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ON MODULI SPACES OF HITCHIN PAIRS

INDRANIL BISWAS, PETER GOTHEN, AND MARINA LOGARES

Abstract. Let X be a compact Riemann surface X of genus at–least two. Fix a
holomorphic line bundle L over X . Let M be the moduli space of Hitchin pairs
(E , φ ∈ H0(End0(E) ⊗ L)) over X of rank r and fixed determinant of degree d.
The following conditions are imposed:

• deg(L) ≥ 2g − 2, r ≥ 2, and L⊗r 6= K⊗r

X
,

• (r, d) = 1, and
• if g = 2 then r ≥ 6, and if g = 3 then r ≥ 4.

We prove that that the isomorphism class of the variety M uniquely determines the
isomorphism class of the Riemann surface X . Moreover, our analysis shows that
M is irreducible (this result holds without the additional hypothesis on the rank
for low genus).

1. Introduction

The classical Torelli theorem says that the isomorphism class of a smooth com-
plex projective curve is uniquely determined by the isomorphism class of its po-
larized Jacobian (the polarization is given by a theta divisor). This means that if
(Jac(X) , θ) ∼= (Jac(X ′) , θ′), then X ∼= X ′. Given any moduli space associated to
a smooth projective curve, the corresponding Torelli question asks whether the iso-
morphism class of the moduli space uniquely determines the isomorphism class of the
curve. The answer is affirmative in many situations. For instance, any moduli space
of vector bundles with fixed determinant with degree and rank coprime; this was
proved by Mumford and Newstead [MN] for rank two, and extended to any rank by
Narasimhan and Ramanan [NR]. They show that the second intermediate Jacobian
of the moduli space is isomorphic to the Jacobian of the curve. Since the Picard
group of the moduli space is Z, the second intermediate Jacobian has a canonical
polarization. This reduces the question to the original Torelli theorem. This result
for vector bundles has been crucial for proving Torelli theorems for moduli spaces of
vector bundles with additional structures, for example, a Higgs field or a section (see
[BG], [Mu]).

Let X be a compact connected Riemann surface of genus g, with g ≥ 2. Fix
a holomorphic line bundle L over X . An L–twisted Higgs bundle or a Hitchin pair
consists of a holomorphic vector bundle E −→ X and a section φ ∈ H0(X,End(E)⊗
L). There is an appropriate notion of (semi)stability of these objects. We recall that
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if L = KX , a Hitchin pair is a Higgs bundle. Higgs bundles were introduced by
Hitchin in [Hi], where the moduli spaces of Higgs bundles were constructed using
gauge theoretic methods. Nitsure in [Ni] gave a GIT construction of a coarse moduli
scheme M(r, d, L) of S–equivalence classes of semistable Hitchin pairs of rank r and
degree d. This moduli space is a normal quasi–projective variety.

The determinant map on M(r, d, L) is defined as follows:

det : M(r, d, L) −→ M(1, d, L) ∼= Jacd(X)×H0(X,L)(1)

(E, φ) 7−→ (ΛrE,Tr (φ)) .

Fix a line bundle ξ over X of degree d. The moduli space of Hitchin pairs with fixed
determinant ξ is then the preimage Mξ(r, d, L) := det−1(ξ, 0).

Our goal will be to prove the following.

Theorem 1.1. Let L −→ X be a fixed line bundle and let Mξ,X(r, d, L) be the moduli
space of Hitchin pairs of fixed determinant ξ −→ X of degree d. Assume that

• deg(L) ≥ 2g − 2, r ≥ 2, and L⊗r 6= K⊗r
X ,

• (r, d) = 1, and
• if g = 2 then r ≥ 6, and if g = 3 then r ≥ 4.

If Mξ,X(r, d, L) ∼= Mξ′,X′(r, d, L′), where the Riemann surface X ′ and the line bun-
dles L′ and ξ′ are also of the above type, then X is isomorphic to X ′.

Let Nξ(r, d) (respectively, Nξ′(r, d)) be the moduli space of stable vector bundles E
over X (respectively, X ′) of rank r and ΛrE = ξ (respectively, ΛrE = ξ′). Theorem
1.1 is proved by showing that if Mξ,X(r, d, L) ∼= Mξ′,X′(r, d, L), then Nξ(r, d) ∼=
Nξ′(r, d). In fact, the strategy will be to show that the open subset U ⊂ Mξ(r, d, L)
consisting of pairs (E , φ) such that E is stable is actually a vector bundle over the
moduli space Nξ(r, d). This open subset is proven to be of codimension large enough

to induce an isomorphism of the second intermediate Jacobians Jac2(Mξ(r, d, L))
∼−→

Jac2(U). On the other hand, Jac2(U) ∼= Jac2(Nξ(r, d)). Then using the fact that
Pic(U) = Z we construct a natural polarization on Jac2(U); this is done following the
method in [Mu, Section 6]. This polarization is taken to the natural polarization on
Jac2(Nξ(r, d)). This proves Theorem 1.1 using the earlier mentioned result of [MN],
[NR]. The details are given in Section 6 below.

As a byproduct of our computations we also obtain the following theorem (proved
in Section 5 below):

Theorem 1.2. Let L −→ X be a fixed line bundle and let Mξ,X(r, d, L) be the moduli
space of Hitchin pairs of fixed determinant ξ −→ X of degree d. Assume that

• deg(L) ≥ 2g − 2, r ≥ 2, and L⊗r 6= K⊗r
X , and

• (r, d) = 1.

Then the moduli space Mξ(r, d, L) is irreducible.

Theorem 1.2 was proved in [Ni] under the assumption that r = 2.
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2. Hitchin pairs

As before, X is a compact connected Riemann surface of genus g, with g ≥ 2,
and L −→ X is a holomorphic line bundle. Fix integers r ≥ 2 and d. We consider
Hitchin pairs (E, φ ∈ H0(End(E)⊗L)) with rk (E) = r and deg(E) = d, as described
in the Introduction. Recall that the slope of E is µ(E) = deg(E)/ rk (E).

The following result is stated without proof in Remark 1.2.2 of [Bo].

Proposition 2.1. There is a universal vector bundle E on M(r, d, L) × X (respec-
tively, Mξ(r, d, L)×X) whenever (r, d) = 1.

Proof. By [Ni], the moduli space M(r, d, L) is the GIT quotient of an appropriate
Quot–scheme Q by GLN(C) (for suitable N), and there is a universal vector bundle E
over X ×Q ([Ni, Proposition 3.6]). Moreover, the isotropy for the action of GLN(C)
on a stable point of Q is C∗ (the center of GLN(C)), and C∗ is contained in the
isotropy subgroup of each point of Q. Also, the universal vector bundle E on X ×Q
is equipped with a lift of the action of GLN(C).

There is a fixed integer δ such that for any c in the center of GLN(C), the action
of c on a fiber of E is multiplication by cδ. (As pointed out in Remark 1.2.3 of [Bo],
the fact that δ may be non-zero is the reason why E does not, in general, descend to
the quotient.)

Fix a point x0 of X . We have two line bundles on Q. The first line bundle L1 is
the top exterior power of the restriction of E to x0 × Q. The second line bundle L2

is the Quillen determinant line bundle for the family, i.e.,

L2 = Det(E) = det(R0f∗E)⊗ det(R1f∗E)
∗

where f is the projection of X ×Q to Q.

Both these line bundles are equipped with a lift of the action of GLN(C): for L1,
any c ∈ C∗ acts as multiplication by cr, and for L2 any c ∈ C∗ acts as multiplication
by ce, where

e = d+ r(1− g)

is the Euler characteristic of E restricted to a fiber of f . Since r and e are coprime,
we can express −δ (defined above) as

−δ = ar + be ,

where a and b are integers.

Now replace the universal bundle E by

E′ := E⊗ (L1)
⊗a ⊗ (L2)

⊗b .

It follows from our construction that C∗ acts trivially on the fibers of E′. Hence E′

descends to X ×M(r, d, L). �
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3. Deformation theory for Hitchin pairs

The infinitesimal deformations of a Hitchin pair (E, φ) are given by the first hy-
percohomology of the complex

(2) C• = C•(E, φ) : End(E)
ad (φ)−−−→ End(E)⊗ L

where ad (φ)(s) = φ ◦ s − (s ⊗ 1L) ◦ φ (see, for example, [BR], [Bo]). Therefore,
Proposition 2.1 implies the following result:

Proposition 3.1. For any stable Hitchin pair (E, φ) ∈ M(r, d, L), the Zariski tan-
gent space T(E,φ)M(r, d, L) to M(r, d, L) at the point (E, φ) is canonically isomorphic
to H1(C•).

We have a long exact sequence

0 −→ H0(C•) −→ H0(X,End(E))
ad (φ)−−−→ H0(X,End(E)⊗ L)(3)

−→ H1(C•) −→ H1(X,End(E))
ad (φ)−−−→ H1(X,End(E)⊗ L)

−→ H2(C•) −→ 0

[BR, Remark 2.7]. In particular, H0(C•) can be naturally identified with the space
of global endomorphisms End (E, φ).

Similarly, in the case of a Hitchin pair (E, φ) with fixed determinant ΛrE = ξ, the
deformation complex is

(4) C•
0 : End0(E)

ad (φ)−→ End0(E)⊗ L ,

where End0(E) ⊂ End(E) is the subbundle of rank r2 − 1 given by the sheaf of
trace–free endomorphisms.

We shall need the following standard lemma.

Lemma 3.2. Let (E, φ) and (E ′, φ′) be semistable Hitchin pairs. If Hom ((E, φ), (E ′, φ′)) 6=
0, then µ(E) ≤ µ(E ′).

If, moreover, (E, φ) and (E ′, φ′) are stable, then any non-zero ψ ∈ Hom ((E, φ), (E ′, φ′))
is an isomorphism.

Proof. Take any non-zero ψ ∈ Hom ((E, φ), (E ′, φ′)), so ψ : E → E ′ is a homomor-
phism such that

(ψ ⊗ IdL) ◦ φ = φ′ ◦ ψ ∈ H0(X, Hom(E ,E ′ ⊗ L)) .

Then the subsheaf ker(ψ) ⊂ E is φ–invariant and the subsheaf im(ψ) ⊂ E ′ is φ′–
invariant. Now the lemma follows form the conditions of semistability and stability.

�

Proposition 3.3. Let (E, φ) be a stable Hitchin pair. Then

H0(C•(E, φ)) ∼= C .
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If, moreover, we assume that L =M⊗K for a line bundle M satisfying deg(M) ≥ 0,
then

H2(C•(E, φ)) ∼=
{
0 if E 6∼= E ⊗M ,

C if E ∼= E ⊗M .

Proof. SinceH0(C•(E, φ)) ∼= End (E, φ), the first statement is immediate from Lemma 3.2.

To prove the second statement, consider the by Serre duality H2(C•(E, φ)) =
H0((C•)∨ ⊗KX)

∗, where

(C•)∨ ⊗KX : End(E)⊗M−1 − ad (φ)−−−−→ End(E)⊗M−1L .

But H0((C•)∨ ⊗KX) is isomorphic to the space of global homomorphisms of Hitchin
pairs Hom ((E, φ), (E⊗M−1, φ⊗ 1M−1)) (cf. [GK]). Hence the second statement also
follows from Lemma 3.2. �

For the remainder of the paper we assume that

• deg(L) ≥ 2g − 2,
• L⊗r 6= K⊗r

X , and
• r is coprime to d.

Proposition 3.4. All the irreducible components of the moduli spaces M(r, d, L) and
Mξ(r, d, L) are smooth.

Proof. By Lemma 3.2, the automorphism group of a stable Hitchin pair coincides
with the center C∗ of GLr(C). Moreover, under our assumptions, Proposition 3.3
gives the vanishing H2(C•) = 0. Hence the result follows from the existence of a
universal family (Proposition 2.1) and Theorem 3.1 of [BR]. �

Proposition 3.5. For any stable Hitchin pair (E, φ),

dimT(E,φ)M(r, d, L) = r2(degL) + 1 ,

and every irreducible component of M(r, d, L) is smooth of this dimension.

Proof. The Euler characteristic of the complex C• is the following

χ(C•) = dimH0(C•)− dimH1(C•) + dimH2(C•) = χ(End(E))− χ(End(E)⊗ L) .

Hence,

(5) dimH1(C•) = dimH0(C•) + dimH2(C•) + r2 deg(L) .

Thus, by Proposition 3.3 we have dimH1(C•) = r2(degL) + 1. The rest follows from
Propositions 3.1 and 3.4. �

Proposition 3.6. For any stable Hitchin pair (E, φ) of fixed determinant ΛrE = ξ,

dimT(E,φ)Mξ(r, d, L) = (r2 − 1) degL ,

and every irreducible component of Mξ(r, d, L) is smooth of this dimension.
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Proof. The proof is same as that of Proposition 3.5 after considering the fixed deter-
minant deformation complex (4). �

Let

(6) U ⊂ Mξ(r, d, L)

be the Zariski open subset parametrizing all pairs (E , φ) such that the underlying
vector bundle E is stable. Let Nξ(r, d) be the moduli space of stable vector bundles
E of rank r with ΛrE = ξ. We have a forgetful map f : U −→ Nξ(r, d) defined by
(E , φ) 7−→ E.

Lemma 3.7. The above forgetful map

f : U −→ Nξ(r, d)

makes U an algebraic vector bundle over Nξ(r, d).

Proof. Take any (E , φ) ∈ U . We have a map

H0(X,End0(E)⊗ L) −→ f−1(E)

defined by ψ 7−→ (E , ψ), where f is the map in the statement of the lemma.

Since E is stable, H0(X,End(E)) = C · IdE . Hence the above map identifies the
fiber f−1(E) with H0(X,End0(E)⊗ L).

The given conditions that E is stable, deg(L) ≥ 2g − 2, and L⊗r 6= K⊗r
X , imply

that
dimH0(End0(E)⊗ L) = (r2 − 1) · (deg(L) + 1− g) ,

in particular, this dimension is independent of E. Therefore, f makes U into an
algebraic vector bundle over Nξ(r, d). �

4. Bialynicki–Birula and Bott–Morse stratifications

It is an important feature of the moduli space of Hitchin pairs that it admits an
action of C∗:

C∗ ×M(r, d, L) −→ M(r, d, L)

(t, (E, φ)) 7−→ (E, tφ).

This action gives rise to a stratification of the moduli space, which can be interpreted
from a Morse theoretic point of view. Next we recall how this comes about. We start
by recalling another interpretation of the moduli space from a gauge theoretic point
of view.

The notion of stability for a twisted Higgs bundle (E , φ) is related to the existence
of a special Hermitian metric on E. To explain this, fix a Kähler form on X . Let Λ
be the contraction of differential forms on X with the Kähler form. Fix a Hermitian
structure on L such that the curvature of the Chern connection (the unique connection
compatible with both the holomorphic and Hermitian structures) is a constant scalar
multiple of the Kähler form. Using this Hermitian structure on L, the dual line
bundle L∨ is identified with the C∞ line bundle L. Let E −→ X be a holomorphic
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Hermitian vector bundle and φ a holomorphic section of End(E) ⊗ L. Using the
identification of L with L∨, the adjoint φ∗ is a section of End(E)⊗ L∨.

A semistable L–twisted Higgs bundle is called polystable if it is a direct sum of
stable L–twisted Higgs bundles, all of the same slope. The following Theorem is due
to Li [Li]; it also follows from the general results of [BGM].

Theorem 4.1. Let (E, φ) be a L–twisted Higgs bundle. The existence of a Hermitian
metric h on E satisfying

(7) ΛFh + [φ , φ∗] = λ Id ,

for some λ ∈ R, is equivalent to the polystability of (E, φ).

Here Fh is the curvature of the Chern connection on E. The constant λ is deter-
mined by the slope of E. The smooth section [φ , φ∗] of End(E) is the contraction of
the section φφ∗ − φ∗φ of End(E)⊗ L⊗ L∨.

Fix a C∞ vector bundle E −→ X of degree d, and fix a Hermitian structure h on
E. Let A is the space of all unitary connections on (E, h). The equation in (7) corre-
sponds to the moment map for the action of the unitary group on the product Kähler
manifold A× End(E) (whose Kähler metric is induced by the Hermitian metrics on
E and L). The moduli space of stable L–twisted Higgs bundles is then obtained as
the Kähler quotient, and hence the moduli space inherits a Kähler structure.

The restriction of the C∗-action to S1 ⊂ C∗ preserves the induced Kähler form
on M(r, d, L). Thus we have a Hamiltonian action of the circle and the associated
moment map is

µ : M(r, d, L) −→ R

(E, φ) 7−→ 1

2
||φ||2 .

It has a finite number of critical submanifolds, and L-twisted Higgs bundles of the
form (V, 0) are the absolute minima.

Let F be the fixed point set for the C∗–action on M(r, d, L). This fixed point set
is a disjoint union of connected components which we denote by Fλ, so F =

⋃
λ Fλ.

For any component Fλ, define

U+
λ = {p ∈M ; lim

t→0
tp ∈ Fλ}

and

U−
λ = {p ∈M ; lim

t→∞
tp ∈ Fλ}.

The sets U+
λ are strata forM(r, d, L); the resulting stratification is called the Bialynicki–

Birula stratification.

Considering the moment map µ as a Morse function, we obtain another stratifica-
tion. To a critical submanifold Fλ we can assign an unstable manifold, also called
upwards Morse flow,

Ũ+
λ = {x ∈ Mξ(r, d, L); lim

t→−∞
ψt(x) 7−→ Fλ} ,
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where ψt is the gradient flow for µ. Similarly, we have the stable manifold

Ũ−
λ = {x ∈ Mξ(r, d, L); lim

t→∞
ψt(x) 7−→ Fλ}

which is known as the downwards Morse flow. Now, {Ũ+
λ }λ give a stratification,

which is called the Morse stratification.

In [Ki, Theorem 6.16], Kirwan proves that the stratifications Ũ+ and U+ coincide,

and similarly Ũ− = U− (cf. Hausel [Ha] for the first application of this result in the
context of moduli of Higgs bundles).

Let

(8) h : Mξ(r, d, L) −→
r⊕

i=2

H0(X, L⊗i)

be theHitchin map defined by (E , φ) 7−→ ∑r

i=2Tr (Λ
iφ). The inverse imageH−1(0) ⊂

Mξ(r, d, L) is called the nilpotent cone.

The following result was observed by Hausel [Ha] in the context of Higgs bundles.
It generalizes to L-twisted Higgs bundles with essentially the same proof.

Proposition 4.2. The nilpotent cone coincides with the downwards Morse flow.

Proof. First note that by [Ki, Theorem 6.16], the downwards Morse flow coincides
with ⋃

λ

{p ∈ Mξ(r, d, L); lim
t→∞

tp ∈ Fλ} ,

where Fλ are the set of components of the fixed point set of the C∗–action on our
moduli space Mξ(r, d, L). For the Hitchin map h in (8),

h( lim
λ→∞

λp) = lim
λ→∞

(λh(p))

this implies that h(p) = 0 for any point p in the downwards Morse flow. Hence, the
downwards Morse flow is contained in the nilpotent cone.

To prove the converse, recall that the Hitchin map h is proper [Hi], [Ni]. Hence
for any point p of the nilpotent cone, the C∗–orbit of p is compact. So the limit
limλ→∞ λp exists, hence p is in Fλ. �

5. A codimension computation

Let
S = {(E, φ);E is not stable} ⊂ Mξ(r, d, L)

be the subscheme of the moduli space Mξ(r, d, L) that parametrizes all Hitchin pairs
(E , φ) such that the underlying vector bundle E is not semistable (since r is coprime
to d, the vector bundle E is semistable if and only if it is stable). Also, consider the
following set

S ′ = {(E, φ); lim
t→0

(E, tφ) /∈ Nξ(r, d)} ,
where Nξ(r, d) is the moduli space of stable vector bundles E −→ X with rank r
and ΛrE ∼= ξ.
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Proposition 5.1. The equality S ′ = S holds.

Proof. Take any Hitchin pair (E , φ) such that the underlying vector bundle E is
stable. Then

lim
t→0

(E, tφ) = (E , 0) ∈ Nξ(r, d) .

Hence S ′ ⊂ S.
To prove the converse, take any (E , φ) ∈ S. Since E is not semistable, it has a

unique Harder–Narasimhan filtration

E = Em ⊃ Er−1 ⊃ · · ·E1 ⊃ E0 = 0 .

We recall that Ei/Ei−1 is semistable for all i ∈ [1 , m, and furthermore, µ(Ei/Ei−1) >
µ(Ei+1/Ei). Following Atiyah–Bott, [AB], set Di = Ei/Ei−1, ni = rk (Di), ki =
deg(Di) and µi = ki/ni. Note that

∑m

i=1 ni = r, and
∑m

i=1 ki = d. Consider the
non-increasing sequence (µ1, . . . , µr), where each µi is repeated ni times. The vector
(µ1, . . . , µr) is called the type of E.

We will analyze the limit of (E, tφ) as t → 0. For that we will recall from [AB],
[Sh] a partial ordering of types. For any type δ := (δ1, . . . , δr), consider the polygon

in R2 traced by the points (
∑b

i=1 δi , b), 1 ≤ b ≤ r, and the point (0 , 0). For another
type δ′, we say that δ ≥ δ′ if the polygon for δ is above the polygon for δ′. This
ordering is complete when r = 2.

In a family of vector bundles, the type increases under specialization; see [Sh, p. 18,
Theorem 3] for the precise statement. Consider the map

τ : C∗ −→ Mξ(r, d, L)

that sends any t to the point representing the Hitchin pair (E, tφ). The Hitchin map
h in (8) is proper, [Hi], [Ni], and limt→0 h((E, tφ)) = 0. Hence the above map τ
extends to a map

τ̂ : C −→ Mξ(r, d, L) .

Let E be a universal vector bundle over Mξ(r, d, L)×X (see Proposition 2.1). Con-
sider the family of vector bundles (τ̂ × IdX)

∗E parametrized by C. For any t ∈ C∗,
the vector bundle ((τ̂ × IdX)

∗E)|{t}×X = E is not semistable. Hence from [Sh, p.
18, Theorem 3] it follows that ((τ̂ × IdX)

∗E)|{0}×X is not semistable. In other words,
(E, φ) ∈ S ′. This completes the proof. �

Now we are in a position to estimate the codimension of S. We use the notation
of Section 4. Let N := h−1(0) be the nilpotent cone. From Proposition 4.2 we know
that N =

⋃
λ Fλ.

Now the complex dimension of the upwards Morse flow is:

dim(U+
λ ) = dim(TMξ|Fλ

)>0 + dim(Fλ)

because

dim(U+
λ ) + dim(TMξ|Fλ

)<0 = dimMξ .
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Since S ′ = S, from Bott–Morse theory we know that S ′ =
⋃

λ6=0 U
+
λ , so codim S =

minλ6=0 codim U+
λ . Finally

codim (U+
λ ) = dim(TMξ|Fλ

)<0

which is half the Morse index1, at Fλ, for the perfect Morse function µ.

The critical points of the Bott–Morse function µ are exactly the fixed points of the
C∗–action on Mξ(r, d, L). If (E, φ) corresponds to a fixed point, then it is a Hodge
bundle, i.e., it is of the form

(9) E = E0 ⊕ E1 ⊕ · · · ⊕ Em,

with φ(Ei) ⊂ Ei+1 ⊗ L (see [Hi], [Si2]). Consequently, the deformation complex in
(2) decomposes as

C•(E, φ) =
⊕

k

C•
k(E, φ) ,

where for each k,

C•
k(E, φ) :

⊕

j−i=k

Hom (Ei, Ej)
ad (φ)−→

⊕

j−i=k+1

Hom (Ei, Ej)⊗ L .

Therefore, the tangent space to Mξ(r, d, L) at the point (E , φ) has a decomposition

H1(C•(E, φ)) =
⊕

k

H1(C•
k(E, φ))

(see Proposition 3.1), and half the Morse index at (E, φ) is

(10)
∑

k>0

dimH1(C•
k(E, φ)) =

∑

k>0

−χ(C•
k(E, φ))

(note that the above equality follows from Proposition 3.3).

We will estimate χ(C•
k(E, φ)) first, using a similar argument to the one given in

[BGG, Lemma 3.11]. Define

Ck :=
⊕

j−i=k

Hom (Ei, Ej)

and Φk := ad (φ)|Ck
. Then we have the homomorphism

Φk : Ck −→ Ck+1 ⊗ L .

Proposition 5.2. Let (E, φ) be a stable Hitchin pair which corresponds to a fixed
point of the C∗–action. Then

χ(C•
k(E, φ)) ≤ (1− g)(rk (Ck)− rk (Ck+1))− deg(L)(rk (Ck+1)− rk (Φk)) .

Proof. Note that
(11)
χ(C•

k(E, φ)) = deg(Ck)−deg(Ck+1)− rk (Ck+1) deg(L)+ (rk (Ck)− rk (Ck+1))(1− g) ,

1The Morse index is the real dimension which is twice the complex dimension.
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so we will first bound deg(Ck)−deg(Ck+1). For that consider the short exact sequences

0 −→ ker(Φk) −→ Ck −→ Im (Φk) −→ 0(12)

0 −→ Im (Φk) −→ Ck+1 ⊗ L −→ coker (Φk) −→ 0 .(13)

From these,

(14) deg(Ck)− deg(Ck+1) = deg(ker(Φk)) + deg(L) rk (Ck+1)− deg(coker (Φk)) .

Clearly ker(Φk) ⊂ End0(E). In Lemma 5.3 it was proved that if the pair (E, φ) is
stable, then (End0(E),Φk) is a semistable pair; so we obtain

(15) deg(ker(Φk)) ≤ 0 .

In view of (11), (14) and (15), to prove the proposition it suffices to show that

(16) − deg(coker (Φk)) ≥ − deg(L)(rk (Ck+1)− rk (Φk)) .

Consider the dual homomorphism Φt
k : C∗

k+1 ⊗ L−1 −→ C∗
k of Φk. Let

(17) Ck+1 ⊗ L −→ ker(Φt
k)

∗

be the dual of the inclusion map

ker(Φt
k) →֒ C∗

k+1 ⊗ L−1 .

Note that the homomorphism in (17) vanishes identically on the image Im(Φk). So
we get a homomorphism

f : coker (Φk) −→ ker(Φt
k)

∗

which is evidently surjective. Note that ker(Φt
k) is a subbundle of C∗

k+1 ⊗ L−1. We
have a diagram

0 // Im (Φk) //

&&MMMMMMMMMM
Ck+1 ⊗ L //

��

coker (Φk) //

fwwppppppppppp

0

(ker(Φt
k))

∗

and a short exact sequence

(18) 0 −→ ker(f) −→ coker (Φk) −→ (ker(Φt
k))

∗ −→ 0 .

The kernel of f is a torsion subsheaf of coker (Φk) (note that coker (Φk) need not be
locally free), hence from (18) we conclude that

(19) deg(coker (Φk)) ≥ deg(ker(Φt
k)

∗) .

As ker(Φt
k) is a subbundle of C∗

k+1 ⊗ L−1, from (19),

(20) − deg(coker (Φk)) ≤ deg(ker(Φt
k)) .
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We have an isomorphism C∗
k ⊗L−1 ∼= C−k⊗L−1 and hence a commutative diagram

C∗
k+1 ⊗ L−1

Φt
k−−−→ C∗

k

∼=

y
y∼=

C−k−1 ⊗ L−1
−Φ−k−1⊗1

L−1−−−−−−−−−→ C−k

so ker(Φt
k) = ker(Φ−k−1)⊗ L−1. Hence

deg(ker(Φt
k)) = deg(ker(Φ−k−1))− deg(L) rk (ker(Φ−k−1)) ,

and then

(21) deg(ker(Φt
k) ≤ − deg(L) rk (ker(Φ−k−1)) .

Notice that rk (Φ−k−1) = rk (Φt
k) = rk (Φk) and rk (Ck+1) = rk (C∗

−k−1) = rk (C−k−1).
Then

(22) rk (ker(Φ−k−1)) = rk (Ck+1)− rk (Φk) .

Note that (20), (21) and (22) together imply (16). This completes the proof of the
proposition. �

The correspondence in Theorem 4.1 gives a differential geometric proof of the fol-
lowing lemma which was used above in the proof of Proposition 5.2.

Lemma 5.3. Let (E, φ) be a stable pair, then the pair (End(E), ad (φ)) is semistable.

Proof. An irreducible solution of the equations in (7) provides us with a semistable
Hitchin pair. Now it is easy to see that the tensor product of two solutions is again
a solution to the equations, and the same is with the dual. So if h is a Hermitian
structure on E that satisfies the equation in Theorem 4.1, then (End(E) = E∗ ⊗
E, ad (φ)) with the induced metric also satisfies the equation in Theorem 4.1. �

Proposition 5.4. The codimension of the subset S of M(r, d, L) consisting of pairs
for which the underlying bundle is not stable, is greater than or equal to (g−1)(r−1).
Hence, it is greater than or equal to 4 whenever one of the following occur

• g = 2 and r ≥ 6,
• g = 3 and r ≥ 4,
• g ≥ 4 and r ≥ 2.

Proof. From Proposition 5.2 we need to compute the following sum

codim (S) =
∑

k>0

−χ(C•
k)

≥
∑

k>0

deg(L)(rk (Ck+1)− rk (Φk)) + (g − 1)(rk (Ck)− rk (Ck+1))

=
∑

k>0

(2g − 2 + l)(rk (Ck+1)− rk (Φk)) + (g − 1)(rk (Ck)− rk (Ck+1))
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with l ≥ 0 since we are assuming that deg(L) ≥ K. Hence,

=
∑

k>0(g − 1)(rk (Ck+1) + rk (Ck)− 2 rk (Φk)) + l(rk (Ck+1)− rk (Φk))

≥ (g − 1) rk (C1)

(we use that rk (Ck+1) − rk (Φk) ≥ 0). We now just need to estimate rk (C1), so let
ri be the rank of Ei in the Hodge decomposition. Since k = 1, we need to estimate
r1r2 + r2r3 + · · ·+ rm−1rm, where m was the top index in (9), but it is clearly bigger
than or equal to r − 1. �

Proof of Theorem 1.2. The subset U of L-twisted Higgs bundles for which the un-
derlying bundle is stable is the complement of S. It follows from Lemma 3.7 that U
retracts ontoNξ(r, d), which is well known to be connected. Hence Proposition 5.4 and
Proposition 3.5 together imply that the moduli space Mξ(r, d, L) is irreducible. �

6. Torelli theorem

We recall the notion of s–th intermediate Jacobian which will be central in our
study. Let M be a complex projective manifold. Let

Hn(M,C) =
⊕

p+q=n

Hp,q(M)

be the Hodge decomposition. Set n = 2s− 1, and define

Vs := Hs−1,s(M)⊕ · · · ⊕H0,2s−1

Note that it can be defined for any 1 ≤ s ≤ m = dimCM . Then

H2s−1(M,C) = Vs ⊕ Vs ,

and we have the projection of H2s−1(M,C) to the factor Vs. Denote by Λs the image
of the composition

H2s−1(M,Z) −→ H2s−1(M,C) −→ Vs .

The s–th intermediate Jacobian of M is defined to be the complex torus

Jacs(M) :=
Vs
Λs

.

When s = 1, we get the Picard variety

Jac1(M) =
H0,1(M)

H1(M,Z)
= Pic0(M) .

Here we will be interested in the second intermediate Jacobian

Jac2(M) =
H1,2(M)⊕H0,3(M)

H3(M,Z)
.

A complex torus T = V/Λ, where Λ is a cocompact lattice in a vector space V , is
called an abelian variety if it is a projective algebraic variety. The Kodaira embedding
theorem says that T admits an embedding in a projective space if an only if there
exists a Hodge form on T , meaning a closed positive form ω of type (1, 1) representing
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a rational cohomology class. The conditions which determine if such a form exists
are the Riemann bilinear relations which can be formulated as follows: a class in
H2(T,Z) is given by a bilinear form

Q : Λ⊗Z Λ −→ Z , Q(λ, λ′) = −Q(λ′, λ) .
Identifying Λs ⊗Z C with Vs ⊕ Vs, the Riemann bilinear relations are

Q(v, v′) = 0, v, v′ ∈ V ,

−
√
−1Q(v, v′) > 0, 0 6= v ∈ V .

Thus, for instance, given a Hodge form ω on a complex projective manifold M , the
Riemann bilinear relations

Q : Λ1 ⊗ Λ1 −→ Z

given by

Q(λ, λ′) =

∫

M

ωn−1 ∧ λ ∧ λ′

produce a polarization on Jac1(M) (see [GH]).

We recall the basics of a mixed Hodge structure. Let be H a finite dimensional
vector space over Q. A pure Hodge structure of weight k on H is a decomposition

HC = H ⊗ C =
⊕

p+q=k

Hp,q

such that Hq,p = H
p,q
; the bar denotes complex conjugation in HC. It has two

associated filtrations, the (non-increasing) Hodge filtration F on HC

F p :=
⊕

p′≥p

Hp′,q ⊂ HC ,

and the (non-decreasing) weight filtration W defined over Q

Wm :=
⊕

p+q≤m

Hp,q .

A mixed Hodge structure on H consist of two filtrations: a non decreasing (weight)
filtration W defined over Q, and a non increasing (Hodge) filtration F so that F
induces a Hodge filtration of weight r on each rational vector space GrW

r = Wr/Wr−1.

Let M0 be a smooth complex quasi–projective variety. The cohomology of M0

has a mixed Hodge structure [De1, De2, De3]. The above construction of second
intermediate Jacobian can be generalized to M0 as follows:

(23) Jac2(M0) := H3(M0, C)/(F
2H3(M0, C) +H3(M0, Z))

(see [Ca, p. 110]). This intermediate Jacobian is a generalized torus [Ca, p. 111].

Since the projection f in Lemma 3.7 makes U a vector bundle over Nξ(r, d), we
conclude that the corresponding homomorphism

f ∗ : Hj(Nξ(r, d), Z) −→ Hj(U , Z)
is an isomorphism for all j. In particular, it is an isomorphism for j = 3. Therefore,
the following proposition holds.
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Proposition 6.1.

Jac2(U) ∼= Jac2(Nξ(r, d)) .

Lemma 6.2. LetM be a smooth variety and S a closed subscheme of it of codimension
k; denote U =M \ S. Then the inclusion map U →֒ M induces isomorphism

Hj(M,Z) ∼= Hj(U,Z)

for all j < 2k − 1.

Proof. This lemma is proved in [AS, Lemma 6.1.1]. �

Proof of Theorem 1.1. Proposition 5.4 and Lemma 6.2 imply that

Jac2(Mξ(r, d, L) ∼= Jac2(U) ,
where U is the open subset in Proposition 6.1. Hence from Proposition 6.1,

Jac2(Mξ(r, d, L) ∼= Jac2(Nξ(r, d)) .

But Jac2(Nξ(r, d)) = Pic0(X) [MN, p. 1201, Theorem], [NR, p. 392, Theorem 3].
Hence it only remains to provide Mξ(r, d, L) with a canonical polarization, which is
done in Proposition 7.1. The usual Torelli theorem then completes the proof. �

7. Reconstructing the polarization

In this section we construct a canonical polarization on J2(Mξ(r, d, L)) following
[Mu, Section 6] (see also [AS, Section 8]). To be precise, one shows thatH3(Mξ(r, d, L))
has a polarization which is natural in the sense that it can be constructed when X
varies in a family.

Proposition 7.1. Assume that if g = 2 then r ≥ 6, and if g = 3 then r ≥ 4. The
Hodge structure H3(Mξ(r, d, L)) is naturally polarized. Furthermore the isomorphism

Jac2(Mξ(r, d, L)) ∼= Jac2(Nξ(r, d))

respects the polarizations.

Proof. For brevity write M = Mξ(r, d, L). We note that Proposition 5.4, Proposi-
tion 6.1 and Lemma 6.2 prove that Pic(M) = Z, thus there is a unique generator of
the Picard group.

We make use of M , the compactified moduli space of Hitchin pairs considered in
[Ha, Sch, Si1]. Let Sing(M) be the singular locus of the compactified moduli space.
Take a hyperplane intersection Z of M of codimension 3. By Proposition 7.2 below
we have codim (Sing(M)) ≥ 4, hence a generic such Z is smooth. As in the proof of
[Mu, Proposition 6.1], we can define

H3(M)⊗H3(M) −→ Z,

β1 ⊗ β2 7→ 〈β1 ∪ β2, [Z]〉
In view of Proposition 7.2, the argument in [Mu] now goes through with the obvious
adaptations to prove that this is a polarization. �
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Proposition 7.2. The singular locus Sing(M) has codimension greater than or equal
to (g − 1)(r − 1).

Proof. Write M = M ∪ Z for the compactified moduli space. The singular locus of
M sits inside Z, which is an orbifold submanifold of codimension 1 (Theorem 3.4
[Ha]). We can describe the singular points in M in the following way. Recall from
[Ha, Sch] that M = (M × C − N × {0})/C∗, being N the nilpotent cone defined
in Section 4. Singular points correspond then to fixed points of the C∗ action on
Mξ(r, d, L)×C, i.e. Hitchin pairs (E, φ) for which there is a p–th root of the unity ζ
such that (E, φ, 0) ∼= (E, ζpφ, ζp ·0). These pairs were identified by Simpson [Si1, Si3]:

Let f : E −→ E be the automorphism such that fφ = ζpφf . The coefficients of
the characteristic polynomial of f are holomorphic functions on X , hence constant,
so the eigenvalues are constant. This gives a decomposition E =

⊕
λEλ where

Eλ = ker(f − λ)n. Since f is an isomorphism λ 6= 0. Now (f − ζpλ)
nφ = ζnp φ(f − λ)n

so φmaps the eigenspace Eλ to the eigenspace Eζpλ. We get then a chain of eigenvalues
λ, ζpλ, . . . , ζ

p−1
p λ and, ζppλ becomes again an eigenvalue. It gives a decomposition of

(E, φ) in a similar way to a Hodge bundle, except for that the indexing is by a cyclic
group,

Eλ2
// Eλ3

""EE
EE

Eλ1

::vvvv

Eλ4

nnEλp−1

ccHHHH

Such a Higgs bundle is called a cyclotomic Hodge bundle by Simpson and we write it
as (E = ⊕λ∈Cp

, φλ), where Cp denotes the cyclic group of order p.

We can consider such pairs as forming subvarieties of M . In order to estimate
their codimension, we study their space of deformations. The deformation complex
(2) gives us the following deformation complex for a cyclotomic Hodge bundle (E =
⊕λ∈Cp

, φλ):

C•
λk

:
⊕

λk=λj−λi

Hom (Eλi
, Eλj

) −→
⊕

λk+1=λj−λi

Hom (Eλi
, Ej).

As in Section 5, the tangent space at those points has a decomposition

H1(C•(E, φ)) = H1(C•
λk
(E, φ)).

The dimension of the singular locus satisfies

dim(Sing(M)) ≤ dimTSing(M) = dimH1(C•
e ),

where e is the neutral element in Cp. Therefore the codimension satisfies

codim (Sing(M) ≥ dimH1(C•
λ6=e).

The computations in Proposition 5.2 and Proposition 5.4 hold again for the cyclotomic
Hodge bundles. This gives the estimate for the codimension of the singular locus. �
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