for the parameter value α = 0) G-Higgs bundles
with topological invariant d ∈ π1H . As usual, the moduli space Md(X,G) can also
be viewed as parametrizing isomorphism classes of polystable G-Higgs bundles.

6.2. Higgs bundles for the adjoint form of the symplectic group. Let
Sp(2n,R) be the real symplectic group of linear automorphisms of R2n which pre-
serve the standard symplectic form. The centre of Sp(2n,R) is Z(Sp(2n,R)) = Z/2
and we denote by PSp(2n,R) = Sp(2n,R)/(Z/2) the projectivization of Sp(2n,R).
A maximal compact subgroup of PSp(2n,R) is isomorphic to U(n)/(Z/2), so the
Cartan decomposition for psp(2n,C) = sp(2n,C) is given by sp(2n,C) = gl(n,C)⊕
mC where
(6.2)

mC =

{(
0 B
C 0

)
| B,C ∈ gl(n,C), BT = B, CT = C

}
∼= S2Cn ⊕ S2(Cn)∗.

Hence a PSp(2n,R)-Higgs bundle over a compact Riemann surface X is a pair
(E,ϕ), where E is a holomorphic principal GL(n,C)/(Z/2)-principal bundle and
ϕ is a holomorphic global section of the vector bundle E ×GL(n,C)/(Z/2) (S

2Cn ⊕
S2(Cn)∗)⊗K.

We want to work with holomorphic vector bundles, so we shall use a very sim-
ilar procedure to the one taken in [25] for G = PGL(n,R). Consider the group
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Sp(2n,R) × U(1), the normal subgroup {(In, 1), (−In,−1)} ∼= Z/2 ⊳ GL(n,R) ×
U(1) and the corresponding quotient group

Sp(2n,R)×Z/2 U(1) = (Sp(2n,R)×U(1))/(Z/2).

Notation 6.2. We shall write

ESp(2n,R) = Sp(2n,R)×Z/2 U(1),

EU(n) = U(n) ×Z/2 U(1),

EGL(n,C) = GL(n,C)×Z/2 C
∗.

The “E” stands for enhanced or extended.

The complexification of the maximal compact subgroupH = EU(n) ⊂ ESp(2n,R)

isH
C

= EGL(n,C). Also, gC = h
C⊕mC where gC = sp(2n,C)⊕C, h

C

= gl(n,C)⊕C

and mC = mC ⊕ {0} ∼= mC, where mC is given by (6.2), so

(6.3) mC ∼=
{(

0 B
C 0

)
| B,C ∈ gl(n,C), BT = B, CT = C

}
.

Definition 6.3. An ESp(2n,R)-Higgs bundle over X is a pair (E,ϕ), where E is

a holomorphic principal EGL(n,C)-bundle and ϕ ∈ H0(X,E ×EGL(n,C) m
C ⊗K),

where mC is given by (6.3).

Consider the actions of EGL(n,C) on Cn and on C induced, respectively, by the
group homomorphisms

(6.4) EGL(n,C) −→ GL(n,C), [(w, λ)] 7→ λw

and

(6.5) EGL(n,C) −→ C∗, [(w, λ)] 7→ λ2.

Note that together these two actions define an isomorphism

(6.6)
EGL(n,C)

∼=−→ GL(n,C)× C∗

[(w, λ)] 7→ (λw, λ2).

We have the following description of an ESp(2n,R)-Higgs bundle in terms of
vector bundles:

Proposition 6.4. Let (E,ϕ) be an ESp(2n,R)-Higgs bundle on X. Through the
actions (6.4) and (6.5) of EGL(n,C) on Cn and on C, associated to (E,ϕ) there
is a quadruple (V, L, β, γ), where V is a rank n holomorphic vector bundle, L is a
holomorphic line bundle and (β, γ) ∈ H0(X, (S2V ⊗ L−1 ⊕ S2V ∗ ⊗ L)⊗K).

Moreover, two ESp(2n,R)-Higgs bundles (Eν , ϕν), ν = 1, 2, are isomorphic if
and only if and only if the corresponding quadruples (Vν , Lν , βν , γν) are isomorphic,
i.e., there are isomorphisms V1 ∼= V2 and L1

∼= L2 intertwining (β1, γ1) and (β2, γ2).

Proof. From the actions (6.4) and (6.5) we define, respectively, the vector bundle
V = E ×EGL(n,C) C

n and the line bundle L = E ×EGL(n,C) C.

Consider the representations σ : EGL(n,C) → GL(S2Cn) and σ∗ : EGL(n,C) →
GL(S2(Cn)∗) given by

σ([w, λ])(B) = wBwT

and
σ∗([w, λ])(C) = (wT )−1Cw−1.

If ι : EGL(n,C) → GL(mC) is the isotropy representation of EGL(n,C) on mC, then
it is clear that ι([(w, λ)])(A) = ι([w])(A), where ι is the isotropy representation of
GL(n,C)/(Z/2) in mC. It is easy to see that

ι = σ ⊕ σ∗
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hence, taking into account the actions (6.4) and (6.5), from σ we obtain the vector
bundle S2V ⊗ L−1 and from σ∗ the vector bundle S2V ∗ ⊗ L. The Higgs field
ϕ ∈ H0(X,E×

H
C mC ⊗K) is therefore given, in terms of V and L by two sections:

β ∈ H0(X,S2V ⊗ L−1K) and γ ∈ H0(X,S2V ∗ ⊗ LK).

The final statement about isomorphism of quadruples follows from the isomorphism
(6.6). �

We shall slightly abuse notation and also call a quadruple (V, L, β, γ) as intro-
duced in the preceding proposition an ESp(2n,R)-Higgs bundles.

Remark 6.5. An ESp(2n,R)-Higgs bundle (V, L, β, γ) with L = O is the same thing
as an Sp(2n,R)-Higgs bundle (V, β, γ)(cf. [12]).

Projection on the first factor gives a homomorphism

ESp(2n,R) −→ PSp(2n,R)

and so, to any ESp(2n,R)-Higgs bundle, we can naturally associate a PSp(2n,R)-
Higgs bundle. Note that this association is given by extension of structure group in

the principal bundles via the map EGL(n,C)
p−→ GL(n,C)/(Z/2), where p([(w, λ)]) =

[w] and that the Higgs fields β and γ are unchanged since the map p intertwines
the identity map between the respective isotropy representations (6.3) and (6.2).

The following result is very similar to Proposition 5.4 of [25], so we omit the
proof.

Proposition 6.6. Every PSp(2n,R)-Higgs bundle (E,ϕ) on X lifts to an ESp(2n,R)-
Higgs bundle (E,ϕ).

Proposition 6.7. Two ESp(2n,R)-Higgs bundle (Vν , Lν, βν , γν), ν = 1, 2 give rise
to isomorphic PSp(2n,R)-Higgs bundles if and only if there is a line bundleM on X
such that the ESp(2n,R)-Higgs bundles (V1, L1, β1, γ1) and (V2⊗M,L2⊗M2, β2, γ2)
are isomorphic.

Proof. The correspondence with isomorphism of the underlying bundles is imme-
diate from their definition. The complete statement including the Higgs fields
follows because the Higgs fields are unchanged under the correspondence between
ESp(2n,R) and PSp(2n,R)-Higgs bundles. �

In view of Propositions 6.6 and 6.7 we can now work interchangably with ei-
ther isomorphism classes of PSp(2n,R)-Higgs bundles or with equivalence classes
of ESp(2n,R)-Higgs bundles under the equivalence relation introduced in the latter
Proposition. Thus we have the following immediate corollaries (analogous, respec-
tively, to Proposition 5.3 and Corollary 5.1 of [25]).

Corollary 6.8. Given a PSp(2n,R)-Higgs bundle (E,ϕ), it is possible to choose
a lift of (E,ϕ) to an ESp(2n,R)-Higgs bundle (V, L, β, γ) such that L is trivial or
deg(L) = 1.

Corollary 6.9. Let (E,ϕ) be a PSp(2n,R)-Higgs bundle and (V, L, β, γ) be an
ESp(2n,R)-Higgs bundle which is a lift of (E,ϕ). Then (E,ϕ) lifts to an Sp(2n,R)-
Higgs bundle if and only if deg(L) is even.

Next we give the topological classification of PSp(2n,R) and ESp(2n,R) bundles.
Restriction of the isomorphism (6.6) gives an isomorphism

(6.7)
ǫ : EU(n)

∼=−→ U(n)×U(1)

[(w, λ)] 7→ (λw, λ2).



QUADRATIC PAIRS AND SURFACE GROUP REPRESENTATIONS 31

Hence (using the standard identification π1U(n) ∼= Z)

(6.8) π1EU(n) ∼= Z× Z.

This means that ESp(2n,R)-Higgs bundles are classified by a pair of integers
and, thinking of an ESp(2n,R)-Higgs bundle as a quadruple (V, L, β, γ), we see
from Proposition 6.4 that this pair can be identified with

(deg(V ), deg(L)) ∈ Z× Z.

Using the identification (6.7), the natural projection EU(n,R) → U(n)/(Z/2) takes
the form

U(n)×U(1)
ǫ−→ EU(n) → U(n)/(Z/2),

(g, µ) 7→
[
g√
µ

]
.

Thus we have a short exact sequence

1 → U(1) → U(n)×U(1) → U(n)/(Z/2) → 1.

Again using the standard identification π1U(n) ∼= Z, the associated homotopy se-
quence gives

1 → Z
(n·,2·)−−−−→ Z× Z → π1

(
U(n)/(Z/2)

)
→ 1.

It follows that,

(6.9) π1
(
U(n)/(Z/2)

) ∼=
{
Z× Z/2 for n even,

Z for n odd.

In particular, the composition U(n) →֒ EU(n)
ǫ−→ U(n) × U(1) → U(n)/(Z/2)

induces an isomorphism of π1U(n) onto the Z-factor in π1
(
U(n)/(Z/2)

)
. For

n even and (V, L) with (deg(V ), deg(L)) = (d1, d2), the projection π1EU(n) →
π1(U(n)/(Z/2)) can then easily be calculated to be

(6.10) (d1, d2) 7→ (d1 − nd2/2, d2 mod 2),

in terms of the identifications (6.8) and (6.9). Thus, from the point of view of
PSp(2n,R)-Higgs bundles it is more natural to work with the following invariants
when n is even:

(6.11) (a, b)(V, L, β, γ) = (deg(V )− n deg(L)/2, deg(L)).

In terms of these

deg(V ) = a+ nb/2 and deg(L) = b.

Notice that for a line bundle F we have

(a, b)(V, L, β, γ) = (a, b)(V ⊗ F,LF 2, β, γ)

which is consistent with Proposition 6.7.

Remark 6.10. From either point of view, we see that the obstruction to lifting a
PSp(2n,R)-Higgs bundle to an Sp(2n,R)-Higgs bundle is given by the invariant
d2 = b (cf. Remark 6.5 and Corollary 6.9).

Remark 6.11. We remark that PSp(4,R) is isomorphic to the group SO0(2, 3) (i.e.
the connected component of the identity of SO(2, 3)). As explained in [7], an
SO0(2, 3)-Higgs bundle is given by the the data (W,QW , F, β, γ) where F is a
line bundle, (W,QW ) is a rank 3 vector bundle equipped with a non-degenerate
F 2-valued quadratic form, β is a section of Hom(W,F ) ⊗ K and γ a section of
Hom(W,F−1) ⊗ K. The objects are classified by two invariants, namely the de-
gree of F (which is actually the Toledo invariant: see (6.12) below) and the second
Stiefel-Whitney class w2(W,QW ) ∈ Z/2.
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Generalizing the construction of a SO0(2, 3)-Higgs bundle from an Sp(4,R)-Higgs
bundle given in [7, Section 3.3], we can obtain a SO0(2, 3)-Higgs bundle from an
ESp(4,R)-Higgs bundle, as follows: If (V, L, β, γ) is an ESp(4,R)-Higgs bundle,
define

W = S2V ⊗ Λ2V −1

and

F = Λ2V ⊗ L−1.

Then, if Q(x⊗y, x′⊗y′) = (x∧x′)⊗(y∧y′), then Q is an F 2L2-valued quadratic form
on S2V , hence W has the induced non-degenerate quadratic form QW . Moreover,
γ is a section of Hom(W,F−1) ⊗ K and, since W ∼= W ∗, we can view β as a
section of Hom(W,F )⊗K and. Hence we have obtained the SO0(2, 3)-Higgs bundle
(W,QW , F, β, γ). It is easily checked that the invariants (a, b) of the ESp(4,R)-Higgs
bundle (V, L, β, γ) are given by

(6.12)
a = deg(L),

b = deg(L) + w2(W,QW ) mod 2.

6.3. Stability, moduli spaces and the non-abelian Hodge Theorem. In [12],
a general notion of (semi,poly)stability for G-Higgs bundles was introduced and a
Hitchin–Kobayashi correspondence was established showing that polystability of
a G-Higgs bundles is equivalent to the existence of a solution to certain gauge
theoretic equations, known as the Hitchin equations. The general definition of
stability is fairly involved but in many examples it can be significantly simplified.
In the case of G = ESp(2n,R) a simplification can be carried out in a manner
entirely analogous to the case of G = Sp(2n,R) studied in [12, Section 4] and the
stability condition then takes the following form.

Proposition 6.12. An ESp(2n,R)-Higgs bundle (V, L, β, γ) is

• semistable if and only if for any filtration of holomorphic subbundles 0 ⊂
V1 ⊂ V2 ⊂ V such that

(β, γ) ∈ H0(X, (S2V2 + V1 ⊗S V )⊗ L−1K ⊕ (S2V ⊥
1 + V ⊥

2 ⊗S V
∗)⊗ LK),

we have

deg(V1) + deg(V2) 6 deg(V ).

• stable if and only if for any filtration of holomorphic subbundles 0 ⊂ V1 ⊂
V2 ⊂ V such that

(β, γ) ∈ H0(X, (S2V2 + V1 ⊗S V )⊗ L−1K ⊕ (S2V ⊥
1 + V ⊥

2 ⊗S V
∗)⊗ LK),

the following holds: if at least one of the subbundles V1 or V2 is proper,
then

deg(V1) + deg(V2) < deg(V )

and in any other case,

deg(V1) + deg(V2) 6 deg(V ).

Remark 6.13.

(1) The general notion of semistability of G-Higgs bundles depends on a pa-
rameter α ∈

√
−1h ∩ z where z is the centre of hC. For G = ESp(2n,R),

we have
√
−1h ∩ z =

√
−1(u(1) ⊕ u(1)) = R × R, so there is a α1, α2)-

semistability condition. This is very similar to the case of G = Sp(2n,R).
However, if (V, L, β, γ) is an ESp(2n,R)-Higgs bundle, it can be seen that
if α2 6= deg(L), then it is (α1, α2)-unstable. Therefore we are considering
α2 = deg(L) fixed. Also, in the preceding theorem, we have restricted
ourselves to the case of α1 = 0 semistability, because it is for this value of
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the parameter that the fundamental correspondence between moduli spaces
G-Higgs bundles and G-character varieties (Theorem 6.15 below) holds.

(2) The notion polystablity of ESp(2n,R)-Higgs bundles is analogous to the
one in Proposition 4.16 of [12], with the obvious modifications.

With regard to the relation between the stability conditions for PSp(2n,R)-Higgs
bundles and ESp(2n,R)-Higgs bundles we have the following result.

Proposition 6.14. An ESp(2n,R)-Higgs bundle (V, L, β, γ) is polystable if and
only if the associated PSp(2n,R)-Higgs bundle is polystable.

Proof. This can be checked by specializing and comparing directly the general
polystability conditions given in [12]. An alternative proof can be given by invoking
the Hitchin–Kobayashi correspondence proved in that paper, since the existence of
solutions to the Hitchin equations on an ESp(2n,R)-Higgs bundle is clearly equiva-
lent to the existence of solutions on the corresponding PSp(2n,R)-Higgs bundle. �

Next we recall the non-abelian Hodge theory correspondence. Let G be a con-
nected semisimple real Lie group with maximal compact subgroup H ⊆ G. By a
representation of π1X in G we mean a homomorphism ρ : π1X → G. A represen-
tation ρ is reductive if its composition with the adjoint representation of G on g is
a completely reducible representation. The character variety for representations of
π1X in G is

R(π1X,G) = Homred(π1X,G)/G,

where G acts by overall conjugation on homomorphisms. Any representation ρ has
a topological invariant c(ρ) ∈ π1H defined as the topological class of the associated
flat bundle. Let

Rd(π1X,G) ⊂ R(π1X,G)

be the subspace of equivalence classes of represensentations whose topological in-
variant is c(ρ) = d.

The non-abelian Hodge Theorem ([9, 11, 20, 29, 12]) now states the following.

Theorem 6.15. There is a homeomorphism

Md(X,G) ∼= Rd(π1X,G).

6.4. Bounds on invariants. From now on we restrict to the case of n being even.
Let

Md1,d2
= Md1,d2

(X,ESp(2n,R))

the moduli space of polystable ESp(2n,R)-Higgs bundles (V, L, β, γ) with deg(V ) =
d1 and deg(L) = d2. Let also

M̂a,b = Ma,b(X,PSp(2n,R)),

the moduli space of polystable PSp(2n,R)-Higgs bundles with with topological
invariants (a, b) ∈ Z× Z/2.

For a semistable ESp(2n,R)-Higgs bundle (V, L, β, γ) with deg(V ) = d1 and
deg(L) = d2, we have a Milnor-Wood inequality (a Higgs bundle proof of this
inequality can be easily given, cf. [5] for the case G = U(p, q) which implies the
result in the current setting):

(6.13) n(1− g) + d2 6 d1 6 n(g − 1) + d2.

This is equivalent to

|a| 6 n(g − 1)

where a = d1 − nd2/2 ∈ Z is the invariant introduced in (6.11). In the context of
surface group representations the invariant a is the Toledo invariant.
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Furthermore, for (d1, d2) ∈ Z×Z such that (6.13) holds, we have the isomorphism

Md1,d2
∼= Mnd2−d1,d2

given by (V, L, β, γ) 7→ (V ∗ ⊗L,L, γt ⊗ 1K , β
t ⊗ 1K) and the induced isomorphism

M̂a,b
∼= M̂−a,b.

We can, therefore, assume that

(6.14) 0 6 a 6 n(g − 1).

Let now L0 be a fixed line bundle of degree 1 over X . Denote by

Md,L0
⊂ Md,1

be the subspace of ESp(4,R)-Higgs bundles (V, L, β, γ) with L = L0. Similarly, let

Md,O ⊂ Md,0

be the subspace of ESp(4,R)-Higgs bundles (V, L, β, γ) with L isomorphic to the
trivial line bundle O.

From Corollary 6.8 and (6.10) the following is clear:

Proposition 6.16. Let d and d′ be two integers satisfying 0 6 d 6 n(g − 1) and
1 6 d′ 6 n(g − 1) + 1. Let [(V, L, β, γ)] denote the class of the corresponding
PSp(4,R)-Higgs bundle under the equivalence relation given in Proposition 6.7.
Then the projection (V, L, β, γ) 7→ [(V, L, β, γ)] yields a continuous surjective map

Md,O ⊔Md′,L0
−→ M̂d,0 ⊔ M̂d′−1,1

preserving the decompositions.

6.5. Relation with quadratic pairs and connectedness theorems. For the
remainder of the paper we specialize to the case n = 2, i.e., G = ESp(4,R) or

G = PSp(4,R). Our goal is to count the number of connected components of M̂a,b

for (a, b) ∈ Z × Z/2 such that 0 < |a| < 2g − 2. The situation for |a| = 0 and
|a| = 2g − 2 is somewhat special and, at any rate, in these cases the count follows
from the results of [17] and [7]. Note also that the count for b = 0 (corresponding
to PSp(4,R)-Higgs bundles which lift to Sp(4,R)-Higgs bundles) follows from the
results of Garćıa-Prada and Mundet [15].

We will analyze the spaces Md,0 and Md,L0
and from that draw our conclusions

about M̂a,b, using Proposition 6.16. Let us deal first with Md,L0
, with

1 < d < 2g − 1.

We introduce the following Hitchin proper functional. It is defined as

f : Md,L0
−→ R

(V, L0, β, γ) 7−→ ‖β‖2L2 + ‖γ‖2L2

Remark 6.17. The definition of the Hitchin functional uses a harmonic metric on
V coming from the Hitchin-Kobayashi correspondence — see [20].

The following consequence of properness of the non-negative function f is well
known (cf. [20] or Proposition 4.3 of [5]).

Proposition 6.18. The space Md,L0
is connected if the subspace of local minima

of the Hitchin proper function is connected.

Using very similar methods to the ones of [17, 15, 13] for G = Sp(2n,R), one
can prove the following result:

Proposition 6.19. Let (V, L0, β, γ) represent a point in Md,L0
, with 1 < d <

2g − 1. Then (V, L0, β, γ) is a minimum of f if and only if β = 0.
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We have the following immediate corollary.

Proposition 6.20. For any integer 1 < d < 2g− 1, the subvariety of local minima
of f is the moduli space

Nd,L0

of semistable ESp(4,R)-Higgs bundles (V, L0, 0, γ) such that V is a rank 2 holomor-
phic vector bundle of degree d and γ ∈ H0(X,S2V ∗ ⊗ L0K).

Now, we connect this with the study of quadratic pairs made in the first part of
the paper. Let

N0(2, d)

be the moduli space of 0-semistable L0K-quadratic pairs of type (2, d).

Proposition 6.21. The spaces Nd,L0
and N0(2, d) are isomorphic.

Proof. In view of Proposition 6.20 the result follows by comparing the notions of
0-(semi,poly)stability given in Proposition 2.9 for quadratic pairs, and from the
notion of (semi,poly)stability for ESp(4,R)-Higgs bundles in Theorem 6.12. By
considering all possible filtrations 0 ⊂ V1 ⊂ V2 ⊂ V of the rank 2 bundle V in
Theorem 6.12, one easily checks that these notions coincide. �

Proposition 6.22. For each integer d such that 3 − 2g < d < 2g − 1 and d 6= 1,
the space Md,L0

is connected.

Proof. Recall that we can assume 1 < d < 2g − 1. By Theorem 5.3 one has that
N0(2, d) is connected for every 1 < d < g, hence, by Proposition 6.21, the same is
valid for Nd,L0

for such d.
If g 6 d < 2g − 1, then N0(2, d) corresponds to the case Nα−

m
(2, d), because in

this case the formula for αm given in Notation 3.4, yields αm = d−g+1 > 0. Hence,
from Theorem 5.1, N0(2, d) is connected, so Proposition 6.21, says that Nd,L0

is
connected as well.

Now the result follows from Proposition 6.18. �

The connectedness ofMd,O with 0 < d < 2g−2 was proved by Garćıa-Prada and
Mundet (alternatively the argument used above to prove Proposition 6.22 could be
applied to give a proof):

Proposition 6.23 ([15, Theorem 5]). For each integer d such that 0 < |d| < 2g−2,
Md,O is connected.

We are now ready to state the theorem on the connectedness of the moduli space
of PSp(4,R)-Higgs bundles, with fixed topological classes.

Theorem 6.24. For each (a, b) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space

M̂a,b is connected.

Proof. Follows from Propositions 6.22, 6.23 and 6.16. �

Using the non-abelian Hodge theory correspondence of Theorem 6.15, we can
rephrase our Theorem 6.24 as follows:

Theorem 6.25. For each (a, b) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space
Ra,b(π1X,PSp(4,R)) is connected.

Recalling the correspondence of Remark 6.11, we can alternatively consider the
character variety

Ra,w(π1X, SO0(2, 3))
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of representations of π1X in SO0(2, 3) with invariants (a, w) ∈ Z × Z/2. We then
have an identification

Ra,w(π1X, SO0(2, 3)) = Ra,b(π1X,PSp(4,R))

where the invariants are related by (a, b) = (a, a + w mod 2) (see (6.12)). (There
is of course an analogous identification of the corresponding Higgs bundle spaces.)
We thus have the following equivalent formulation of Theorem 6.25:

Theorem 6.26. For each (a, w) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space
Ra,w(SO0(2, 3)) is connected.
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