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REPRESENTATIONS OF SURFACE GROUPSIN REAL SYMPLECTIC GROUPSOSCAR GARCÍA-PRADA, PETER B. GOTHEN, AND IGNASI MUNDET I RIERAAbstrat. In this paper we study the moduli spae of representations of a surfae group(i.e., the fundamental group of a losed oriented surfae) in the real sympleti group
Sp(2n, R). The moduli spae is partitioned by an integer invariant, alled the Toledo in-variant. This invariant is bounded by a Milnor�Wood type inequality. Our main result is aount of the number of onneted omponents of the moduli spae of maximal representa-tions, i.e. representations with maximal Toledo invariant. Our approah uses non-abelianHodge theory through the orrespondene of the moduli spae of representations withthe moduli spae of polystable Sp(2n, R)-Higgs bundles. A key step is provided by thedisovery of new disrete invariants of maximal representations. These new invariantsarise from an identi�ation, in the maximal ase, of the moduli spae of Sp(2n, R)-Higgsbundles with a moduli spae of twisted Higgs bundles for the group GL(n, R). In twoappendies we develop a Hithin�Kobayashi orrespondene in the generality required forthe appliation of Higgs bundle theory to the problem at hand. This inludes a generalstudy of the notion of polystability for G-Higgs bundles for a real redutive Lie group G.
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Sp(2n,R). Given a representation of π1(X) in Sp(2n,R) there is an integer, often referredto as the Toledo invariant, assoiated to it. This integer an be obtained geometriallyby onsidering the �at Sp(2n,R)-bundle orresponding to the representation and takinga redution of the struture group of the underlying smooth vetor bundle to U(n) �a maximal ompat subgroup of Sp(2n,R). The degree of the resulting U(n)-bundle isthe Toledo invariant (this is well de�ned beause Sp(2n,R)/U(n) is ontratible, so allredutions of the struture group from Sp(2n,R) to U(n) are homotopi and hene de�neisomorphi omplex vetor bundles). As shown by Turaev [53℄ the Toledo invariant d of arepresentation satis�es the inequality(1.1) |d| ≤ n(g − 1),where g is the genus of the surfae. When n = 1, one has Sp(2,R) ∼= SL(2,R), the Toledoinvariant oinides with the Euler lass of the SL(2,R)-bundle, and (1.1) is the lassialinequality of Milnor [37℄ whih was later generalized by Wood [55℄. We shall follow ustomand refer to (1.1) as as the Milnor�Wood inequality.Given two representations, a basi question to ask is whether one an be ontinuouslydeformed into the other. Put in a more preise way, we are asking for the onnetedomponents of the spae of representations

Hom(π1(X), Sp(2n,R)).As shown in [24℄, this spae has the same number of onneted omponents as the modulispae, or harater variety,
R(π1(X), Sp(2n,R)) = Hom+(π1(X), Sp(2n,R))/ Sp(2n,R)



REPRESENTATIONS OF SURFACE GROUPS 3of redutive representations ρ : π1(X)→ Sp(2n,R), modulo the natural equivalene givenby the ation of Sp(2n,R) by overall onjugation. The notation �Hom+� refers to redutiverepresentations, i.e., those whose image has redutive Zariski losure. Replaing Hom by
Hom+ is justi�ed by the fat that the quotient spae Hom+(π1(X), Sp(2n,R))/ Sp(2n,R)is Hausdor�, whereas Hom+(π1(X), Sp(2n,R))/ Sp(2n,R) is not Hausdor� in general (seeTheorem 11.4 in [43℄).The Toledo invariant desends to the quotient so, for any d satisfying (1.1), we an de�ne

Rd(π1(X), Sp(2n,R)) ⊂ R(π1(X), Sp(2n,R))to be the subspae of representations with Toledo invariant d. For ease of notation, for theremaining part of the Introdution, we shall write Rd for Rd(π1(X), Sp(2n,R)) and R for
R(π1(X), Sp(2n,R)). Sine the Toledo invariant varies ontinuously with the representa-tion, the subspae Rd is a union of onneted omponents, and our basi problem is thatof ounting the number of onneted omponents of Rd for d satisfying (1.1). This hasbeen done for n = 1 by Goldman [25, 28℄ and Hithin [31℄, and for n = 2 in [29℄ (in theases d = 0 and |d| = 2g − 2) and [24℄ (in the ases |d| < 2g − 2). In this paper we ountthe number of onneted omponents of Rd for n > 2 when d = 0 and |d| = n(g−1) � themaximal value allowed by the Milnor�Wood inequality. Our main result is the following(Theorem 8.7 below).Theorem 1.1. Let X be a ompat oriented surfae of genus g. Let Rd be the modulispae of redutive representations of π1(X) in Sp(2n,R) with Toledo invariant d. Let
n ≥ 3. Then(1) R0 is non-empty and onneted;(2) R±n(g−1) has 3.22g non-empty onneted omponents.The main tool we employ to ount onneted omponents is the theory of Higgs bundles,as pioneered by Hithin [31℄ for SL(2,R) = Sp(2,R). In the following we outline the mainfeatures of the theory whih make it relevant to our problem � muh more detail will beprovided in the body of the paper. We �x a omplex struture on X endowing it with astruture of a ompat Riemann surfae, whih we will denote, abusing notation, also byX.An Sp(2n,R)-Higgs bundle over X is a triple (V, β, γ) onsisting of a rank n holomorphivetor bundle V and holomorphi setions β ∈ H0(X,S2V ⊗K) and γ ∈ H0(X,S2V ∗⊗K),where K is the anonial line bundle of X. The setions β and γ are often referred to asHiggs �elds. Looking at X as an algebrai urve, algebrai moduli spaes for Sp(2n,R)-Higgs bundle exist as a onsequene of the work of Shmitt [44, 45℄. Fixing d ∈ Z, wedenote by Md the moduli spae of Sp(2n,R)-Higgs bundles on X with deg V = d. Asusual, one must introdue an appropriate stability ondition (with related onditions ofpoly- and semistability) in order to have good moduli spaes. Thus Md parametrizesisomorphism lasses of polystable Sp(2n,R)-Higgs bundles. A basi result of non-abelianHodge theory, growing out of the work of Corlette [17℄, Donaldson [19℄, Hithin [31℄ andSimpson [47, 48, 49, 50℄, is the following (Theorem 2.28 below).Theorem 1.2. The moduli spaes Rd andMd are homeomorphi.An essential part of the proof of this Theorem follows from a Hithin�Kobayashi or-respondene between polystable Sp(2n,R)-Higgs bundles and solutions to ertain gaugetheoreti equations, known as Hithin's equations, for a triple (A, β, γ). Here A is a smoothunitary onnetion on a smooth omplex vetor bundle of rank n and degree d, and β and



4 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA
γ are smooth ounterparts to the holomorphi setions de�ned above. Under the orre-spondene, A is the Chern onnetion on the the holomorphi bundle V introdued aboveendowed with a suitable Hermitian metri whih is an analogue for Higgs bundles of theHermite�Einstein metri. In the generality required for stable Sp(2n,R)-Higgs bundles,the Hithin�Kobayashi orrespondene is provided by the general theory of [10℄. However,in that paper no proper attention was given to the ase of polystable (non-stable) pairs ingeneral, and we take the opportunity to �ll this gap in the present paper.Using the homeomorphism Rd

∼=Md, our problem is redued to studying the onnet-edness properties of Md. This is done by using the Hithin funtional. This is a propernon-negative funtion whih is de�ned on Md using the solution to Hithin's equations,as follows:(1.2) f : Md → R,

(A, β, γ) 7→ 1
2
‖β‖2 + 1

2
‖γ‖2.Here ‖·‖ is the L2-norm obtained by using the Hermitian metri in V whose Chern on-netion gives a solution to Hithin equations and integrating over X. This funtion arisesas the moment map for the Hamiltonian irle ation on the moduli spae obtained bymultiplying the Higgs �eld by an element of U(1). It was proved by Hithin [31, 32℄ that

f is proper, and this implies that f has a mimimun on eah onneted omponent ofMd.Using this fat, our problem essentially redues to haraterizing the subvariety of minimaof the Hithin funtional and studying its onnetedness properties.While we haraterize the minima for every value of d satisfying the Milnor�Woodinequality (see Theorem 5.10), we only arry out the full programme for d = 0 and |d| =
n(g − 1), the extreme values of d. For d = 0, the subvariety of minima of the Hithinfuntional onM0 oinides with the set of Higgs bundles (V, β, γ) with β = γ = 0. This,in turn, an be identi�ed with the moduli spae of polystable vetor bundles of rank n anddegree 0. Sine this moduli spae is onneted by the results of Narasimhan�Seshadri [39℄,
M0 is onneted and hene R0 is onneted.The analysis for the maximal ase, |d| = n(g − 1), is far more involved and interesting.It turns out that in this ase one of the Higgs �elds β or γ for a semistable Higgs bundle
(V, β, γ) beomes an isomorphism. Whether it is β or γ, atually depends on the signof the Toledo invariant. Sine the map (V, β, γ) 7→ (V ∗, γt, βt) de�nes an isomorphism
M−d ∼= Md, there is no loss of generality in assuming that 0 ≤ d ≤ n(g − 1). Supposethat d = n(g − 1). Then γ : V → V ∗ ⊗ K is an isomorphism (see Proposition 3.22).Sine γ is furthermore symmetri, it equips V with a K-valued nondegenerate quadratiform. In order to have a proper quadrati bundle, we �x a square root L0 = K1/2 ofthe anonial bunle, and de�ne W = V ∗ ⊗ L0. Then Q := γ ⊗ IL−1

0
: W ∗ → W is asymmetri isomorphism de�ning an orthogonal struture on W , in other words, (W,Q) isan O(n,C)-holomorphi bundle. The K2-twisted endomorphism ψ : W →W ⊗K2 de�nedby ψ = (γ ⊗ IK⊗L0

) ◦ β ⊗ IL0
is Q-symmetri and hene (W,Q, ψ) de�nes what we all a

K2-twisted GL(n,R)-Higgs pair, from whih we an reover the original Sp(2n,R)-Higgsbundle. The main result is the following (Theorem 4.4 below).Theorem 1.3. Let Mmax be the moduli spae of polystable Sp(2n,R)-Higgs bundles with
d = n(g−1), and letM′ be the moduli spae of polystable K2-twisted GL(n,R)-Higgs pairs.The map (V, β, γ) 7→ (W,Q, ψ) de�nes an isomorphism of omplex algebrai varieties

Mmax
∼=M′.



REPRESENTATIONS OF SURFACE GROUPS 5We refer to this isomorphism as the Cayley orrespondene. This name is motivatedby the geometry of the bounded symmetri domain assoiated to the Hermitian symmet-ri spae Sp(2n,R)/U(n). The Cayley transform de�nes a biholomorphism between thisdomain and a tube type domain de�ned over the symmetri one GL(n,R)/O(n) � theSiegel upper half-spae. In fat, there is a similar orrespondene to that given in Theo-rem 1.3 for every semisimple Lie group G whih, like Sp(2n,R), is the group of isometriesof a Hermitian symmetri spae of tube type (see [8℄ for a survey on this subjet).A key point is that the Cayley orrespondene brings to the surfae new topologialinvariants, hidden a priori, whih are naturally attahed to an Sp(2n,R)-Higgs bundlewith maximal Toledo invariant. These are the �rst and seond Stiefel-Whitney lasses
(w1, w2) of a redution to O(n) of the O(n,C)-bundle de�ned by (W,Q). It turns out thatthere is a onneted omponent for eah possible value of (w1, w2), ontaning K2-twisted
GL(n,R)-Higgs pairs (W,Q, ψ) with ψ = 0. This aounts for 2.22g of the 3.22g onnetedomponents of Mmax. Thus it remains to aount for the 22g �extra� omponents. Asalready mentioned, the group Sp(2n,R) is the group of isometries of a Hermitian symmetrispae, but it also has the property of being a split real form. In fat, up to �nite overings,it is the only Lie group with this property. In [32℄ Hithin shows that for every semisimplesplit real Lie group G, the moduli spae of redutive representations of π1(X) in G has atopologial omponent whih is isomorphi to RdimG(2g−2), and whih naturally ontainsTeihmüller spae. Indeed, when G = SL(2,R), this omponent an be identi�ed withTeihmüller spae, via the Riemann uniformization theorem. Sine Sp(2n,R) is split, themoduli spae for Sp(2n,R) must have a Hithin omponent. It turns out that there are
22g isomorphi Hithin omponents (this is atually true for arbitrary n). As follows fromHithin's onstrution, the K2-twisted Higgs pairs (W,Q, ψ) in the Hithin omponent allhave ψ 6= 0.From many points of view maximal representations are the most interesting ones. Theyhave been the objet of intense study in reent years, using methods from diverse branhesof geometry, and it has beome lear that they enjoy very speial properties. In partiular,at least in many ases, maximal representations have a lose relationship to geometristrutures on the surfae. The prototype of this philosophy is Goldman's theorem [25,27℄ that the maximal representations in SL(2,R) are exatly the Fuhsian ones. In thefollowing, we brie�y mention some results of this kind.Using bounded ohomology methods, maximal representations in general Hermitian typegroups have been studied by Burger�Iozzi [11, 12℄ and Burger�Iozzi�Wienhard [14, 15,16℄. Among many other results, they have given a very general Milnor�Wood inequalityand they have shown that maximal representations are disrete, faithful and ompletelyreduible. One onsequene of this is that the restrition to redutive representations isunneessary in the ase of the moduli spae Rmax of maximal representations. Building onthis work and the work of Labourie [36℄, Burger�Iozzi�Labourie�Wienhard [13℄ have shownthat maximal representations in Sp(2n,R) are Anosov (in the sense of [36℄). Furthermore,it has been shown that the ation of the mapping lass group on Rmax is proper, byWienhard [54℄ (for lassial simple Lie groups of Hermitian type), and by Labourie [35℄(for Sp(2n,R)), who also proves further geometri properties of maximal representationsin Sp(2n,R).From yet a di�erent perspetive, representations in the Teihmüller omponent have beenstudied in the work on higher Teihmüller theory of Fok�Gonharov [21℄, using methods



6 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAof tropial geometry. In partiular, the fat that representations in the Teihmüller om-ponent for Sp(2n,R) are faithful and disrete also follows from their workThus, while Higgs bundle tehniques are very e�ient in the study of topologial prop-erties of the moduli spae (like ounting omponents), these other approahes have beenmore powerful in the study of speial properties of individual representations. It wouldbe very interesting indeed to gain a better understanding of the relation between thesedistint methods.We desribe now brie�y the ontent of the di�erent setions of the paper.In Appendix A we review the general theory of L-twisted pairs and the Hithin�Kobayashiorrespondene over a ompat Riemann surfae X. By an L-twisted pair over X we meana pair (E,ϕ) onsisting of a holomorphi HC-prinipal bundle, where HC is a omplexredutive Lie group and ϕ is a holomorphi setion of E(B)⊗L, where E(B) is the vetorbundle assoiated to a omplex representation HC → GL(B) and L is a holomorphi linebundle over X.Appendix B deals with L-twisted G-Higgs pairs over a ompat Riemann surfae X.Let G be a redutive real Lie group with maximal ompat subgroup H ⊂ G, let L bea holomorphi line bundle over X and let g = h ⊕ m be the Cartan deomposition of g.Then an L-twisted G-Higgs pair is a pair (E,ϕ), onsisting of a holomorphi HC-prinipalbundle E over X and a holomorphi setion ϕ of E(mC) ⊗ L. Here E(mC) is the mC-bundle assoiated to E via the isotropy representation HC → GL(mC). These objets area partiular ase of the general twisted pairs introdued in Appendix A. We study howthe stability ondition stated in general in Appendix A simpli�es for L-twisted G-Higgspairs for various groups relevant to our study. This ertainly inludes G = Sp(2n,R), butalso other groups that naturally ontain Sp(2n,R), like Sp(2n,C), and SL(2n,C), as wellas GL(n,R), whih is the group of isometries of the one of the tube domain assoiated to
Sp(2n,R).In Setion 2 we study non-abelian Hodge theory over a ompat Riemann surfae Xfor a general onneted semisimple Lie group G. We introdue G-Higgs bundles over X� these are simply K-twisted G-Higgs pairs, where K is the anonial line bundle over
X �, and study their deformations and their moduli spaes. An important result is theorrespondene between the moduli spae of polystable G-Higgs bundles and the modulispae of solutions to the Hithin equations. While this is well-known when G is atuallyomplex [31, 47, 48℄ or ompat [39, 41℄, a proof for the non-ompat non-omplex asefollows from [10℄ for stable G-Higgs bundles. In this paper, we prove the general ase ofa polystable G-Higgs bundle. The result is a onsequene of the more general Hithin�Kobayashi orrespondene given in Theorem A.17.We then introdue the moduli spae of redutive representations of the fundamentalgroup of a ompat Riemann surfae in a Lie group G and, using Corlette's existene the-orem of harmoni metris [17℄, we establish the orrespondene between this moduli spaeand the moduli spae of polystable G-Higgs bundles when G is onneted and semisimple.In Setion 3, we speialize the non-abelian Hodge theory orrespondene of Setion 2to G = Sp(2n,R) � our ase of interest in this paper. Using tehnial results given inAppendix B, we prove basi fats about the moduli spae of Sp(2n,R)-Higgs bundles,inluding the Milnor�Wood inequality. To do this, we study and exploit the relationbetween the polystability of a Sp(2n,R)-Higgs bundles and the SL(2n,C)-Higgs bundlenaturally assoiated to it.



REPRESENTATIONS OF SURFACE GROUPS 7In Setion 4 we study the Cayley orrespondene between Sp(2n,R)-Higgs bundles withmaximal Toledo invariant and K2-twisted GL(n,R)-Higgs pairs.The rest of the paper is mostly devoted to the study of the onnetedness propertiesof the moduli spae of Sp(2n,R)-Higgs bundles and, in partiular, to prove Theorem 8.3.In Setion 5 we introdue the Hithin funtional on the moduli spae of Sp(2n,R)-Higgsbundles and haraterize its minima. We then use this and the Cayley orrespondene ofSetion 4 to ount the number of onneted omponents of the moduli spae of Sp(2n,R)-Higgs bundles for d = 0 and |d| = n(g − 1). The proof of the haraterization of theminima is split in two ases: the ase of minima in the smooth lous of the moduli spae,given in Setion 6 and the ase of the remaining minima, treated in Setion 7.The results of this paper have been announed in several onferenes over the last fouryears or so, while several preliminary versions of this paper have been irulating. The mainresults, together with analogous results for other groups of Hermitian type have appearedin the review paper [8℄. The authors apologize for having taken so long in produing this�nal version.Aknowledgements. The authors thank Steven Bradlow, Mar Burger, Bill Goldman, NigelHithin, Alessandra Iozzi, François Labourie, S. Ramanan, Domingo Toledo, and AnnaWienhard for numerous useful onversations and shared insights.2. G-Higgs bundles and surfae group representations2.1. G-Higgs bundles. Let G be a real redutive Lie group, let H ⊂ G be a maximalompat subgroup and let g = h⊕m be a Cartan deomposition, so that the Lie algebrastruture on g satis�es
[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.The group H ats linearly on m through the adjoint representation, and this ation extendsto a linear holomorphi ation of HC on mC = m⊗ C � the isotropy representation.Let X be a ompat Riemann surfae and let K be its anonial line bundle.De�nition 2.1. A G-Higgs bundle over X is a pair (E,ϕ) onsisting of a prinipalholomorphi HC-bundle E over X and a holomorphi setion of E(mC)⊗K, where E(mC)is the mC-bundle assoiated to E via the isotropy representation.In other words, a G-Higgs bundle is a K-twisted G-Higgs pair in the sense of Appen-dix B. Thus, as for any twisted G-Higgs pair, α-stability, semistability and polystabilityare de�ned for any α ∈ ih ∩ z, where z is the entre of hC. However, in order to relate

G-Higgs bundles to representations of the fundamental group of X (or ertain entral ex-tension of the fundamental group) in G, one requires α to lie also in the entre of g. Sinewe will be mostly onerned with G-Higgs bundles for G semisimple, we will take α = 0,and we will simply talk about stability of a G-Higgs bundle, meaning 0-stability.When G is ompat m = 0 and hene a G-Higgs bundle is simply a holomorphi prinipal
GC-bundle. When G is omplex, if U ⊂ G is a maximal ompat subgroup, the Cartandeomposition of g is g = u + iu, where u is the Lie algebra of U . Then a G-Higgs bundle
(E,ϕ) onsists of a a holomorphiG-bundle E and ϕ ∈ H0(X,E(g)⊗K), where E(g) is the
g-bundle assoiated to E via the adjoint representation. These are the objets introduedoriginally by Hithin [31℄ when G = SL(2,C).



8 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAHeneforth, we shall assume that G is onneted. Then the topologial lassi�ation of
HC-bundles E on X is given by a harateristi lass c(E) ∈ π1(H

C) = π1(H) = π1(G).For a �xed d ∈ π1(G), the moduli spae of polystable G-Higgs bundles Md(G) isthe set of isomorphism lasses of polystable G-Higgs bundles (E,ϕ) suh that c(E) = d.When G is ompat, the moduli spae Md(G) oinides with Md(G
C), the moduli spaeof polystable GC-bundles with topologial invariant d.The moduli spaeMd(G) has the struture of a omplex analyti variety. This an beseen by the standard slie method (see, e.g., Kobayashi [34℄). Geometri Invariant Theoryonstrutions are available in the literature for G ompat algebrai (Ramanathan [42℄)and for G omplex redutive algebrai (Simpson [49, 50℄). The ase of a real form of aomplex redutive algebrai Lie group follows from the general onstrutions of Shmitt[44, 45℄. We thus have the following.Theorem 2.2. The moduli spaeMd(G) is a omplex analyti variety, whih is algebraiwhen G is algebrai.2.2. Deformation theory of G-Higgs bundles. In this setion we reall some standardfats about the deformation theory of G-Higgs bundles. A onvenenient referene for thismaterial is Biswas�Ramanan [2℄.De�nition 2.3. Let (E,ϕ) be a G-Higgs bundle. The deformation omplex of (E,ϕ) isthe following omplex of sheaves:(2.3) C•(E,ϕ) : E(hC)

ad(ϕ)
−−−→ E(mC)⊗K.This de�nition makes sense beause φ is a setion of E(mC)⊗K and [mC, hC] ⊆ mC.The following result generalizes the fat that the in�nitesimal deformation spae of aholomorphi vetor bundle V is isomorphi to H1(End V ).Proposition 2.4. The spae of in�nitesimal deformations of a G-Higgs bundle (E,ϕ) isnaturally isomorphi to the hyperohomology group H1(C•(E,ϕ)).In partiular, if (E,ϕ) represents a non-singular point of the moduli spaeMd(G) thenthe tangent spae at this point is anonially isomorphi to H1(C•(E,ϕ)).For any G-Higgs bundle there is a natural long exat sequene

0→ H0(C•(E,ϕ))→ H0(E(hC))
ad(ϕ)
−−−→ H0(E(mC)⊗K)

→ H1(C•(E,ϕ))→ H1(E(hC))
ad(ϕ)
−−−→ H1(E(mC)⊗K)→ H2(C•(E,ϕ))→ 0.

(2.4)As an immediate onsequene we have the following result.Proposition 2.5. The in�nitesimal automorphism spae aut(E,ϕ) de�ned in Setion A.7is isomorphi to H0(C•(E,ϕ)).Let dι : hC → End(mC) be the derivative at the identity of the omplexi�ed isotropyrepresentation ι = Ad|HC : HC → Aut(mC) (f. Setion B.1). Let ker dι ⊆ hC be its kerneland let E(ker dι) ⊆ E(hC) be the orresponding subbundle. Then there is an inlusion
H0(E(ker dι)) →֒ H0(C•(E,ϕ)).De�nition 2.6. A G-Higgs bundle (E,ϕ) is said to be in�nitesimally simple if thein�nitesimal automorphism spae H0(C•(E,ϕ)) is isomorphi to H0(E(ker dι ∩ z)).



REPRESENTATIONS OF SURFACE GROUPS 9Similarly, we have an inlusion ker ι ∩ Z(HC) →֒ Aut(E, φ).De�nition 2.7. AG-Higgs bundle (E,ϕ) is said to be simple ifAut(E,ϕ) = ker ι∩Z(HC),where Z(HC) is the entre of HC.As a onsequene of Propositions 2.5 and A.7 we have the following.Proposition 2.8. Any stable G-Higgs bundle (E,ϕ) with ϕ 6= 0 is in�nitesimally simple.Remark 2.9. If ker dι = 0, then (E,ϕ) is in�nitesimally simple if and only if the vanishing
H0(C•(E,ϕ)) = 0 holds. A partiular ase of this situation is when the group G is aomplex semisimple group: indeed, in this ase the isotropy representation is just theadjoint representation.Next we turn to the question of the vanishing of H2 of the deformation omplex. Inorder to deal with this question we shall use Serre duality for hyperohomology (see e.g.Theorem 3.12 in [33℄), whih says that there are natural isomorphisms(2.5) Hi(C•(E,ϕ)) ∼= H2−i(C•(E,ϕ)∗ ⊗K)∗,where the dual of the deformation omplex (2.3) is

C•(E,ϕ)∗ : E(mC)⊗K−1 −ad(ϕ)
−−−−→ E(hC).An important speial ase of this is when G is a omplex group.Proposition 2.10. Assume that G is a omplex group. Then there is a natural isomor-phism

H2(C•(E,ϕ)) ∼= H0(C•(E,ϕ))∗.Proof. This is immediate from (2.5) and the fat that the the deformation omplex isdual to itself, exept for a sign in the map whih does not in�uene the ohomology (f.Setion 2.1):(2.6) C•(E,ϕ)∗ ⊗K : E(g)
−ad(ϕ)
−−−−→ E(g)⊗K.

�Remark 2.11. The isomorphism H1(C•(E,ϕ)) ∼= H1(C•(E,ϕ))∗ is also important: it givesrise to the natural omplex sympleti struture on the moduli spae of G-Higgs bundlesfor omplex groups G.We have the following key observation (f. (2.6); again we are ignoring the irrelevanthange of sign in the dual omplex).Proposition 2.12. Let G be a real group and let GC be its omplexi�ation. Let (E,ϕ) bea G-Higgs bundle. Then there is an isomorphism of omplexes:
C•
GC(E,ϕ) ∼= C•

G(E,ϕ)⊕ C•
G(E,ϕ)∗ ⊗K,where C•

GC(E,ϕ) denotes the deformation omplex of (E,ϕ) viewed as a GC-Higgs bundle,and C•
G(E,ϕ) denotes the deformation omplex of (E,ϕ) viewed as a G-Higgs bundle.Corollary 2.13. With the same hypotheses as in the previous Proposition, there is anisomorphism

H0(C•
GC(E,ϕ)) ∼= H0(C•

G(E,ϕ))⊕H2(C•
G(E,ϕ))∗.



10 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProof. Immediate from the Proposition and Serre duality (2.5). �Proposition 2.14. Let G be a real semisimple group and let GC be its omplexi�ation.Let (E,ϕ) be a G-Higgs bundle whih is stable viewed as a GC-Higgs bundle. Then thevanishing
H0(C•

G(E,ϕ)) = 0 = H2(C•
G(E,ϕ))holds.Proof. Sine G is semisimple, so is GC. Hene, in view of Remark 2.9, the result follows atone from Corollary 2.13 and Proposition 2.8. �The following result on smoothness of the moduli spae an be proved, for example,from the standard slie method onstrution referred to above.Proposition 2.15. Let (E,ϕ) be a stable G-Higgs bundle. If (E,ϕ) is simple and

H2(C•
G(E,ϕ)) = 0,then (E,ϕ) is a smooth point in the moduli spae. In partiular, if (E,ϕ) is a simple G-Higgs bundle whih is stable as a GC-Higgs bundle, then it is a smooth point in the modulispae.Suppose now that we are in the situation of Proposition 2.15. Then a loal uni-versal family exists (see [45℄) and hene the dimension of the omponent of the mod-uli spae ontaining (E,ϕ) equals the dimension of the in�nitesimal deformation spae

H1(C•
G(E,ϕ)). In view of Proposition 2.8, Remark 2.9 and Proposition 2.16, we also have

H0(C•
G(E,ϕ)) = H2(C•

G(E,ϕ)) = 0. So we have H1(C•
G(E,ϕ)) = −χ(C•

G(E,ϕ)). A re-markable fat on this equality is that, whereas the left hand side may depend on the hoieof (E, φ), the right hand side is independent of it, as we will see in the proposition below.We shall refer to −χ(C•
G(E,ϕ)) as the expeted dimension of the moduli spae.Proposition 2.16. Let G be semisimple. Then the expeted dimension of the moduli spaeof G-Higgs bundles is (g − 1) dimGC.Proof. Let (E,ϕ) be any G-Higgs bundle. The long exat sequene (2.4) gives us

χ(C•
G(E,ϕ))− χ(E(hC)) + χ(E(mC)⊗K) = 0.Serre duality implies that χ(E(mC)⊗K) = χ(E(mC)) and from the Riemann�Roh formulawe therefore obtain

−χ(C•
G(E,ϕ)) = deg(E(mC)) + (g − 1) rk(E(mC))−

(
deg(E(hC)) + (1− g) rk(E(hC)).Any invariant pairing on gC (e.g. the Killing form) indues isomorphisms E(mC) ≃ E(mC)∗and E(hC) ≃ E(hC)∗. Hene deg(E(mC)) = deg(E(hC)) = 0, whene the result. Inpartiular, the value of −χ(C•

G(E,ϕ)) is independent of the hoie of G-Higgs bundle
(E,ϕ). �Remark 2.17. Note that the atual dimension of the moduli spae (if non-empty) an besmaller than the expeted dimension. This happens for example when G = SU(p, q) with
p 6= q and maximal Toledo invariant (this follows from the study of U(p, q)-Higgs bundlesin [6℄) � in this ase there are in fat no stable SU(p, q)-Higgs bundles.



REPRESENTATIONS OF SURFACE GROUPS 112.3. G-Higgs bundles and Hithin equations. Let G be onneted semisimple realLie group. Let (E,ϕ) be a G-Higgs bundle over a ompat Riemann surfae X. By aslight abuse of notation, we shall denote the C∞-objets underlying E and ϕ by the samesymbols. In partiular, the Higgs �eld an be viewed as a (1, 0)-form: ϕ ∈ Ω1,0(E(mC)).Let τ : Ω1(E(gC))→ Ω1(E(gC)) be the ompat onjugation of gC ombined with omplexonjugation on omplex 1-forms. Given a redution h of struture group to H in thesmooth HC-bundle E, we denote by Fh the urvature of the unique onnetion ompatiblewith h and the holomorphi struture on E.Theorem 2.18. There exists a redution h of the struture group of E from HC to Hsatisfying the Hithin equation
Fh − [ϕ, τ(ϕ)] = 0if and only if (E,ϕ) is polystable.Theorem 2.18 was proved by Hithin [31℄ for G = SL(2,C) and Simpson [47, 48℄ foran arbitrary semisimple omplex Lie group G. The proof for an arbitrary redutive realLie group G when (E,ϕ) is stable is given in [10℄, and the general polystable ase fol-lows as a partiular ase of the more general Hithin�Kobayashi orrespondene given inTheorem A.17.From the point of view of moduli spaes it is onvenient to �x a C∞ prinipal H-bundle EH with �xed topologial lass d ∈ π1(H) and study the moduli spae of so-lutions to Hithin's equations for a pair (A,ϕ) onsisting of an H-onnetion A and

ϕ ∈ Ω1,0(X,EH(mC)):(2.7) FA − [ϕ, τ(ϕ)] = 0
∂̄Aϕ = 0.Here dA is the ovariant derivative assoiated to A and ∂̄A is the (0, 1) part of dA, whihde�nes a holomorphi struture on EH . The gauge group H of EH ats on the spae ofsolutions and the moduli spae of solutions is

Mgauge
d (G) := {(A,ϕ) satisfying (2.7)}/H .Now, Theorem 2.18 an be reformulated as follows.Theorem 2.19. There is a homeomorphism

Md(G) ∼=M
gauge
d (G)To explain this orrespondene we interpret the moduli spae ofG-Higgs bundles in termsof pairs (∂̄E , ϕ) onsisting of a ∂̄-operator (holomorphi struture) on the HC-bundle EHCobtained from EH by the extension of struture group H ⊂ HC, and ϕ ∈ Ω1,0(X,EHC(mC))satisfying ∂̄Eϕ = 0. Suh pairs are in orrespondene with G-Higgs bundles (E,ϕ), where

E is the holomorphi HC-bundle de�ned by the operator ∂̄E on EHC and ∂̄Eϕ = 0 isequivalent to ϕ ∈ H0(X,E(mC) ⊗ K). The moduli spae of polystable G-Higgs bundles
Md(G) an now be identi�ed with the orbit spae

{(∂̄E, ϕ) : ∂̄Eϕ = 0, (∂̄E , ϕ) de�nes a polystable G-Higgs bundle}/H C,where H C is the gauge group of EHC, whih is in fat the omplexi�ation of H . Sinethere is a one-to-one orrespondene between H-onnetions on EH and ∂̄-operators on
EHC, the orrespondene given in Theorem 2.19 an be interpreted by saying that in the
H C-orbit of a polystable G-Higgs bundle (∂̄E0

, ϕ0) we an �nd another Higgs bundle
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(∂̄E , ϕ) whose orresponding pair (dA, ϕ) satis�es FA− [ϕ, τ(ϕ)] = 0, and this is unique upto H-gauge transformations.The in�nitesimal deformation spae of a solution (A,ϕ) to Hithin's equations an bedesribed as the �rst ohomology group of a ertain ellipti deformation omplex. To dothis, we follow Hithin [31, � 5℄. The linearized equations are:

dA(Ȧ)− [ϕ̇, τ(ϕ)]− [ϕ, τ(ϕ̇)] = 0,

∂̄Aϕ̇+ [Ȧ0,1, ϕ] = 0,for Ȧ ∈ Ω1(X,EH(h)) and ϕ̇ ∈ Ω1,0(X,EH(mC)). The in�nitesimal ation of
ψ ∈ Lie H = Ω0(X,EH(h))is

(A, φ) 7→ (dAψ, [φ, ψ]).Thus the deformation theory of Hithin's equations is governed by the (ellipti) omplex
C•(A,ϕ) : Ω0(X,EH(h))

d0−→ Ω1(X,EH(h))⊕ Ω1,0(X,EH(mC))

d1−→ Ω2(X,EH(h))⊕ Ω1,1(X,EH(mC)),where the maps are
d0(ψ) = (dAψ, [ϕ, ψ])and

d1(ψ) = (dA(Ȧ)− [ϕ̇, τ(ϕ)]− [φ, τ(ϕ̇)], ∂̄Aϕ̇+ [Ȧ0,1, ϕ]).The fat that (A,ϕ) is a solution to the equations, together with the gauge invariane ofthe equations, guarantees that d1◦d0 = 0. Denote by H i(C•(A,ϕ)) the ohomology groupsof the gauge theory deformation omplex C•(A,ϕ).Let
Aut(A,ϕ) := {h ∈H : h∗A = A, and ι(h)(ϕ) = ϕ}.Here ι : H → Aut(m) is the isotropy representation. Clearly Z(H) ∩ ker ι ⊂ Aut(A,ϕ).De�nition 2.20. Let (A,ϕ) be a solution of (2.7). We say that (A,ϕ) is irreduible ifand only if Aut(A,ϕ) = Z(H) ∩ ker ι. We say that (A,ϕ) is in�nitesimally irreduibleif the Lie algebra of Aut(A,ϕ), whih is identi�ed with H0(C•(A,ϕ)) equals Z(h)∩ ker dι.Proposition 2.21. Assume that H0(C•(A,ϕ)) = H2(C•(A,ϕ)) = 0 and that (A,ϕ) isirreduible. ThenMgauge

d is smooth at [A,ϕ] and the tangent spae is
T[A,ϕ]M

gauge
d

∼= H1(C•(A,ϕ)).For a proper understanding of many aspets of the geometry of the moduli spae ofHiggs bundles, one needs to onsider the moduli spae as the gauge theory moduli spae
Mgauge

d (G). On the other hand, the formulation of the deformation theory in terms ofhyperohomology is very onvenient. Fortunately, one has the following.Proposition 2.22. At a smooth point of the moduli spae, there is a natural isomorphismof in�nitesimal deformation spaes
H1(C•(A,ϕ)) ∼= H1(C•(E,ϕ)),where the holomorphi struture on the Higgs bundle (E,ϕ) is given by ∂̄A.



REPRESENTATIONS OF SURFACE GROUPS 13As in Donaldson�Kronheimer [20, � 6.4℄ this an be seen by using a Dolbeault resolu-tion to alulate H1(C•(E,ϕ)) and using harmoni representatives of ohomology lasses,via Hodge theory. For this reason we an freely apply the omplex deformation theorydesribed in Setion 2.2 to the gauge theory situation.The following result is not essential for the present paper but we inlude it here for om-pleteness. It an be dedued from the treatment of the Hithin�Kobayashi orrespondenegiven in Appendix A.Proposition 2.23. Under the orrespondene given by Theorem 2.19, a stable G-Higgsbundle orresponds to an in�nitesimally irreduible solution to Hithin equations, while a
G-Higgs bundle whih is stable and simple is in orrespondene with an irreduible solution.2.4. Surfae group representations. Let X be a losed oriented surfae of genus g andlet

π1(X) = 〈a1, b1, . . . , ag, bg |

g∏

i=1

[ai, bi] = 1〉be its fundamental group. Let G be a onneted redutive real Lie group. By a represen-tation of π1(X) in G we understand a homomorphism ρ : π1(X)→ G. The set of all suhhomomorphisms, Hom(π1(X), G), an be naturally identi�ed with the subset of G2g on-sisting of 2g-tuples (A1, B1 . . . , Ag, Bg) satisfying the algebrai equation ∏g
i=1[Ai, Bi] = 1.This shows that Hom(π1(X), G) is a real analyti variety, whih is algebrai if G is alge-brai.The group G ats on Hom(π1(X), G) by onjugation:

(g · ρ)(γ) = gρ(γ)g−1for g ∈ G, ρ ∈ Hom(π1(X), G) and γ ∈ π1(X). If we restrit the ation to the subspae
Hom+(π1(X), g) onsisting of redutive representations, the orbit spae is Hausdor� (seeTheorem 11.4 in [43℄). By a redutive representation we mean one that omposedwith the adjoint representation in the Lie algebra of G deomposes as a sum of irreduiblerepresentations. If G is algebrai this is equivalent to the Zariski losure of the imageof π1(X) in G being a redutive group. (When G is ompat every representation isredutive.) De�ne the moduli spae of representations of π1(X) in G to be the orbit spae

R(G) = Hom+(π1(X), G)/G.One has the following (see e.g. Goldman [26℄).Theorem 2.24. The moduli spae R(G) has the struture of a real analyti variety, whihis algebrai if G is algebrai and is a omplex variety if G is omplex.Given a representation ρ : π1(X)→ G, there is an assoiated �at G-bundle onX, de�nedas Eρ = X̃ ×ρ G, where X̃ → X is the universal over and π1(X) ats on G via ρ. Thisgives in fat an identi�ation between the set of equivalene lasses of representations
Hom(π1(X), G)/G and the set of equivalene lasses of �at G-bundles, whih in turn isparametrized by the ohomology set H1(X,G). We an then assign a topologial invariantto a representation ρ given by the harateristi lass c(ρ) := c(Eρ) ∈ π1(G) orrespondingto Eρ. To de�ne this, let G̃ be the universal overing group of G. We have an exatsequene

1 −→ π1(G) −→ G̃ −→ G −→ 1



14 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAwhih gives rise to the (pointed sets) ohomology sequene(2.8) H1(X, G̃) −→ H1(X,G)
c
−→ H2(X, π1(G)).Sine π1(G) is abelian the orientation of X de�nes an isomorphism

H2(X, π1(G)) ∼= π1(G),and c(Eρ) is de�ned as the image of E under the last map in (2.8). Thus the lass
c(Eρ) measures the obstrution to lifting Eρ to a �at G̃-bundle, and hene to lifting ρto a representation of π1(X) in G̃. For a �xed d ∈ π1(G), the moduli spae of redutiverepresentations Rd(G) with topologial invariant d is de�ned as the subvariety(2.9) Rd(G) := {[ρ] ∈ R(G) | c(ρ) = d},where as usual [ρ] denotes the G-orbit G · ρ of ρ ∈ Hom+(π1(X), G).One an study deformations of a lass of representations [ρ] ∈ Rd(G) by means of groupohomology (see [26℄). The Lie algebra g is endowed with the struture of a π1(X)-moduleby means of the omposition

π1(X)
ρ
−→ G

Ad
−→ Aut(g).De�nition 2.25. Let ρ : π1(X)→ G be a representation of π1(X) in G. Let ZG(ρ) be theentralizer in G of ρ(π1(X)). We say that ρ is irreduible if and only if it is redutiveand ZG(ρ) = Z(G), where Z(G) is the entre of G. We say that ρ is an in�nitesimallyirreduible representation if it is redutive and LieZG(ρ) = LieZ(G).One has the following basi fats ([26℄).Proposition 2.26. (1) The Zariski tangent spae to Rd(G) at an equivalene lass [ρ]is isomorphi to the ohomology group H1(π1(X), gAd ◦ρ).(2) H0(π1(X), gAd ◦ρ) ∼= LieZG(ρ).(3) H2(π1(X), gAd ◦ρ) ∼= H0(π1(X), gAd ◦ρ)
∗From this one obtains the following ([26℄).Proposition 2.27. Let G be a semisimple Lie group and let ρ : π1(X)→ G be irreduible.Then the equivalene lass [ρ] is a smooth point in Rd(G).This is simply beause ZG(ρ) = Z(G) is �nite and hene

H0(π1(X), gAd ◦ρ) = H2(π1(X), gAd ◦ρ) = 0.An alternative way to study deformations of a representation is by using the orrespond-ing �at onnetion. To explain this, let EG be a C∞ prinipal G-bundle over X with �xedtopologial lass d ∈ π1(G) = π1(H). Let D be a G-onnetion on EG and let FD be itsurvature. If D is �at, i.e. FD = 0, then the holonomy of D around a losed loop in X onlydepends on the homotopy lass of the loop and thus de�nes a representation of π1(X) in
G. This gives an identi�ation1,

Rd(G) ∼= {Redutive G-onnetions D | FD = 0}/G ,1even when G is omplex algebrai, this is merely a real analyti isomorphism, see Simpson [48, 49, 50℄



REPRESENTATIONS OF SURFACE GROUPS 15where, by de�nition, a �at onnetion is redutive if the orresponding representation of
π1(X) in G is redutive, and G is the group of automorphisms of EG � the gauge group.We an now linearize the �atness ondition near a �at onnetion D:

d

dt
F (D + bt)t=0 = D(b)for b ∈ Ω1(X,Ad(E)).Linearize the ation of the gauge group D 7→ g · D = gDg−1. For g(t) = exp(ψt) with

ψ ∈ Ω0(X,Ad(E)),
d

dt
(g(t) ·D)t=0 = D(ψ).Thus the in�nitesimal deformation spae is H1 of the omplex

0→ Ω0(X,E(g))
D
−→ Ω1(X,E(g))

D
−→ Ω2(X,E(g))→ 0.Note that FD = D2 = 0 means that this is in fat a omplex.2.5. Representations and G-Higgs bundles. We assume now that G is onneted andsemisimple. With the notation of the previous setions, we have the following.Theorem 2.28. Let G be a onneted semisimple real Lie group. There is a homeomor-phism Rd(G) ∼= Md(G). Under this homeomorphism, stable G-Higgs bundles orrespondto in�nitesimally irreduible representations, and stable and simple G-Higgs bundles or-respond to irreduible representations.Remark 2.29. On the open subvarieties de�ned by the smooth points of Rd andMd, thisorrespondene is in fat an isomorphism of real analyti varieties.Remark 2.30. There is a similar orrespondene when G is redutive but not semisimple.In this ase, it makes sense to onsider nonzero values of the stability parameter α. Theresulting Higgs bundles an be geometrially interpreted in terms of representations of theuniversal entral extension of the fundamental group of X, and the value of α presribesthe image of a generator of the enter in the representation.The proof of Theorem 2.28 is the ombination of two existene theorems for gauge-theoreti equations. To explain this, let EG be, as above, a C∞ prinipal G-bundle over Xwith �xed topologial lass d ∈ π1(G) = π1(H). Every G-onnetion D on EG deomposesuniquely as

D = dA + ψ,where dA is an H-onnetion on EH and ψ ∈ Ω1(X,EH(m)). Let FA be the urvature of
dA. We onsider the following set of equations for the pair (dA, ψ):(2.10) FA + 1

2
[ψ, ψ] = 0

dAψ = 0
d∗Aψ = 0.These equations are invariant under the ation of H , the gauge group of EH . A theoremof Corlette [17℄, and Donaldson [19℄ for G = SL(2,C), says the following.Theorem 2.31. There is a homeomorphism

{Redutive G-onnetions D | FD = 0}/G ∼= {(dA, ψ) satisfying (2.10)}/H .



16 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAThe �rst two equations in (2.10) are equivalent to the �atness of D = dA + ψ, andTheorem 2.31 simply says that in the G -orbit of a redutive �at G-onnetion D0 we an�nd a �at G-onnetion D = g(D0) suh that if we write D = dA + ψ, the additionalondition d∗Aψ = 0 is satis�ed. This an be interpreted more geometrially in terms ofthe redution h = g(h0) of EG to an H-bundle obtained by the ation of g ∈ G on h0.The equation d∗Aψ = 0 is equivalent to the harmoniity of the π1(X)-equivariant map
X̃ → G/H orresponding to the new redution of struture group h.To omplete the argument, leading to Theorem 2.28, we just need Theorem 2.18 andthe following simple result.Proposition 2.32. The orrespondene (dA, ϕ) 7→ (dA, ψ := ϕ − τ(ϕ)) de�nes a homeo-morphism

{(dA, ϕ) satisfying (2.7)}/H ∼= {(dA, ψ) satisfying (2.10)}/H .3. Sp(2n,R)-Higgs bundles3.1. Sp(2n,R)-Higgs bundles. Let X be a ompat Riemann surfae. The maximalompat subgroup of Sp(2n,R) is U(n). If V = Cn is the fundamental representation of
GL(n,C), then the isotropy representation spae is:

mC = S2V⊕ S2V∗.An Sp(2n,R)-Higgs bundle over X is thus a triple (V, β, γ) onsisting of a rank n holomor-phi vetor bundle V and holomorphi setions β ∈ H0(X,S2V⊗K) and γ ∈ H0(X,S2V ∗⊗
K), where K is the anonial line bundle of X.Let (Vi, ϕi) be Sp(2ni,R)-Higgs bundles and let n =

∑
ni. We an de�ne an Sp(2n,R)-Higgs bundle (V, ϕ) by setting

V =
⊕

Vi and ϕ =
∑

ϕiby using the anonial inlusions H0(K ⊗ (S2Vi ⊕ S2V ∗
i )) ⊂ H0(K ⊗ (S2V ⊕ S2V ∗)). Weshall slightly abuse language and write (V, ϕ) =

⊕
(Vi, ϕi), referring to this as �the diretsum of the (Vi, ϕi)�.In Appendix A we introdue a very general notion of (semi-, poly-)stability for ertainkind of holomorphi objets. Sp(2n,R)-Higgs bundles are instanes of suh kind of objets.These notions are in general rather ompliated to study in onrete terms but it turnsout that the general (semi-,poly-)stability onditions, when applied to Sp(2n,R)-Higgsbundles, an be sensibly simpli�ed (this is also the ase for many other kinds of objets,and it might well be true that a general simpli�ed ondition exists for all G-Higgs bundles).The simpli�ation of the (semi-)stability onditions for Sp(2n,R)-Higgs bundles are givenin Theorems B.2 and B.4 of Appendix B, with the parameter value α = 0 (reall fromSetion 2.1 that we are �xing this value, sine it is the one relevant for the study ofrepresentations of surfae groups). Before giving a preise statement we introdue somenotation. IfW is a vetor bundle andW ′,W ′′ ⊂W are subbundles, thenW ′⊗SW ′′ denotesthe subbundle of the seond symmetri power S2W whih is the image ofW ′⊗W ′′ ⊂W⊗Wunder the symmetrization map W ⊗W → S2W (of ourse this should be de�ned in sheaftheoretial terms to be sure that W ′⊗SW ′′ is indeed a subbundle, sine the intersetion of

W ′⊗W ′′ and the kernel of the symmetrization map might hange dimension from one �ber



REPRESENTATIONS OF SURFACE GROUPS 17to the other). Also, we denote by W ′⊥ ⊂W ∗ the kernel of the restrition map W ∗ → W ′∗.Now the simpli�ed (semi-)stability ondition is given by the following proposition.Proposition 3.1. An Sp(2n,R)-Higgs bundle (V, φ) is stable if, for any �ltration of sub-bundles
0 ⊂ V1 ⊂ V2 ⊂ Vsuh that(3.11) β ∈ H0(K ⊗ (S2V2 + V1 ⊗S V )), γ ∈ H0(K ⊗ (S2V ⊥

1 + V ⊥
2 ⊗S V

∗)),the following holds: if at least one of the subbundles V1 and V2 is proper, then the inequality(3.12) deg(V )− deg(V1)− deg(V2) > 0holds and, in any other ase,(3.13) deg(V )− deg(V1)− deg(V2) ≥ 0.The ondition for (V, ϕ) to be semistable is obtained by omitting the strit inequality (3.12).The following observation will be useful many times below.Remark 3.2. If 0 ⊂ V1 ⊂ V2 ⊂ V is a �ltration of vetor bundles then for any β ∈ H0(K ⊗
S2V ) and γ ∈ H0(K ⊗ S2V ∗) the ondition β ∈ H0(K ⊗ (S2V2 + V1 ⊗S V )) is equivalentto βV ⊥

2 ⊂ K ⊗ V1 and βV ⊥
1 ⊂ K ⊗ V2, and similarly γ ∈ H0(K ⊗ (S2V ⊥

1 + V ⊥
2 ⊗S V

∗)) isequivalent to γV1 ⊂ K ⊗ V ⊥
2 and γV2 ⊂ K ⊗ V ⊥

1 , where V ⊥
i is the kernel of the projetion

V ∗ → V ∗
i and we view β and γ as symmetri maps β : V ∗ → K ⊗ V and γ : V → K ⊗ V ∗.Thus, if we use a loal basis of V adapted to the �ltration 0 ⊆ V1 ⊆ V2 ⊆ V and the dualbasis of V ∗, then the matrix of γ is of the form




0 0 ∗
0 ∗ ∗
∗ ∗ ∗



 ,while the matrix of β has the form


∗ ∗ ∗
∗ ∗ 0
∗ 0 0


 .The deformation omplex (2.3) for an Sp(2n,R)-Higgs bundle (V, ϕ = β + γ) is(3.14) C•(V, ϕ) : End(V )

ad(ϕ)
−−−→ S2V ⊗K ⊕ S2V ∗ ⊗K

ψ 7→ (−βψt − ψβ, γψ + ψtγ)Proposition 3.3. An Sp(2n,R)-Higgs bundle (V, ϕ) is in�nitesimally simple if and onlyif H0(C•(V, ϕ)) = 0. Equivalently, (V, ϕ) is in�nitesimally simple if and only if there is anon-zero ψ ∈ H0(End(V )) suh that
ad(ϕ)(ψ) = (−βψt − ψβ, γψ + ψtγ) = (0, 0).Proof. For Sp(2n,R)-Higgs bundles one has that ker(dι) = 0. Thus the �rst statementis immediate from De�nition 2.6. The equivalent statement now follows from the longexat sequene (2.4), realling that in this ase the deformation omplex (2.3) is given by(3.14). �



18 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProposition 3.4. An Sp(2n,R)-Higgs bundle (V, ϕ) is simple if and only if Aut(V, ϕ) =
{± Id}.Proof. Sine λ ∈ C∗ = Z(HC) ats on the isotropy representation mC = S2V ⊕ S2V∗ by
(β, γ) 7→ (λ2β, λ−2γ) we have ker ι∩Z(HC) = {±1}, so the statement follows diretly fromDe�nition 2.7. �Remark 3.5. Contrary to the ase of vetor bundles, stability of a Sp(2n,R)-Higgs bundledoes not imply that it is simple. To give an example of this phenomenon, take two di�erentsquare roots,M1 andM2, of K. De�ne V = M1⊕M2, then S2V ⊗K = O⊕M−1

1 M−1
2 ⊕O .Let γ = (1, 0, 1), β = 0 and set ϕ = (β, γ). Then (V, ϕ) is not simple. However, we shallshow that (V, ϕ) is stable. Sine V has rank 2, in any �ltration 0 ⊂ V1 ⊂ V2 ⊂ V someinlusion is in fat an equality. Hene we have to verify the semistability ondition forthe ases listed in Table B.1 and the stability ondition (with strit inequality) for theases listed in the last three rows of the same Table. This is easy, using the fat that γis non-degenerate (note that for any proper V1 ⊂ V this means that γ annot belong to

H0(S2V ⊥
1 )). The phenomenon desribed by this example will be desribed in a systematiway in Theorem 3.12 below.3.2. Stable and non-simple Sp(2n,R)-Higgs bundles. The goal of this setion is toobtain a omplete understanding of how a stable Sp(2n,R)-Higgs bundle an fail to besimple. The main result is Theorem 3.12.For this, we need to desribe some speial Sp(2n,R)-Higgs bundles arising from G-Higgsbundles assoiated to ertain real subgroups G ⊆ Sp(2n,R).The subgroup G = U(n). Observe that a U(n)-Higgs bundle is nothing but a holomorphivetor bundle V of rank n. The standard inlusion υU(n) : U(n) →֒ Sp(2n,R) gives theorrespondene(3.15) V 7→ υU(n)

∗ V = (V, 0)assoiating the Sp(2n,R)-Higgs bundle υU(n)
∗ V = (V, 0) to the holomorphi vetor bundle

V .Remark 3.6. Note that (V, 0) is never simple as an Sp(2n,R)-Higgs bundle, sine its auto-morphism group ontains the non-zero salars C∗.The subgroup G = U(p, q). In the following we assume that p, q ≥ 1. As is easily seen,a U(p, q)-Higgs bundle (f. [6℄) is given by the data (Ṽ , W̃ , ϕ̃ = β̃ + γ̃), where Ṽ and W̃are holomorphi vetor bundles of rank p and q, respetively, β̃ ∈ H0(K ⊗ Hom(W̃ , Ṽ ))and γ̃ ∈ H0(K ⊗ Hom(Ṽ , W̃ )). Let n = p + q. The imaginary part of the standardinde�nite Hermitian metri of signature (p, q) on Cn is a sympleti form, and thus thereis an inlusion υU(p,q) : U(p, q) →֒ Sp(2n,R). At the level of G-Higgs bundles, this givesrise to the orrespondene(3.16) (Ṽ , W̃ , ϕ̃ = β̃ + γ̃) 7→ υU(p,q)
∗ (Ṽ , W̃ , ϕ̃) = (V, ϕ = β + γ),where

V = Ṽ ⊕ W̃ ∗, β =

(
0 β̃

β̃ 0

) and γ =

(
0 γ̃
γ̃ 0

)
.



REPRESENTATIONS OF SURFACE GROUPS 19Remark 3.7. Again, we note that the Sp(2n,R)-Higgs bundle υU(p,q)
∗ (Ṽ , W̃ , ϕ̃) is not simple,sine it has the automorphism ( 1 0

0 −1 ).We shall need a few lemmas for the proof of Theorem 3.12.Lemma 3.8. Let (V, ϕ) be an Sp(2n,R)-Higgs bundle and assume that there is a non-trivial splitting (V, ϕ) = (Va ⊕ Vb, ϕa + ϕb) suh that ϕν ∈ H0(K ⊗ (S2Vν ⊕ S2V ∗
ν )) for

ν = a, b. Assume that the Sp(2na,R)-Higgs bundle (Va, ϕa) is not stable. Then (V, ϕ) isnot stable.Proof. Sine (Va, ϕa) is not stable there is a �ltration 0 ⊂ Va1 ⊂ Va2 ⊂ Va suh that
β ∈ H0(K ⊗ (S2Va2 + Va1 ⊗S V )), γ ∈ H0(K ⊗ (S2V ⊥

a1 + V ⊥
a2 ⊗S V

∗))and(3.17) deg(Va)− deg(Va1)− deg(Va1) ≤ 0.Consider the �ltration 0 ⊂ V1 ⊂ V2 ⊂ V obtained by setting
V1 = Va1, V2 = Va2 ⊕ Vb.Using Remark 3.2 one readily sees that this �ltration satis�es the onditions (3.11). Sine

deg(V )− deg(V1)− deg(V2) = deg(Va)− deg(Va1)− deg(Va1),it follows from (3.17) that (V, ϕ) is not stable. �Lemma 3.9. Let (V, ϕ) be an Sp(2n,R)-Higgs bundle and assume that there is a non-trivial splitting V = Va ⊕ Vb suh that ϕ ∈ H0(K ⊗ (S2Va ⊕ S2V ∗
a )). In other words,

(V, ϕ) = (Va ⊕ Vb, ϕa + 0) with (Vb, 0) = υ
U(nb)
∗ Vb. Then (V, ϕ) is not stable.Proof. It is immediate from Lemma 3.8 and Remark B.5 that Vb is a stable vetor bundlewith deg(Vb) = 0. Hene

deg(V ) = deg(Va).Consider the �ltration 0 ⊂ V1 ⊂ V2 ⊂ V obtained by setting V1 = 0 and V2 = Va. Asbefore this �ltration satis�es (3.11). Therefore the alulation
deg(V )− deg(V1)− deg(V2) = deg(V )− deg(Va) = 0shows that (V, ϕ) is not stable. �Lemma 3.10. Let (V, ϕ) = υ

U(p,q)
∗ (Va, V

∗
b , ϕ̃) be an Sp(2n,R)-Higgs bundle arising from a

U(p, q)-Higgs bundle (Va, V
∗
b , ϕ̃) with p, q ≥ 1. Then (V, ϕ) is not stable.Proof. The Sp(2n,R)-Higgs bundle (V, φ) is given by

V = Va ⊕ Vb, β =

(
0 β̃

β̃ 0

) and γ =

(
0 γ̃
γ̃ 0

)
.Let V1 = V2 = Va and onsider the �ltration 0 ⊂ V1 ⊂ V2 ⊂ V. Again this �ltration satis�esthe onditions (3.11). Thus, if (V, ϕ) is stable, we have from (3.12)

deg(V )− 2 deg(Va) < 0.Similarly, onsidering V1 = V2 = Vb, we obtain
deg(V )− 2 deg(Vb) < 0,



20 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAso we onlude that
deg(V ) = deg(Va) + deg(Vb) < deg(V ),whih is absurd.

�Lemma 3.11. Let (Ṽ , ϕ̃) be an Sp(2ñ,R)-Higgs bundle. Then the Sp(4ñ,R)-Higgs bundle
(Ṽ ⊕ Ṽ , ϕ̃+ ϕ̃) is not stable.Proof. Consider the automorphism f = 1√

2i
( 1 i

i 1 ) of V = Ṽ ⊕ Ṽ . Write β =
(
β̃ 0

0 β̃

) and
γ =

(
γ̃ 0
0 γ̃

). Then we have that
(V, ϕ) ∼= (Ṽ ⊕ Ṽ , f · β + f · γ),where

f · β = fβf t =

(
0 β̃

β̃ 0

) and f · γ = (f t)−1γf−1 =

(
0 γ̃
γ̃ 0

)
.We shall see that (Ṽ ⊕ Ṽ , f · β + f · γ) is not stable. To this end, onsider the �ltration

0 ⊂ V1 ⊂ V2 ⊂ Ṽ ⊕ Ṽ obtained by setting V1 = V2 = Ṽ . This satis�es (3.11). But, on theother hand,
deg(Ṽ ⊕ Ṽ )− deg(V1)− deg(V2) = 0so (Ṽ ⊕ Ṽ , f · β + f · γ) is not stable. �Theorem 3.12. Let (V, ϕ) be a stable Sp(2n,R)-Higgs bundle. If (V, ϕ) is not simple,then one of the following alternatives ours:(1) The vanishing ϕ = 0 holds and V is a stable vetor bundle of degree zero. In thisase, Aut(V, ϕ) ∼= C∗.(2) There is a deomposition, unique up to reordering, (V, ϕ) = (

⊕k
i=1 Vi,

∑k
i=1 ϕi) with

φi = βi+γi ∈ H0(K⊗ (S2Vi⊕S2V ∗
i )), suh that eah (Vi, φi) is a stable and simple

Sp(2ni,R)-Higgs bundle. Furthermore, eah ϕi 6= 0 and (Vi, ϕi) 6∼= (Vj , ϕj) for
i 6= j. The automorphism group of (V, ϕ) is

Aut(V, ϕ) ∼= Aut(V1, ϕ1)× · · · × Aut(Vk, ϕk) ∼= (Z/2)k.Reall that an example of the seond situation was desribed in Remark 3.5.Proof. First of all, we note that if ϕ = 0 then it is immediate from Remark B.5 thatalternative (1) ours.Next, onsider the ase ϕ 6= 0. Sine (V, ϕ) is not simple, there is an automorphism
σ ∈ Aut(V, ϕ) \ {±1}. If σ were a multiple of the identity, say σ = λ Id with λ ∈ C∗, thenit would at on ϕ = β + γ by β 7→ λ2β and γ 7→ λ−2γ. Sine ϕ 6= 0 this would fore σto be equal to 1 or −1, in ontradition with our hoie. Hene σ is not a multiple of theidentity. We know from Lemma A.18 that Aut(V, ϕ) is redutive. This implies that σ maybe hosen in suh a way that there is a splitting V =

⊕
Vi in eigenbundles for σ suh thatthe ation of σ on Vi is given by multipliation by some σi ∈ C∗. It follows that the ationof σ on S2V ⊕ S2V ∗ is given by(3.18) σ = σiσj : Vi ⊗ Vj → Vi ⊗ Vj and σ = σ−1
i σ−j

j : V ∗
i ⊗ V

∗
j → V ∗

i ⊗ V
∗
j .



REPRESENTATIONS OF SURFACE GROUPS 21If we denote by ϕij = βij + γij the omponent of ϕ in H0(K ⊗ (Vi ⊗ Vj ⊕ V ∗
i ⊗ V ∗

j ))(symmetrizing the tensor produt if i = j), then(3.19) σiσj 6= 1 =⇒ ϕij = 0.Suppose that ϕi0j0 6= 0 for some i0 6= j0. From (3.19) we onlude that σi0σj0 = 1. Butthen σiσj0 6= 1 for i 6= i0 and σi0σj 6= 1 for j 6= j0. Hene, again by (3.19), ϕij0 = 0 = ϕi0jif i 6= i0 or j 6= j0. Thus (Vi0 , V
∗
j0
, ϕi0j0) is a U(p, q)-Higgs Bundle and we have a non-trivial deomposition (V, ϕ) = (Va ⊕ Vb, ϕa + ϕb) with (Va, ϕa) = υ

U(p,q)
∗ (Vi0 , V

∗
j0
, ϕi0j0). ByLemma 3.10 the Sp(2na,R)-Higgs bundle (Va, ϕa) is not stable so, by Lemma 3.8, (V, ϕ) isnot stable. This ontradition shows that ϕij = 0 for i 6= 0.It follows that ϕ =

∑
ϕi with φi ∈ H0(K ⊗ (S2Vi ⊕ S2V ∗

i )). By Lemma 3.8 eah of thesummands (Vi, ϕi) is a stable Sp(2n,R)-Higgs bundle and by Lemma 3.9 eah ϕi must benon-zero. Also, from (3.18), σ · βi = σ2
i βi and σ · γi = σ−2

i γi so we onlude that the onlypossible eigenvalues of σ are 1 and −1. Thus the deomposition (V, ϕ) =
⊕

(Vi, ϕi) has infat only two summands and, more importantly, σ2 = 1. This means that all non-trivialelements of Aut(V, ϕ) have order two and therefore Aut(V, ϕ) is abelian.Now, the summands (Vi, ϕi) may not be simple but, applying the preeding argu-ment indutively to eah of the (Vi, ϕi), we eventually obtain a deomposition (V, ϕ) =
(
⊕

Vi,
∑
ϕi) where eah (Vi, ϕi) is stable and simple, and ϕi 6= 0. Sine Aut(V, ϕ) isabelian, the suessive deompositions of V in eigenspaes an in fat be arried out si-multaneously for all σ ∈ Aut(V, ϕ) \ {±1}. From this the uniqueness of the deompositionand the statement about the automorphism group of (V, ϕ) are immediate.Finally, Lemma 3.9 and Lemma 3.11 together imply that the (Vi, ϕi) are mutually non-isomorphi. �3.3. Sp(2n,R)-, Sp(2n,C)- and SL(2n,C)-Higgs bundles: stability onditions. An

Sp(2n,R)-Higgs bundle an be viewed as a Higgs bundle for the larger omplex groups
Sp(2n,C) and SL(2n,C). The goal of this setion is to understand the relation betweenthe various orresponding stability notions. The main results are Theorems 3.13 and 3.14below.We have seen in Setion B.8 that an SL(m,C)-Higgs bundle is a pair (W,Φ) where W isa rankm holomorphi vetor bundle on the Riemann surfae X and Φ ∈ H0(K⊗End(W )).As was shown in Theorem B.10, (W,Φ) is stable if for any subbundle W ′ ⊂ W suh that
Φ(W ′) ⊂ K ⊗W ′ we have degW ′ < 0 (and similarly for semistability).We have also seen, in Setion B.7, that an Sp(2n,C)-Higgs bundle is given by ((W,Ω),Φ),where (W,Ω) is a rank 2n holomorphi sympleti vetor bundle (i.e., Ω is a holomorphisympleti form on W ) and Φ ∈ H0(K ⊗ End(W )) is sympleti, i.e.,(3.20) Ω(Φu, v) + Ω(u,Φv) = 0for loal holomorphi setions u and v of W . Reall from Theorem B.9 that ((W,Ω),Φ) isstable if and only if for any isotropi subbundle W ′ ⊂ W suh that Φ(W ′) ⊂ K ⊗W ′ wehave degW ′ < 0 (and similarly for semistability).Given an Sp(2n,R)-Higgs bundle (V, ϕ) with ϕ = (β, γ) ∈ H0(K ⊗ (S2V ⊕ S2V ∗)) onean assoiate to it an Sp(2n,C)-Higgs bundle ((W,Ω),Φ) given by(3.21) W = V ⊕ V ∗, Φ =

(
0 β
γ 0

) and Ω
(
(v, ξ), (w, η)

)
= ξ(w)− η(v),



22 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAfor loal holomorphi setions v, w of V and ξ, η of V ∗ (i.e. Ω is the anonial sympletistruture on V ⊕ V ∗).Sine Sp(2n,C) ⊂ SL(2n,C), every Sp(2n,C)-Higgs bundle ((W,Ω),Φ) gives rise to an
SL(2n,C)-Higgs bundle (W,Φ). If ((W,Ω),Φ) is obtained from an Sp(2n,R)-Higgs bundle
(V, ϕ) we denote the assoiated SL(2n,C)-Higgs bundle by

H(V, ϕ) = (W,Φ) = (V ⊕ V ∗,

(
0 β
γ 0

)
).Theorem 3.13. Let (V, ϕ = (β, γ)) be an Sp(2n,R)-Higgs bundle and let (W,Φ) = H(V, ϕ)be the orresponding SL(2n,C)-Higgs bundle. Then(1) if (W,Φ) is stable then (V, ϕ) is stable;(2) if (V, ϕ) is stable and simple then (W,Φ) is stable unless there is an isomorphism

f : V
≃
−→ V ∗ suh that βf = f−1γ, in whih ase (W,Φ) is polystable;(3) (W,Φ) is semistable if and only if (V, ϕ) is semistable.(4) (W,Φ) is polystable if and only if (V, ϕ) is polystable;In partiular, if deg V 6= 0 then (W,Φ) is stable if and only if (V, ϕ) is stable.For the statement of the following Theorem, reall from Setion B.9 that a GL(n,R)-Higgs bundle is given by ((W,Q), ψ), where (W,Q) is rank n orthogonal bundle and

ψ ∈ H0(K ⊗ S2W ). The stability ondition for GL(n,R)-Higgs bundles is given in Theo-rem B.11.Theorem 3.14. Let (V, ϕ) be a stable and simple Sp(2n,R)-Higgs bundle. Then (V, ϕ) isstable as an Sp(2n,C)-Higgs bundle, unless there is a symmetri isomorphism f : V
≃
−→ V ∗suh that βf = f−1γ. Moreover, if suh an f exists, let ψ = β = f−1γf−1 ∈ H0(K⊗S2V ).Then the GL(n,R)-Higgs bundle ((V, f), ψ) is stable, even as a GL(n,C)-Higgs bundle.The proof of Theorem 3.13 is given below in Setion 3.4 and the proof of Theorem 3.14is given below in Setion 3.5.The following observation is not essential for our main line of argument. We inlude itsine it might be of independent interest.Remark 3.15. Suppose we are in Case (2) of Theorem 3.13. Deompose f = fs+fa : V
≃
−→ Vin its symmetri and anti-symmetri parts, given by fs = 1

2
(f + f t) and fa = 1

2
(f − f t).Let Va = ker(fs) and Vs = ker(fa). There is then a deomposition V = Va ⊕ Vs and fdeomposes as

f =

(
fs 0
0 fa

)
: Vs ⊕ Va → V ∗

s ⊕ V
∗
a .Write γsa : Va → V ∗

s ⊗ K for the omponent of γ in H0(K ⊗ V ∗
a ⊗ V ∗

s ) and similarlyfor the other mixed omponents of β and γ. Sine f intertwines β and γ, one has that
γas = faβasfs. Hene

γsa = γtas = f tsβ
t
asf

t
a = −fsβsafa = −γsa.It follows that γsa = 0 and similarly for the other mixed terms. Thus there is a deom-position (V, ϕ) = (Vs ⊕ Va, ϕs + ϕa). If (V, ϕ) is simple then one of the summands mustbe trivial. The ase when (V, ϕ) = (Vs, ϕs) is the one overed in Theorem 3.14. In theother ase, when (V, ϕ) = (Va, ϕa), the antisymmetri map f de�nes a sympleti form on

V . If we let ψ = βf = f−1γ, one easily heks that ψ is sympleti (f. (3.20)). Thus,



REPRESENTATIONS OF SURFACE GROUPS 23in this ase, (V, φ) omes in fat from an Sp(n,C)-Higgs bundle ((V, f), ψ). This is a sta-ble Sp(n,C)-Higgs bundle, sine (V, ψ) is a stable GL(n,C)-Higgs bundle (f. the proof ofTheorem 3.14 below).3.4. Proof of Theorem 3.13. The proof of the theorem is split into several lemmas.We begin with the following lemma whih proves that Higgs bundle stability of H(V, ϕ)implies stability of (V, ϕ).Lemma 3.16. Let (V, ϕ = (β, γ)) be an Sp(2n,R)-Higgs bundle, and let
Φ =

(
0 β
γ 0

)
: V ⊕ V ∗ → K ⊗ (V ⊕ V ∗).The pair (V, ϕ) is semistable if and only if for any pair of subbundles A ⊂ V and B ⊂ V ∗satisfying B⊥ ⊂ A, A⊥ ⊂ B and Φ(A⊕B) ⊂ K ⊗ (A⊕B) we have deg(A⊕ B) ≤ 0.The pair (V, ϕ) is stable if and only if it is semistable and for any pair of subbundles

A ⊂ V and B ⊂ V ∗, at least one of whih is proper, and satisfying B⊥ ⊂ A (equivalently,
A⊥ ⊂ B) and Φ(A⊕B) ⊂ K ⊗ (A⊕ B), the inequality deg(A⊕ B) < 0 holds.Proof. Suppose that A ⊂ V and B ⊂ V ∗ satisfy the onditions of the lemma. Then setting
V2 := A and V1 := B⊥ we obtain a �ltration 0 ⊂ V1 ⊂ V2 ⊂ V whih, thanks to Remark 3.2,satis�es (3.11).Conversely, given a �ltration 0 ⊂ V1 ⊂ V2 ⊂ V for whih (3.11) holds, we get subbundles
A := V2 ⊂ V and B := V ⊥

1 ⊂ V ∗ satisfying the onditions of the lemma. Finally, we have
deg(A⊕ B) = deg(V ⊥

1 ⊕ V2) = deg V1 + deg V2 − deg V,so the lemma follows from Theorem B.4. (For the ase of stability, note that at least oneof V1 and V2 is a proper subbundle of V if and only if at least one of A ⊂ V and B ⊂ V ∗is a proper subbundle.) �Remark 3.17. In the proof we have used the following formula: if F ⊂ E is an inlusionof vetor bundles, then degF⊥ = degF − degE. To hek this, observe that there is anexat sequene 0 → F⊥ → E∗ → F ∗ → 0, and apply the additivity of the degree w.r.t.exat sequenes together with degE∗ = − degE and deg F ∗ = − degF .The following lemma resumes the proof of equivalene between Higgs bundle stabilityand stability when V is not isomorphi to V ∗.Lemma 3.18. Suppose that (V, ϕ) is semistable, and de�ne Φ: V ⊕ V ∗ → K ⊗ (V ⊕ V ∗)as previously. Then any subbundle 0 6= W ′ ( V ⊕ V ∗ suh that Φ(W ′) ⊂ K ⊗W ′ satis�es
degW ′ ≤ 0. Furthermore, if (V, ϕ) is stable and simple, one an get equality only if thereis an isomorphism f : V → V ∗ suh that βf = f−1γ, and in this ase (W,Φ) = H(V, ϕ) ispolystable.Proof. Fix a subbundle W ′ ⊂ V ⊕ V ∗ satisfying Φ(W ′) ⊂ K ⊗W ′. We prove the lemmain various steps.1. Denote by p : V ⊕V ∗ → V and q : V ⊕V ∗ → V ∗ the projetions, and de�ne subsheaves
A = p(W ′) and B = q(W ′). It follows from ΦW ′ ⊂ K ⊗ W ′ that βB ⊂ K ⊗ A and
γA ⊂ K ⊗ B (for example, using that Φp = qΦ and Φq = pΦ). Sine both β and γ are



24 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAsymmetri we dedue that βA⊥ ⊂ K ⊗ B⊥ and γB⊥ ⊂ K ⊗ A⊥ as well. It follows fromthis that if we de�ne subsheaves
A0 = A +B⊥ ⊂ V and B0 = B + A⊥ ⊂ V ∗then we have B⊥

0 ⊂ A0, A⊥
0 ⊂ B0 and Φ(A0 ⊕B0) ⊂ K ⊗ (A0 ⊕ B0).We an apply Lemma 3.16 also to subsheaves by replaing any subsheaf of V or V ∗by its saturation, whih is now a subbundle of degree not less than that of the subsheaf.Hene we dedue that(3.22) degA0 + degB0 = deg(A+B⊥) + deg(B + A⊥) ≤ 0,and equality holds if and only if A +B⊥ = V and B + A⊥ = V ∗.Now we ompute (using repeatedly the formula in Remark 3.17)

deg(A+B⊥) = degA+ degB⊥ − deg(A ∩ B⊥)

= degA+ degB − deg V ∗ − deg((A⊥ +B)⊥)

= degA+ degB − deg V ∗ − deg(A⊥ +B) + deg V ∗

= degA+ degB − deg(A⊥ +B).Consequently degA+ degB = deg(A+B⊥) + deg(A⊥ +B), so (3.22) implies that(3.23) degA+ degB ≤ 0,with equality if and only if A+B⊥ = V and B + A⊥ = V ∗.2. Let now A′ = W ′ ∩ V and B′ = W ′ ∩ V ∗. Using again that Φ(W ′) ⊂ K ⊗W ′ we provethat βB′ ⊂ K ⊗ A′ and γA′ ⊂ K ⊗ B′. Now, the same reasoning as above (onsidering
(A′ + B′⊥)⊕ (B′ + A′⊥) and so on) proves that(3.24) degA′ + degB′ ≤ 0,with equality if and only if A′ +B′⊥ = V and A′⊥ +B′ = V ∗.3. Observe that there are exat sequenes of sheaves

0→ B′ →W ′ → A→ 0 and 0→ A′ →W ′ → B → 0,from whih we obtain the formulae
degW ′ = degA+ degB′ and degW ′ = degB + degA′.Adding up and using (3.23) together with (3.24) we obtain the desired inequality

degW ′ ≤ 0.4. Finally we onsider the ase when (V, ϕ) is stable and simple. Suppose that degW ′ = 0.Then we have equality both in (3.23) and in (3.24). Hene, A + B⊥ = V , A⊥ + B = V ∗,
A′ +B′⊥ = V and A′⊥ +B′ = V ∗. But A⊥ +B = (A∩B⊥)⊥ and A′⊥ +B′ = (A′ ∩B′⊥)⊥,so we dedue that

A⊕ B⊥ = V and A′ ⊕ B′⊥ = V.If one of these deompositions were nontrivial then V would not be simple, in ontraditionwith our assumptions. Consequently we must have A = V , B⊥ = 0 (beause W ′ 6= 0) andsimilarly A′ = 0, B′⊥ = V ∗ (beause W ′ 6= V ⊕ V ∗). This implies that the projetions
p : W ′ → A and q : W ′ → B indue isomorphisms u : W ′ ≃ V and v : W ′ ≃ V ∗. Finally,de�ning f := v ◦ u−1 : V → V ∗ we �nd an isomorphism whih satis�es βf = f−1γ beause
ΦW ′ ⊂ K ⊗W ′.



REPRESENTATIONS OF SURFACE GROUPS 25To prove that in this ase (W,Φ) = H(V, ϕ) is stritly polystable just observe that
W ′ = {(u, fu) | u ∈ V } and de�ne W ′′ = {(u,−fu) | u ∈ V }. It is then straightforwardto hek that V ⊕V ∗ = W ′⊕W ′′, that ΦW ′ ⊂ K⊗W ′ and that ΦW ′′ ⊂ K⊗W ′′. Finallynote that the Higgs bundle (W ′,Φ) is stable: any Φ-invariant subbundle W0 ⊂W ′ is also a
Φ-invariant subbundle of (V ⊕ V ∗,Φ). Hene, if degW0 = 0 the argument of the previousparagraph shows that W0 has to have the same rank as V , so W0 = W ′. Analogously, onesees that (W ′′,Φ) is a stable Higgs bundle. �Lemma 3.19. An Sp(2n,R)-Higgs bundle (V, ϕ) is semistable if and only if H(V, ϕ) issemistable.Proof. Both Lemmas 3.16 and 3.18 are valid if we substitute all strit inequalities by in-equalities (and of ourse remove the last part in the statement of Lemma 3.18). Combiningthese two modi�ed lemmas we get the desired result. �Lemma 3.20. An Sp(2n,R)-Higgs bundle (V, ϕ = (β, γ)) is polystable if and only if
H(V, ϕ) is polystable.Proof. If (V, ϕ) is polystable then Lemmas 3.16 and 3.18 imply that H(V, ϕ) is polystable.Now assume that (W,Φ) = H(V, ϕ) is polystable, so that W =

⊕N
i=1Wi with ΦWi ⊂

K ⊗Wi and every (Wi,Φ|Wi
) is stable with degWi = 0.1. We laim that for any subbundle U ⊂ W satisfying degU = 0 and Φ(U) ⊂ K ⊗ Uthere is an isomorphism ψ : W → W whih ommutes with Φ and a set I ⊂ {1, . . . , N}suh that U = ψ(

⊕
i∈IWi). To prove the laim we use indution on N (the ase N = 1being obvious). Let W≥2 =

⊕
i≥2Wi and denote by p≥2 : W → W≥2 the projetion. Thenwe have an exat sequene

0→W1 ∩ U → U → p≥2(U)→ 0.Sine both W1 ∩ U and p≥2(U) are invariant under Φ, by polystability their degrees mustbe ≤ 0. And sine aording to the exat sequene above the sum of their degrees mustbe 0, the only possibility is that
degW1 ∩ U = 0 and deg p≥2(U) = 0.Now we apply the indution hypothesis to the inlusion p≥2(U) ⊂ W≥2 and dedue thatthere is an isomorphism ψ2 : W≥2 → W≥2 ommuting with Φ and a subset I2 ⊂ {2, . . . , N}suh that

p≥2(U) = ψ2(
⊕

i∈I2

Wi).Sine degW1 ∩U = 0 and W1 is stable, only two things an happen. Either W1 ∩U = W1or W1 ∩ U = 0. In the �rst ase we have
U = W1 ⊕

⊕

i∈I2

ψ(Wi),so putting I = {1} ∩ I2 and ψ = diag(1, ψ2) the laim is proved. If instead W1 ∩ U = 0then there is a map ξ : p≥2(U)→W1 suh that
U = {(ξ(v), v) ∈W1 ⊕ p≥2}.



26 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERASine U is Φ-invariant we dedue that ξ must ommute with Φ. If we now extend ξ to W≥2by de�ning ξ(ψ2(Wj)) = 0 for any j ∈ {2, . . . , N} \ I2 then the laim is proved by setting
I = I2 and

ψ =

(
1 ξ ◦ ψ2

0 ψ2

)
.2. De�ne for any W ′ ⊂W the subsheaves R(W ′) = p(W ′)⊕q(W ′) (reall that p : W → Vand q : W → V ∗ are the projetions) and r(W ′) = (W ′∩V )⊕(W ′∩V ∗). Reasoning as in the�rst step of the proof of Lemma 3.18 we dedue that if W ′ is Φ-invariant then both R(W ′)and r(W ′) are Φ invariant, so in partiular we must have degR(W ′) ≤ 0 and deg r(W ′) ≤ 0.In ase degW ′ = 0 these inequalities imply degR(W ′) = deg r(W ′) = 0 (using the exatsequenes 0→W ′ ∩ V ∗ →W ′ → p(W ′)→ 0 and 0→W ′ ∩ V →W ′ → q(W ′)→ 0).Assume that there is some summand in {W1, . . . ,WN}, say W1, suh that 0 6= r(W1)or R(W1) 6= W . Suppose, for example, that W ′ := R(W1) 6= W (the other ase issimilar). Let A = p(W1) and B = q(W1), so that W ′ = A ⊕ B. By the observationabove and the laim proved in 1 we know that there is an isomorphism ψ : W → Wwhih ommutes with Φ and suh that, if we substitute {Wi}1≤i≤N by {ψ(Wi)}1≤i≤N andwe reorder the summands if neessary, then we may write W ′ = W1 ⊕ · · · ⊕Wk for some

k < N . Now let W ′′ = Wk+1⊕ · · ·⊕WN . We learly have W = W ′⊕W ′′, so the inlusionof W ′′ ⊂ W = V ⊕ V ∗ omposed with the projetion V ⊕ V ∗ → V/A ⊕ V ∗/B = W/W ′indues an isomorphism. Consequently we have V = A ⊕ W ′′ ∩ V . Let us rename foronveniene V1 := A and V2 := W ′′ ∩ V . Then, using the fat that eah Wi is Φ-invariantwe dedue that we an split both β and γ as
β = (β1, β2) ∈ H

0(K ⊗ S2V1)⊕H
0(K ⊗ S2V2),

γ = (γ1, γ2) ∈ H
0(K ⊗ S2V ∗

1 )⊕H0(K ⊗ S2V ∗
2 ).Hene, if we put ϕi = (βi, γi) for i = 1, 2 then we may write

(V, ϕ) = (V1, ϕ1)⊕ (V2, ϕ2).3. Our strategy is now to apply reursively the proess desribed in 2. Observe that if
N ≥ 3 then for at least one i we have R(Wi) 6= W , beause there must be a summandwhose rank is stritly less that the rank of V . Hene the projetion of this summand to Vis not exhaustive.Consequently, we an apply the proess and split V in smaller and smaller piees, untilwe arrive at a deomposition

(V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vj, ϕj)suh that we an not apply 2 to any H(Vi, ϕi) For eah (Vi, ϕi) there are two possibilities.Either H(Vi, ϕi) is stable, in whih ase (Vi, ϕi) is stable (by Lemma 3.16), or H(Vi, ϕi)splits in two stable Higgs bundles W ′
i ⊕W

′′
i whih satisfy:

R(W ′
i ) = R(W ′′

i ) = W and r(W ′
i ) = r(W ′′

i ) = 0.But in this ase it is easy to hek that (Vi, ϕi) is also stable.By the preeeding lemma, (V, ϕ) is semistable. Suppose it is not stable. Then there is a�ltration 0 ⊂ V1 ⊂ V2 ⊂ V suh that Φ(V2⊕V ⊥
1 ) ⊂ K⊗ (V2⊕V ⊥

1 ) and W ′ := V2⊕V ⊥
1 = 0has degree degW ′ = 0.
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⊕

i≥2Wi, and let p2 : W → W≥2 denote the projetion. We have an exatsequene
0→W ′ ∩W1 →W ′ → p2(W

′)→ 0.It is easy to hek that Φ(W ′ ∩ W1) ⊂ K ⊗ (W ′ ∩ W1) and that Φ(p2(W
′)) ⊂ K ⊗

p2(W
′). Sine both W1 and and W≥2 are polystable, we must have degW ′ ∩ W1 ≤ 0and deg p2(W

′) ≤ 0. Finally, sine degW ′ = 0, the exat sequene above implies that
degW ′ ∩W1 = 0 and deg p2(W

′) = 0. Now W1 is stable, so W ′ ∩W1 an only be either
0 or W1. Reasoning indutively with p2(W

′) ⊂ W≥2 in plae of W ′ ⊂ W we dedue thatthere must be some I ⊂ {1, . . . , k} suh that
W ′ =

⊕

i∈I
Wi.Sine eah (Wi,Φ|Wi

) is stable, it is easy to hek (for example using indution on N)that one must have deg V2 ⊕ V ⊥
1 = Wj for some j. This easily implies that V2 = V ∩Wjand if we de�ne

V ′ =
⊕

i6=j
p(Wj)then V = V ′ ⊕ V2. Applying the same proess to V ′ and V2 we arrive at the onlusionthat (V, ϕ) is polystable. �3.5. Proof of Theorem 3.14. An Sp(2n,C)-Higgs bundle ((W,Ω),Φ) is stable if the

SL(2n,C)-Higgs bundle (W,Φ) is stable. Thus the result is immediate from Theorem 3.13,unless we are in Case (2) of that Theorem. In that ase, we have seen in the last paragraphof the proof of Lemma 3.18 that(1) There is an isomorphism f as stated, exept for the symmetry ondition.(2) There is an isomorphism V ⊕ V ∗ = W ′⊕W ′′, where W ′ = {(u, f(u)) | u ∈ V } and
W ′′ = {(u,−f(u)) | u ∈ V }, and W ′ and W ′′ are Φ-invariant subbundles of W .(3) The SL(2n,C)-Higgs bundle (W,Φ) is stritly polystable, deomposing as the diretsum of stable GL(n,C)-Higgs bundles:(3.25) (W,Φ) = (W ′,Φ′)⊕ (W ′′,Φ′′).Note also that (W ′,Φ′) ≃ (W ′′,Φ′′).Now, from Theorem B.9 we have that for the Sp(2n,C)-Higgs bundle ((W,Ω),Φ) to bestritly semistable, it must have an isotropi Φ-invariant subbundle of degree zero. Butthe deomposition (3.25) shows that the only degree zero Φ-invariant subbundles are W ′and W ′′. The subbundle W ′ is isotropi if and only if, for all loal setions u, v of V , wehave

Ω((u, f(u), (v, f(v)) = 0 ⇐⇒ 〈u, f(v)〉 = 〈v, f(u)〉,that is, if and only if f is symmetri. Analogously, W ′′ is isotropi if and only if f issymmetri. The �rst part of the onlusion follows.For the seond part, onsider the GL(n,R)-Higgs bundle ((V, f), βf). This is stable asa GL(n,C)-Higgs bundle beause (V, βf) ≃ (W ′,Φ′), whih is stable. Thus, in partiular,
((V, f), βf) is stable as a GL(n,R)-Higgs bundle (see Theorem B.11). �



28 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA3.6. Milnor�Wood inequality and moduli spae of Sp(2n,R)-Higgs bundles. Thetopologial invariant attahed to an Sp(2n,R)-Higgs bundle (V, β, γ) is an element in thefundamental group of U(n). Sine π1(U(n)) ∼= Z, this is an integer, whih oinides withthe degree of V .We have the following Higgs bundle inarnation of the Milnor�Wood inequality (1.1)(see [29, 6℄).Proposition 3.21. Let (V, β, γ) be a semistable Sp(2n,R)-Higgs bundle and let d =
deg(V ). Then

d ≤ rank(γ)(g − 1)(3.26)
−d ≤ rank(β)(g − 1),(3.27)This is proved by �rst using the equivalene between the semistability of (V, β, γ) andthe SL(2n,C)-Higgs bundle (W,Φ) assoiated to it, and then applying the semistabilitynumerial riterion to speial Higgs subbundles de�ned by the kernel and image of Φ.As a onsequene of Proposition 3.21 we have the following.Proposition 3.22. Let (V, β, γ) be a semistable Sp(2n,R)-Higgs bundle and let d =

deg(V ). Then
|d| ≤ n(g − 1).Furthermore,

(1) d = n(g − 1) holds if and only if γ : V → V ∗ ⊗K is an isomorphism;
(2) d = −n(g − 1) holds if and only if β : V ∗ → V ⊗K is an isomorphism.Reall from our general disussion in Setion 2 thatMd(Sp(2n,R)) denotes the modulispae of Sp(2n,R)-Higgs bundles (V, β, γ) with deg(V ) = d. For brevity we shall heneforthwrite simplyMd for this moduli spae.Combining Theorem 2.2 with Proposition 2.16 we have the following.Proposition 3.23. The moduli spae Md is a omplex algebrai variety. Its expeteddimension is (g − 1)(2n2 + n).One has the following immediate duality result.Proposition 3.24. The map (V, β, γ) 7→ (V ∗, γt, βt) gives an isomorphismMd

∼=M−d.As a orollary of Proposition 3.22, we obtain the following.Proposition 3.25. The moduli spaeMd is empty unless
|d| ≤ n(g − 1).3.7. Smoothness and polystability of Sp(2n,R)-Higgs bundles. We study now thesmoothness properties of the moduli spae. As a orollary of Proposition 2.15 and Theo-rem 3.14 we have the following.Proposition 3.26. Let (V, ϕ) be an Sp(2n,R)-Higgs bundle whih is stable and simple andassume that there is no symmetri isomorphism f : V

≃
−→ V ∗ intertwining β and γ. Then

(V, ϕ) represents a smooth point of the moduli spae of polystable Sp(2n,R)-Higgs bundles.



REPRESENTATIONS OF SURFACE GROUPS 29So, a stable Sp(2n,R)-Higgs bundle (V, ϕ) inMd with d 6= 0 an only fail to be a smoothpoint of the moduli spae if it is not simple � this gives rise to an orbifold-type singularity� or if, in spite of being simple, there is an isomorphism V ≃ V ∗ intertwining β and γ.Of ourse, this an only happen if d = deg V = 0. Generally, if (V, ϕ) is polystable, butnot stable it is also a singular point ofMd.We shall need the following analogue of Proposition 3.26 for U(n)-, U(p, q)- and GL(n,R)-Higgs bundlesProposition 3.27. (1) A stable U(n)-Higgs bundle represents a smooth point in themoduli spae of U(n)-Higgs bundles.(2) A stable U(p, q)-Higgs bundle represents a smooth point of the moduli spae of
U(p, q)-Higgs bundles.(3) A GL(n,R)-Higgs bundle whih is stable as a GL(n,C)-Higgs bundle represents asmooth point in the moduli spae of GL(n,R)-Higgs bundles.Proof. (1) A stable U(n)-Higgs bundles is nothing but a stable vetor bundle, so this islassial.(2) A stable U(p, q)-Higgs bundle is also stable as GL(p + q,C)-Higgs bundle (see [6℄).Thus the result follows from Proposition 2.15 and the fat that a GL(p+q,C)-Higgs bundleis simple.(3) This holds by the same argument as in (2). �It will be onvenient to make the following de�nition for GL(n,R)-Higgs bundles, analo-gous to the way we assoiate Sp(2n,R)-Higgs bundles to vetor bundles and U(p, q)-Higgsbundles in (3.15) and (3.16), respetively (f. Theorem 3.14). Given a GL(n,R)-Higgs bun-dle ((W,Q), ψ), let f : W → W ∗ be the symmetri isomorphism assoiated to Ω. De�nean assoiated Sp(2n,R)-Higgs bundle(3.28) (V, ϕ) = υGL(n,R)

∗ ((W,Q), ψ)by setting
V = W, β = ψ and γ = fψf.Sine no onfusion is likely to our, in the following we shall slightly abuse language,saying simply that υGL(n,R)

∗ ((W,Q), ψ) is a GL(n,R)-Higgs bundle. Similarly we shall saythat Sp(2n,R)-Higgs bundles (V, ϕ) obtained from the onstrutions (3.15) and (3.16) are
U(n)-Higgs bundles and U(p, q)-Higgs bundles, respetively. With this understood, we anstate our struture theorem on polystable Sp(2n,R)-Higgs bundles from Setion B.6 asfollows.Proposition 3.28. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle. Then there is adeomposition

(V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vk, ϕk),unique up to reordering, suh that eah (Vi, ϕi) is a stable Gi-Higgs bundle, where Gi isone of the following groups: Sp(2ni,R), U(ni) or U(pi, qi).Theorem 3.29. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle. Then there is a deom-position (V, ϕ) = (V1, ϕ1) ⊕ · · · ⊕ (Vk, ϕk), unique up to reordering, suh that eah of the
Sp(2ni,R)-Higgs bundles (Vi, ϕi) is one of the following:(1) A stable and simple Sp(2ni,R)-Higgs bundle.



30 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA(2) A stable U(pi, qi)-Higgs bundle with ni = pi + qi.(3) A stable U(ni)-Higgs bundle.(4) A GL(ni,R)-Higgs bundle whih is stable as a GL(ni,C)-Higgs bundle.Eah (Vi, ϕi) is a smooth point in the moduli spae of Gi-Higgs bundles, where Gi is theorresponding real group Sp(2ni,R), U(pi, qi), U(ni) or GL(ni,R).Proof. This follows from Propositions 3.26, 3.27 and 3.28 and Theorems 3.12 and 3.14 �Remark 3.30. The existene of the deomposition of a polystable Sp(2n,R)-Higgs bundle
(V, ϕ) given in Proposition 3.28 an also be seen in a more down to earth way, as we nowbrie�y outline. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle and let (W,Φ) = H(V, ϕ)be the orresponding SL(2n,C)-Higgs bundle. By Theorems 3.13 and B.10 we have that(3.29) (W,Φ) =

⊕
(Wi,Φi),where (Wi,Φi) are stable GL(ni,C)-Higgs bundles. We an ontrol the shape of the sum-mands (Wi,Φi) by onsidering the subbundles A⊕B desribed in Lemma 3.16. By onsid-ering a maximal destabilizing W ′ = A⊕B ⊆ E and analyzing the indued stable quotient

W ′′ = (V/A)⊕V ∗/B with the indued Higgs �eld, one sees that (Wi,Φi) is in fat isomor-phi to H(Vi, ϕi), where (Vi, ϕi) is of one of the three types U(ni), Sp(2ni,R), and U(pi, qi).The di�erent types orrespond to whether (V/A)∗ and V ∗/B are isomorphi or not.4. Maximal degree Sp(2n,R)-Higgs bundles and the Cayleyorrespondene4.1. Cayley orrespondene. In this setion we shall desribe the Sp(2n,R) modulispae for the extreme value |d| = n(g − 1). In fat, for the rest of this setion we shallassume that d = n(g − 1). This involves no loss of generality, sine, by Proposition 3.24,
(V, ϕ) 7→ (V ∗, ϕt) gives an isomorphism between the Sp(2n,R) moduli spaes for d and −d.The main result is Theorem 4.4, whih we refer to as the Cayley orrespondene. This isstated as Theorem 1.3 in the Introdution, where the reason for the name is also explained.When γ is an isomorphism, the stability ondition for Sp(2n,R)-Higgs bundles, givenby Theorem B.4 (with α = 0), simpli�es further. Here is a key observation:Proposition 4.1. Let (V, γ, β) be an Sp(2n,R)-Higgs bundle and assume that γ : V →
V ∗ ⊗ K is an isomorphism. If 0 ⊆ V1 ⊆ V2 ⊆ V is a �ltration suh that γ ∈ H0(K ⊗

(S2V ⊥
1 + V ⊥

2 ⊗S V
∗)), then V2 = V

⊥γ

1 .Proof. This follows from the interpretation of the ondition on γ given in Remark 3.2. �Proposition 4.2. Let (V, β, γ) be an Sp(2n,R)-Higgs bundle and assume that γ : V →
V ∗ ⊗ L is an isomorphism. Let β̃ = (β ⊗ 1) ◦ γ : V → V ⊗ L2. Then (V, β, γ) is stable ifand only if for any V1 ⊂ V suh that V1 ⊆ V

⊥γ

1 (i.e., V1 is isotropi with respet to γ) and
β̃(V1) ⊆ V1 ⊗ L2, the ondition

µ(V1) < g − 1is satis�ed.Proof. Note that β̃ is symmetri with respet to γ (viewed as an K-valued quadrati formon V ). From Remark 3.2 one sees that β ∈ H0(K ⊗ (S2V2 + V1 ⊗S V )) if and only if
β̃ preserves the �ltration 0 ⊆ V1 ⊆ V2 ⊆ V . But from Lemma 4.1 we have V2 = V

⊥γ

1 .



REPRESENTATIONS OF SURFACE GROUPS 31Hene β̃ preserves V1 if and only if it preserves V2 (here one uses that β̃ is symmetri withrespet to γ). Given this orrespondene between the subobjets, one an easily translatethe stability ondition. �Let (V, β, γ) be an Sp(2n,R)-Higgs bundle with d = n(g−1) suh that γ ∈ H0(K⊗S2V ∗)is an isomorphism. Let L0 = K1/2 be a �xed square root of K, and de�ne W = V ∗ ⊗ L0.Then Q := γ ⊗ IL−1
0

: W ∗ → W is a symmetri isomorphism de�ning an orthogonalstruture onW , in other words, (W,Q) is an O(n,C)-holomorphi bundle. The K2-twistedendomorphism ψ : W → W ⊗ K2 de�ned by ψ = (γ ⊗ IK⊗L0
) ◦ β ⊗ IL0

is Q-symmetriand hene (W,Q, ψ) de�nes a K2-twisted GL(n,R)-Higgs pair, from whih we an reoverthe original Sp(2n,R)-Higgs bundle.Theorem 4.3. Let (V, β, γ) be a Sp(2n,R)-Higgs bundle with d = n(g − 1) suh that γis an isomorphism. Let (W,Q, ψ) be the orresponding K2-twisted GL(n,R)-Higgs pair.Then (V, β, γ) is semistable (resp. stable, polystable) if and only if (W,Q, ψ) is semistable(resp. stable, polystable).Proof. This follows from the simpli�ed stability onditions given in Theorem B.11 andProposition 4.2, using the translation W1 = V ∗
1 ⊗ L0. Similarly for semistability andpolystability. �Theorem 4.4. Let Mmax be the moduli spae of polystable Sp(2n,R)-Higgs bundles with

d = n(g−1) and letM′ be the moduli spae of polystable K2-twisted GL(n,R)-Higgs pairs.The map (V, β, γ) 7→ (W,Q, ψ) de�nes an isomorphism of omplex algebrai varieties
Mmax

∼=M′.Proof. Let (V, β, γ) be a semistable Sp(2n,R)-Higgs bundle with d = n(g − 1). By Propo-sition 3.22, γ is an isomorphism and hene the map (V, β, γ) 7→ (W,Q, ψ) is well de�ned.The result follows now from Theorem 4.3 and the existene of loal universal families (see[45℄). �4.2. Invariants of GL(n,R)-Higgs pairs. To aK2-twisted GL(n,R)-Higgs pair (W,Q, ψ)one an attah topologial invariants orresponding to the �rst and seond Stiefel-Whitneylasses of a redution to O(n) of the O(n,C) bundle de�ned by (W,Q). The �rst lass
w1 ∈ H1(X,Z2) ∼= Z

2g
2 measures the obstrution for the O(n)-bundle to have an ori-entation, i.e. to the existene of a redution to a SO(n) bundle, while the seond one

w2 ∈ H2(X,Z2) ∼= Z2 measures the obstrution to lifting the O(n)-bundle to a Pin(n)-bundle, where
1→ Z2 → Pin(n)→ O(n)→ 1.If we de�ne

M′
w1,w2

:= {(W,Q, ψ) ∈M′ suh that w1(W ) = w1 and w2(W ) = w2},we have that(4.30) M′ =
⋃

w1,w2

M′
w1,w2

.We thus have, via the isomorphism given by Theorem 4.4, that the moduli spaeMmaxis partitioned in disjoint losed subvarieties orresponding to �xing (w1, w2).



32 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA5. The Hithin funtional5.1. The Hithin funtional. In order to de�ne this funtional, we onsider the modulispae of Sp(2n,R)-Higgs bundles (V, ϕ) from the gauge theory point of view, i.e., we usethe identi�ation ofMd with the moduli spae Mgauge
d of solutions (A,ϕ) to the Hithinequations given by Theorem 2.19. There is an ation of S1 on Md via multipliationof ϕ by salars: (A,ϕ) 7→ (A, eiθϕ). Restrited to the smooth lous Ms

d this ation ishamiltonian with sympleti moment map −f , where the Hithin funtional f is de�nedby(5.31) f :Md → R,

(A,ϕ) 7→ 1
2
‖ϕ‖2 = 1

2
‖β‖2 + 1

2
‖γ‖2.Here ‖·‖ is the L2-norm obtained by using the Hermitian metri in V and integrating over

X. The funtion f is well de�ned on the whole moduli spae (not just on the smoothlous). It was proved by Hithin [31, 32℄ that f is proper and therefore it has a minimumon every losed subspae ofM =
⋃
dMd. Thus we have the following result.Proposition 5.1. Let M′ ⊆M be any losed subspae and let N ′ ⊆M′ be the subspaeof loal minima of f onM′. If N ′ is onneted then so isM′. �The following observation was also made by Hithin [32℄.Proposition 5.2. The Hithin funtional is additive with respet to diret sum of Sp(2n,R)-Higgs bundles, in other words,

f(
⊕

(Vi, ϕi)) =
∑

f(Vi, ϕi).Let (V, ϕ) represent a smooth point of Md. Then the moment map ondition showsthat the ritial points of f are exatly the �xed points of the irle ation. These an beidenti�ed as follows (f. [31, 32, 48℄).Proposition 5.3. An Sp(2n,R)-Higgs bundle (V, ϕ) represents a �xed point of the irleation on Md if and only if it is a omplex variation of Hodge struture (also alled aHodge bundle): this means that there is a deomposition in holomorphi subbundles
V =

⊕
Fifor real indies, or weights, i suh that, attributing weight −i to F ∗

i , ϕ = (β, γ) has weightone with respet to this deomposition; more expliitly this means that
γ : Fi → F ∗

−i−1 ⊗K and β : F ∗
i → F−i+1 ⊗K.

�



REPRESENTATIONS OF SURFACE GROUPS 33The deomposition V =
⊕

Fi of Proposition 5.3 gives rise to orresponding deomposi-tions
End(V )k =

⊕

i−j=k
Fi ⊗ F

∗
j ,(5.32)

(S2V ⊗K)k+1 =
⊕

i+j=k+1
i<j

Fi ⊗ Fj ⊗K ⊕ S
2Fk+1

2

⊗K,(5.33)
(S2V ∗ ⊗K)k+1 =

⊕

−i−j=k+1
i<j

F ∗
i ⊗ F

∗
j ⊗K ⊕ S

2F ∗
− k+1

2

⊗K.(5.34)The map ad(ϕ) in the deformation omplex (2.3) has weight 1 with respet to these de-ompositions, so that we an de�ne omplexes(5.35) C•
k(V, ϕ) : End(V )k

ad(ϕ)
−−−→ (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1,for any k. The deformation omplex (2.3) deomposes aordingly as

C•(V, ϕ) =
⊕

C•
k(V, ϕ).We shall also need the positive weight subomplex(5.36) C•

−(V, ϕ) =
⊕

k>0

C•
k(V, ϕ).It an be shown (see, e.g., [23, �3.2℄) that H1(C•
k(V, ϕ)) is the weight −k-subspae of

H1(C•(V, ϕ)) for the in�nitesimal irle ation. Thus H1(C•
−(V, ϕ)) is the positive weightspae for the in�nitesimal irle ation.Proposition 5.4. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whose isomorphismlass is �xed under the irle ation.(1) Assume that (V, ϕ) is simple and stable as an Sp(2n,C)-Higgs bundle. Then (V, ϕ)represents a loal minimum of f if and only if H1(C•
−(V, ϕ)) = 0.(2) Suppose that there is a family (Vt, ϕt) of polystable Sp(2n,R)-Higgs bundles, para-metrized by t in the open unit disk D, deforming (V, ϕ) (i.e., suh that (V0, ϕ0) =

(V, ϕ)) and that the orresponding in�nitesimal deformation is a non-zero elementof H1(C•
−(V, ϕ)). Then (V, ϕ) is not a loal minimum of f onMd.Proof. (1) From Proposition 2.15, when the hypotheses are satis�ed, (V, ϕ) represents asmooth point of the moduli spae. Then one an use the moment map ondition on f toshow that H1(C•
k(V, ϕ)) is the eigenvalue −k subspae of the Hessian of f (f. [23, �3.2℄;this goes bak to Frankel [22℄, at least). This proves (1).(2) Take a orresponding family of solutions to Hithin's equations. One an then provethat the seond variation of f along this family is negative in ertain diretions (see Hithin[32, � 8℄). �5.2. A ohomologial riterion for minima. The following result was proved in [6,Proposition 4.142 and Remark 4.16℄. It is the key to obtaining the haraterization of theminima of the Hithin funtional f .2a orreted proof an be found in [9, Lemma 3.11℄



34 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProposition 5.5. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whose isomorphismlass is �xed under the irle ation. Then for any k we have χ(C•
k(V, ϕ)) ≤ 0 and equalityholds if and only if

ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism.Corollary 5.6. Let (V, ϕ) be a simple Sp(2n,R)-Higgs bundle whih is stable as an Sp(2n,C)-Higgs bundle. If (V, ϕ) is �xed under the irle ation then it represents a loal minimumof f if and only if the map
ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism for all k > 0.Proof. We have the vanishing H0(C•

k(V, ϕ)) = H2(C•
k(V, ϕ)) = 0 for all k > 0 from Propo-sition 2.14. Hene dim H1(C•

−(V, ϕ)) = −χ(C•
−(V, ϕ)). Now the result is immediate fromProposition 5.5 and (1) of Proposition 5.4. �5.3. Minima of the Hithin funtional. In order to desribe the minima, it is onve-nient to de�ne the following subspaes ofMd.De�nition 5.7. For eah d, de�ne the following subspae ofMd.

Nd = {(V, β, γ) ∈Md | β = 0 or γ = 0}.Remark 5.8. It is easy to see that polystability of (V, ϕ) implies that, in fat,
Nd = {(V, β, γ) | β = 0} for d > 0,
Nd = {(V, β, γ) | γ = 0} for d < 0,
Nd = {(V, β, γ) | β = γ = 0} for d = 0.Note, in partiular, that for d = 0 the vanishing of one of the seions β or γ implies thevanishing of the other one.Proposition 5.9. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle with β = 0 or γ = 0.Then (V, ϕ) represents the absolute minimum of f on Md. Thus Nd is ontained in thesubspae of loal minima of f onMd.Proof. This an be seen in a way similar to the proof of [6, Proposition 4.5℄. �Theorem 5.10. Let (V, β, γ) be a polystable Sp(2n,R)-Higgs bundle and assume that n ≥

3. Then (V, β, γ) represents a minimum of the Hithin funtional if and only if one of thefollowing situations ours:(1) (V, β, γ) belongs to Nd.(2) The degree d = −n(g − 1) with n = 2q + 1 odd, and there exists a square root L of
K suh that the bundle V is of the form

V =

q⊕

λ=−q
L−1K−2λ.



REPRESENTATIONS OF SURFACE GROUPS 35With respet to this deomposition of V and the orresponding deomposition of V ∗,the maps β and γ are of the form:
β =




0 · · · 0 1
... . .

.
. .
.

0

0 1 . .
. ...

1 0 · · · 0




and γ =




0 · · · 0 0
... . .

.
. .
.

1

0 0 . .
. ...

0 1 · · · 0


where, in the matrix for β, we denote by 1 the anonial setion of

Hom((L−1K−2λ)∗, L−1K2λ)⊗K ∼= Oand analogously for γ.(3) The degree d = −n(g− 1) with n = 2q+2 even, and there exists a square root L of
K suh that the bundle V is of the form

V =

q+1⊕

λ=−q
LK−2λ.With respet to this deomposition of V and the orresponding deomposition of V ∗,the maps β and γ are of the form given above.(4) The degree d = n(g−1) and the dual Sp(2n,R)-Higgs bundle (V ′, β ′, γ′) = (V ∗, γt, βt)is of the form given in (2) or (3) above.De�nition 5.11. If (V, β, γ) is a minimum whih does not belong to Nd we say that it isa quiver type minimum.Remark 5.12. The ases n = 1 and n = 2 are speial and were treated in [31℄ and [29℄,respetively (f. (1) of Corollary 6.6 and Remark 6.7).Proof of Theorem 5.10. This proof relies on the results of Setions 6 and 7 below.Consider �rst the ase of simple Sp(2n,R)-Higgs bundles (V, ϕ) whih are stable as

Sp(2n,C)-Higgs bundles. In this ase, the analysis of the minima is based on Corollary 5.6and is arried out in Setion 6 below. The main result is Theorem 6.8, whih says thatTheorem 5.10 holds for suh (V, ϕ).Next, onsider a polystable Sp(2n,R)-Higgs bundle (V, ϕ) whih is not simple and stableas an Sp(2n,C)-Higgs bundle. Then the deomposition (V, ϕ) =
⊕

(Vi, ϕi) given in thestruture Theorem 3.29 is non-trivial. The main result of Setion 7, Proposition 7.1, saysthat if suh a (V, ϕ) is a loal minimum then it belongs to Nd, i.e., β = 0 or γ = 0. Thisonludes the proof. �6. Minima in the smooth lous of the moduli spaeIn this setion we onsider simple Sp(2n,R)-Higgs bundles (V, φ) whih are stable as
Sp(2n,C)-Higgs bundles. Thus, by Proposition 2.15, they belong to the smooth lous ofthe moduli spaeMd. In Theorem 6.8 below we prove that the statement of Theorem 5.10holds in this ase.Our results are based on a areful analysis of the struture of Sp(2n,R)-Higgs bundles
(V, φ) satisfying the riterion of Corollary 5.6.



36 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA6.1. Hodge bundles. In this subsetion we give a desription of simple Sp(2n,R)-Higgsbundles, whih are omplex variations of Hodge struture (f. Proposition 5.3).Lemma 6.1. Let (V, β, γ) be an Sp(2n,R)-Higgs bundle and suppose there are splittings
V = Va ⊕ Vb and V ∗ = V ∗

c ⊕ V
∗
d , at least one of whih is non-trivial, and satisfying

β(V ∗
c ) ⊂ Va ⊗K, γ(Va) ⊂ Vc ⊗K, β(V ∗

d ) ⊂ Vb ⊗K, γ(Vb) ⊂ Vd ⊗K.Then (V, β, γ) is not simple.Proof. Suppose the splitting V = Va⊕Vb is non-trivial and, with respet to this deompo-sition, let
σ = (1,−1) ∈ Aut(V )Then, learly, σ �xes ϕ = (β, γ) and hene σ ∈ Aut(V, ϕ). Therefore (V, ϕ) is not simple(f. Proposition 3.4). An analogous argument works when the splitting V ∗ = V ∗

c ⊕ V
∗
d isnon-trivial. �Now assume that the Sp(2n,R)-Higgs bundle (V, ϕ) = (V, β, γ) is a Hodge bundle, i.e.,

V =
⊕

Fi, β : F ∗
i → F−i+1 ⊗K and γ : Fi → F ∗

−i−1 ⊗K, as desibed in Proposition 5.3,and let
Fi = Fi ⊕ F

∗
−ibe the weight i subspae of V ⊕ V ∗. Then ϕ has omponents

ϕi : Fi → Fi+1 ⊗K.Let i0 and i1 be the smallest and largest weights orresponding to non-zero weight spaes,respetively:
i0 = min{i | Fi 6= 0},

i1 = max{i | Fi 6= 0}.Lemma 6.2. If (V, ϕ) = (V, β, γ) is simple and a omplex variation of Hodge struture,then(1) any weight i for whih Fi 6= 0 di�ers from i0 by an integer,(2) the map ϕi : Fi → Fi+1 ⊗K is non-vanishing for i = i0, i0 + 1, . . . , i1 − 1, and(3) only one of the bundles in the deomposition Fi = Fi ⊕ F ∗
−i is non-zero for i =

i0, i0 + 1, . . . , i1 − 1.Proof. (1) Let
E ′ =

⊕

i−n∈Z

Fi and E ′′ =
⊕

i−n 6∈Z

Fiand de�ne splittings V = Va ⊕ Vb and V ∗ = V ∗
c ⊕ V

∗
d by the requirement that

E ′ = Va ⊕ V
∗
c and E ′′ = Vb ⊕ V

∗
d .Clearly these splittings satisfy the onditions of Lemma 6.1 and hene, sine (V, β, γ) issimple, we onlude that E ′′ = 0.(2) If ϕj = 0 for some j, we an let

E ′ =
⊕

i0≤i≤j
Fi and E ′′ =

⊕

j+1≤i≤i1

Fi,and we obtain a ontradition with simpliity of (V, β, γ), using Lemma 6.1, as in the proofof (1).



REPRESENTATIONS OF SURFACE GROUPS 37(3) We an organize the bundles Fi and F ∗
i and the maps between them in the diagram(6.37) Fi0 γ

##HHH
HH

HH
HH

Fi0+1 γ

""FFFFFFFFF
· · ·

F ∗
−i0

vvvv
β

;;vvvv

F ∗
−i0−1

xxx
β

<<xxxxx

· · ·

,

where the maps are twisted by K, i.e., Fi γ // F ∗
−i−1 should be interpreted to mean thatwe have a map Fi

γ // F ∗
−i−1 ⊗K , and analogously for β. From this it is lear that, ifwe de�ne

Va =
⊕

Fi0+2i Vb =
⊕

Fi0+1+2i

V ∗
c =

⊕
F ∗
−i0−1+2i V ∗

d =
⊕

F ∗
−i0+2i,and let E ′ = Va ⊕ V ∗

c and E ′′ = Vb ⊕ V ∗
d then, again using Lemma 6.1, simpliity impliesthat E ′ = 0 or E ′′ = 0. Sine the bundles Fi are just the diret sums of the bundlesappearing in eah olumn in the diagram (6.37) above, this onludes the proof. �Proposition 6.3. If (V, ϕ) = (

⊕
Fi, β, γ) is simple and a Hodge bundle, we have eitherthe diagram(6.38) Fi1 Fi1−2

γ
����

��
��

��
�

Fi0+1

. . .

F ∗
1−i1

β

[[888888888

F ∗
3−i1

β

]];;;;;;;;;

F ∗
−i0

β

]]:::::::::or the diagram(6.39) Fi1−1

γ
����

��
��

��
�

Fi1−3

γ
����

��
��

��
�

Fi0

γ
����

��
��

��
�

. . .

F ∗
−i1 F ∗

2−i1

β

]];;;;;;;;;

F ∗
−i0+1,where eah of the maps is non-zero. Here the maps are twisted by K, i.e., Fi

γ // F ∗
−i−1should be interpreted to mean that we have a map Fi

γ // F ∗
−i−1 ⊗K , and analogouslyfor β.Proof. Immediate from Lemma 6.2. �Remark 6.4. Reall from Proposition 3.24 that, for eah d, there is an isomorphismMd

∼=
−→

M−d, given by the duality (V, β, γ) 7→ (V ∗, γt, βt). Under this duality the situations (6.38)and (6.39) orrespond (in fat, as we shall see, the former situation orresponds to d < 0,whereas the latter orresponds to d > 0). Heneforth we shall assume, for de�niteness,that we are in the situation (6.38) of Proposition 6.3.



38 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA6.2. Appliation of the riterion for minima. In this setion we ombine the desrip-tion of the omplex variations of Hodge struture given in Proposition 6.3 and the riteriongiven in Corollary 5.6 to determine the minima of the Hithin funtional orresponding tosimple Sp(2n,R)-Higgs bundles whih are stable as Sp(2n,C)-Higgs bundles.Let
m = i0 + 1 and M = i1be the smallest and largest weight, respetively, appearing in the deomposition V =

⊕
Fi.Then we an write(6.40) V =

p⊕

λ=0

FM−2λ,where
p = (M −m)/2, M = p+

1

2
and m = −p +

1

2
.Note also that m = 1−M .Theorem 6.5. Let (V, β, γ) be a Hodge bundle of the type desribed in (6.38) of Proposi-tion 6.3. Assume that β 6= 0 and γ 6= 0. Then the map

ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism for all k > 0 if and only if the following holds:(i) For any 0 ≤ λ ≤ p the rank of FM−2λ is 1;(ii) for any 0 ≤ λ ≤ p− 1 the piee of β in
FM−2λ ⊗ Fm+2λ ⊗K ⊂ S2V ⊗Knever vanishes;(iii) for any 1 ≤ λ ≤ p− 1 the piee of γ in

F ∗
M−2λ ⊗ F

∗
m+2λ−2 ⊗K ⊂ S2V ∗ ⊗Knever vanishes.An analogous statement holds for Hodge bundles of the type desribed in (6.39) of Propo-sition 6.3.Proof. The assumption β 6= 0 and γ 6= 0 means that in the deomposition (6.40) we have

p ≥ 1. If we take the piee in degree k = 2p of the map ad(ϕ), we get
A := ad(ϕ)2p : FM ⊗ F

∗
m → S2FM ⊗K,whih by assumption is an isomorphism. Computing the ranks ri = rk(Fi), we dedue

rMrm =
rM(rM + 1)

2
.To prove that rM = rm = 1, we assume the ontrary and show that this leads to aontradition. If rM > 1 then by the formula above we must have rm < rM . Let b be thepiee of β in FM ⊗ Fm ⊗K ⊂ (S2V ⊗K)2p. Then the map A sends any e ∈ FM ⊗ F ∗

m to
A(e) = eb+ be∗.The �rst summand denotes the omposition of maps

F ∗
M

b
−→ Fm

e
−→ FM
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F ∗
M

e∗
−→ F ∗

m
b
−→ FM .Take a basis u1, . . . , urM of FM whose �rst rm elements are a basis of b(F ∗

m), and take on
F ∗
M the dual basis. If we write the matries of eb and be∗ with respet to these basis, onereadily heks that the (rM − rm) × (rM − rm) blok in the bottom left of both matriesvanishes. Consequently, an element in S2FM represented by a symmetri matrix whoseentry at the bottom left orner is nonzero annot belong to the image of A. Hene A isnot an isomorphism, in ontradition to our assumption, so we dedue that

rM = rm = 1.One also dedues that the setion b ∈ H0(FM ⊗ Fm ⊗ K) never vanishes. This provesstatements (i) and (ii) when λ = 0 or p.Observation. The following observation will be useful: if e ∈ Fi ⊗ F ∗
j ⊂ End(V ), thenany nonzero piee of ad(ϕ)(e) in the deomposition (5.33) belongs to a summand of theform Fi ⊗ Fu ⊗ K, and any nonzero piee in (5.34) belongs to a summand of the form

F ∗
j ⊗ F

∗
v ⊗K (in both ases the symmetrization should be understood if the two indiesoinide). This follows from the fat that ad(ϕ)(e) is the sum of ompositions of e withanother map (either on the right and on the left). Hene eah summand in ad(ϕ)(e) mustshare with e at least the domain or the target.Now let us take any k = 2p− 2λ ≥ 1, suh that λ ≥ 1, so that 1 ≤ λ ≤ p− 1. Then wehave(6.41) End(V )2p−2λ = FM ⊗ F

∗
m+2λ ⊕ FM−2 ⊗ F

∗
m+2λ−2 ⊕ · · · ⊕ FM−2λ ⊗ F

∗
m.We laim that there is no nonzero blok in (S2V ∗⊗K)2p−2λ+1 of the form F ∗

m+2λ⊗F
∗
v ⊗K.Indeed, for that one should take v = −(2p− 2λ+ 1)− (m+ 2λ) = −M − 1, but F−M−1 =

0, beause −M − 1 < m. On the other hand, (S2V ∗ ⊗ K)2p−2λ+1 ontains the blok
FM ⊗ FM−2λ ⊗K and no other blok involving FM . Hene we must have

ad(ϕ)k(FM ⊗ F
∗
m+2λ) ⊂ FM ⊗ FM−2λ ⊗K.Taking ranks and using the fat that ad(ϕ)k is injetive, we dedue that

rm+2λ ≤ rM−2λ.Sine 1 ≤ λ ≤ p− 1⇐⇒ 1 ≤ p− λ ≤ p− 1, we automatially dedue that
rm+2p−2λ ≤ rM−2p+2λ.But m+ 2p = M , so we onlude that(6.42) rm+2λ = rM−2λ.Let us distinguish two possibilities.Case (1). Suppose that λ = 2l + 1 is odd. Then we have

S2F ∗
m+λ−1 ⊗K ⊂ (S2V ∗ ⊗K)2p−2λ+1,and the observation above implies that

ad(ϕ)−1
2p−2λ(S

2F ∗
m+λ−1 ⊗K) ⊂ FM−λ−1 ⊗ F

∗
m+λ−1.The argument given above for λ = 0 proves now that the piee of γ in

F ∗
M−λ−1 ⊗ F

∗
m+λ−1 ⊗Knever vanishes.



40 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERACase (2). Suppose that λ = 2l is even. Then we have
S2FM−λ ⊗K ⊂ (S2V ⊗K)2p−2λ+1,and the observation above implies that

ad(ϕ)−1
2p−2λ(S

2FM−λ ⊗K) ⊂ FM−λ ⊗ F
∗
m+λ.The argument given above for λ = 0 proves now that the piee of β in

FM−λ ⊗ Fm+λ ⊗Knever vanishes.These arguments prove statements (ii) and (iii).We are now going to prove that for any 1 ≤ λ ≤ p/2 the ranks rM−2λ = rm+2λ = 1 usingindution. Fix suh a λ and assume that for any 0 ≤ l < λ we have rM−2l = rm+2l = 1(when l = 0 we already know this is true). Sine 2p− 2λ ≥ 1 we must have(6.43) rk End(V )2p−2λ = rk(S2V ⊗K ⊕ S2V ∗ ⊗K)2p−2λ+1.Using indution we an ompute the left hand side:
rk End(V )2p−2λ = rMrm+2λ + rM−2rm+2λ−2 + · · ·+ rM−2λ+2rm+2 + rM−2λrm

= rm+2λ + rM−2λ + (λ− 1).We now distinguish again two ases.Case (1). Suppose that λ = 2l + 1 is odd. Then we ompute
rk(S2V )2p−2λ+1 = rMrM−2λ + rM−2rM−2λ+2 + · · ·+ rM−λ+1rM−λ−1

= rM−2λ + land
rk(S2V ∗)2p−2λ+1 =rmrm+2λ−2 + rm+2rm+2λ−4 + · · ·+ rm+λ−3rm+λ+1

+

(
rm+λ−1 + 1

2

)
= l + 1.Comparing the two omputations it follows from (6.43) that

rm+2λ = 1,and using (6.42) we dedue that
rM−2λ = 1.Case (2). Now suppose that λ = 2l is even. Then we have

rk(S2V )2p−2λ+1 =rMrM−2λ + rM−2rM−2λ+2 + · · ·+ rM−λ+2rM−λ−2

+

(
rM−λ

2

)
= rM−2λ + land

rk(S2V ∗)2p−2λ+1 = rmrm+2λ−2 + rm+2rm+2λ−4 + · · ·+ rm+λ−2rm+λ

= l.Comparing again the two omputations we dedue that
rm+2λ = rM−2λ = 1.This �nishes the proof of statement (i) and thus the proof of the Theorem. �



REPRESENTATIONS OF SURFACE GROUPS 41Corollary 6.6. Let (V, β, γ) be a Hodge bundle of the type desribed in (6.38) of Proposi-tion 6.3. Assume that β 6= 0 and γ 6= 0 and that the map
ad(ϕ) : End(V )k → (S2V ⊗K ⊕ S2V ∗ ⊗K)k+1is an isomorphism for all k > 0. Then the following holds.(1) If n = 2 then F 3

2
⊗ F− 1

2
⊗K ∼= C.(2) If n = 2q + 1 ≥ 3 is odd then β : F ∗

1

2
−2λ

∼=
→ F 1

2
+2λK for any integer −q ≤ λ ≤ q. Inpartiular, there exists a square root L of K suh that for any integer −q ≤ λ ≤ qwe have

FM−2(q−λ)
∼= Fm+2(λ+q)

∼= F 1

2
+2λ
∼= L−1 ⊗K−2λ,and the bundle V is of the form

V =

q⊕

λ=−q
L−1K−2λ.(3) If n = 2q+2 ≥ 4 then γ : F− 1

2

∼=
→ F ∗

− 1

2

K and β : F ∗
− 1

2
−2λ

∼=
→ F− 1

2
+2λK for any integer

−q ≤ λ ≤ q + 1. In partiular, there exists a square root L of K suh that for anyinteger −q ≤ λ ≤ q + 1 we have
F− 1

2
+2λ
∼= L⊗K−2λ ∼= FM−2(q+1−λ)

∼= Fm+2(λ+q),and the bundle V is of the form
V =

q+1⊕

λ=−q
LK−2λ.(4) For any n ≥ 2, the degree of V is deg V = n(1− g).(5) For any n ≥ 2, an Sp(2n,R)-Higgs bundle of the form desribed in (1)�(3) above isstable as an SL(2n,C)-Higgs bundle, and thus also as an Sp(2n,C)-Higgs bundle.Analogous statements hold for Hodge bundles of the type desribed in (6.39) of Proposi-tion 6.3. In partiular, in this ase the degree of V is deg V = n(g − 1) (f. Remark 6.4).Remark 6.7. In the ase n = 1 it is not possible for (V, ϕ) to be a Hodge bundle with β 6= 0and γ 6= 0.Proof of Corollary 6.6. First we observe that, sine the Fi are all line bundles, we have

n = p + 1, M = p+ 1
2
and m = −p + 1

2
.(1) In this ase we have n = 2, p = 1, M = 3/2, m = −1/2. Then, taking λ = 0 in (ii)of Theorem 6.5 we get F 3

2
⊗ F− 1

2
⊗K ∼= C.(2) In this ase we have n = p+ 1 = 2q + 1 so that M = 2q + 1/2 and m = −2q + 1/2.Hene, using (ii) and (iii) of Theorem 6.5, we an desribe the struture of the maps β and
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γ in the following diagram:

•
M

•
M−2

γ

77· · · •
1/2

β

��

γ 66
•

−3/2 · · · •
m+2

β

vv
•
m

β

xx
,

where an arrow •
i

β // •
j means that there is an isomorphism β : F ∗

i → Fj ⊗ K (andthus j = −i + 1); similarly, an arrow •
i

γ // •
j means that there is an isomorphism

γ : Fi → F ∗
j ⊗K. In partiular, we see that the isomorphism β : F ∗

1

2

∼=
→ F 1

2
⊗K means that

F 1

2

∼= L−1 for a square root L of K. This proves the ase λ = 0 of (2). Now repeatedappliation of (ii) and (iii) of Theorem 6.5 proves the general ase. Note that this argumentan be phrased as saying that the graph above is onneted and its only losed loop is theone at 1/2: thus the remaining Fi are uniquely determined by F 1

2
.(3) In this ase we have n = p + 1 = 2q + 2 so that M = 2q + 3/2 and m = −2q − 1/2and, as above, we have a diagram

•
M

•
M−2

γ

77· · · •
3/2

•
−1/2
γ QQ

β
xx

· · · •
m+2

β

vv
•
m

β

xx
.The argument is now analogous to the previous ase.(4) Easy from the formulas for V given in (2) and (3).(5) Let (V, ϕ) be of the kind desribed in (1)�(3), and onsider the assoiated SL(2n,C)-Higgs bundle (V ⊕V ∗,Φ) = H(V, ϕ). The Φ-invariant subbundles of V ⊕V ∗ are of the form⊕

i≥i0(Fi ⊕ F
∗
−i). From the given desription, it is easy to hek that suh a subbundle,when proper and non-zero, has degree stritly negative. �Finally, we use the analysis arried out so far to determine the minima of the Hithinfuntional on the lous of the moduli spae orresponding to simple Sp(2n,R)-Higgs bun-dles whih are stable as Sp(2n,C)-Higgs bundles.Theorem 6.8. Let (V, β, γ) be a simple Sp(2n,R)-Higgs bundle whih is stable as an

Sp(2n,C)-Higgs bundle.(1) If |d| < n(g − 1) then (V, β, γ) represents a minimum of the Hithin funtional ifand only if it belongs to Nd.(2) If |d| = n(g − 1) and n ≥ 3 then (V, β, γ) represents a minimum of the Hithinfuntional if and only if one of the following situations ours:(i) the Sp(2n,R)-Higgs bundle (V, β, γ) belongs to Nd;



REPRESENTATIONS OF SURFACE GROUPS 43(ii) the Sp(2n,R)-Higgs bundle (V, β, γ) is of the type desribed in (2) or (3) ofCorollary 6.6. In this ase we say that (V, β, γ) is a quiver type minimum.Proof. If (V, β, γ) belongs to Nd then we know from Proposition 5.9 that it represents aminimum. And, if (V, β, γ) is of the type desribed in (2) or (3) of Corollary 6.6, thenCorollary 5.6 and Theorem 6.5 show that it represents a minimum.On the other hand, if (V, β, γ) is a minimum whih does not belong to Nd, then Corol-lary 5.6, Theorem 6.5 and Corollary 6.6 show that it is of the type desribed in (2) or (3)of Corollary 6.6. �7. Minima on the entire moduli spae7.1. Main result and strategy of proof. In Setion 6 we haraterized the minimaof the Hithin funtional on the lous of Md orresponding to simple Sp(2n,R)-Higgsbundles (V, ϕ) whih are stable as Sp(2n,C)-Higgs bundles. In this setion we provide theremaining results required to extend this haraterization to the whole moduli spae, thusompleting the proof of Theorem 5.10. As explained in the proof of that Theorem, what isrequired is to rule out ertain type of potential minima of the Hithin funtional. In eahase this is done by using (2) of Proposition 5.4. The main result of this Setion is thefollowing.Proposition 7.1. Let (V, ϕ = β + γ) be a polystable Sp(2n,R)-Higgs bundle and assumethat the deomposition (V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vk, ϕk) of Theorem 3.29 is non-trivial. If
(V, ϕ) is a loal minimum of the Hithin funtional then either β = 0 or γ = 0.Proof. The starting point is the struture Theorem 3.29. Reall that this desribes apolystable Sp(2n,R)-Higgs bundle as a diret sum(7.44) (V, ϕ) =

⊕
(Vi, ϕi),where eah Sp(2n,R)-Higgs bundle (Vi, ϕi) omes from aGi-Higgs bundle whih is a smoothpoint in its respetive moduli spae. If (V, ϕ) is a minimum, then Proposition 5.2 impliesthat eah (Vi, ϕi) is a minimum on the orresponding moduli spae of Gi-Higgs bundles.Consider eah of the possible Gi's in turn.The ase Gi = Sp(2ni,R). This is the ase overed by Theorem 6.8. (Exept for thease ni = 2, whih will require speial attention.)The ase Gi = U(ni). In this ase ϕi = 0 for any Gi-Higgs bundle, as we have alreadyseen.The ase Gi = U(pi, qi). In this ase, the minima of the Hithin funtional were deter-mined in [6℄. There it is shown that a U(pi, qi)-Higgs bundle (Ṽi, W̃i, β̃ + γ̃) is a minimumif and only if β̃ = 0 or γ̃ = 0. Hene (Vi, ϕi) = υ

U(pi,qi)
∗ (Ṽi, W̃i, β̃ + γ̃) (f. (3.16)) is aminimum if and only if βi = 0 or γi = 0The ase Gi = GL(ni,R). The moduli spae of suh Higgs bundles was studied in [7℄.Using the results of that paper we show in Lemma 7.8 below that a Sp(2ni,R)-Higgs bundle

(Vi, ϕi) oming from a GL(ni,R)-Higgs bundle is a minimum if and only if ϕi = 0.A quiver type minimum (V, ϕ) is simple and stable as a Sp(2n,C)-Higgs bundle by (5)of Corollary 6.6. Thus, to onlude the proof of the Proposition, it remains to show thatif (V, ϕ) is a minimum and the deomposition (7.44) is non-trivial, then it belongs to Nd,



44 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAi.e., β = 0 or γ = 0. By the above analysis of the minima oming from Gi-Higgs bundles,it therefore su�es to show that (V, ϕ) is not a minimum when the deomposition (7.44)falls in one of the following ases:(1) There is a (Vi, ϕi) in Ndi
with βi 6= 0 and a (Vj , ϕj) in Ndj

with γj 6= 0.(2) There is a (Vi, ϕi) whih is a quiver type minimum and a (Vj , ϕj) whih lies in Ndi
.(3) There are (distint) (Vi, ϕi) and (Vj , ϕj) whih are quiver type minima.In order to aomodate the possibility ni = 2, the quiver type minima must here beunderstood to inlude all minima with β 6= 0 and γ 6= 0 (f. (1) of Corollary 6.6). Thease ni = 1 is inluded sine suh minima must have β = 0 or γ = 0 (f. Remark 6.7).Note that, by Proposition 5.2, in fat it su�es to onsider the ase when k = 2 in (7.44).With this in mind, the results of Lemmas 7.2, 7.4 and 7.6 below onlude the proof. �7.2. Deforming a sum of minima in Nd.Lemma 7.2. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whih deomposes as adiret sum (V, ϕ) = (V ′, ϕ′) ⊕ (V ′′, ϕ′′) with ϕ′ = (β ′, γ′) and ϕ′′ = (β ′′, γ′′). Supposethat β ′ = 0, γ′ 6= 0, β ′′ 6= 0 and γ′′ = 0. Suppose additionally that (V ′, ϕ′) and (V ′′, ϕ′′)are stable Sp(2n,R)-Higgs bundles or stable U(p, q)-Higgs bundles. Then (V, ϕ) is not aminimum of f onMd. The same is true if β ′ 6= 0, γ′ = 0, β ′′ = 0 and γ′′ 6= 0.Proof. We prove the Lemma by applying the riterion in (2) of Proposition 5.4. As a �rststep, we identify the omplex C•

− de�ned in (5.36), and for that we need to know theweights of eah piee V ′, V ′′. Reall that the weight of ϕ′, ϕ′′ is always 1.(1) Sine γ′ : V ′ → V ′∗K, the weight on V ′∗ is 1 + λ′ = −λ′, where λ′ is the weight on
V ′. Thus λ′ = −1/2.(2) Similarly, the weight on V ′′ is λ′′ = 1/2.From this it follows immediately that the omplex C•

− is given by
C•

− : Hom(V ′, V ′′)→ 0,so that
H1(C•

−) = H1(Hom(V ′, V ′′)).Reall from Remark 5.8 that d′ = deg(V ′) ≥ 0 and d′′ ≤ 0 so, by Riemann�Roh,
H1(Hom(V ′, V ′′)) 6= 0.This proves that C•

− has nonzero �rst hyperohomology. To �nish the argument we need tointegrate any element of H1(C•
−) to a deformation of (V, ϕ) through polystable Sp(2n,R)-Higgs bundles.Chose any3 nonzero element a ∈ H1(Hom(V ′, V ′′)). Denote by D the open unit disk.De�ne V′ = D × V ′ and V′′ = D × V ′′, whih we view as vetor bundles over X ×D. Wedenote by γ′D : V′ → V′∗ ⊗K (here K denotes the pullbak to X ×D) the extension of γ′whih is onstant on the D diretion, and we de�ne similarly β ′′

D : V′′∗ → V′′ ⊗K. Takethe extension
0→ V′′ → V→ V′ → 03when one of (V ′, ϕ′) and (V ′′, ϕ′′) is a U(p, q)-Higgs bundle, this hoie is not ompletely arbitrary, f.the proof of Lemma 7.3 below.
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a⊗ 1 ∈ H1(Hom(V′,V′′)) = H1(X; Hom(V ′, V ′′))⊗H0(D; C).The restrition of this to X × {t} is the extension(7.45) 0→ V ′′ → Vt → V ′ → 0lassi�ed by ta ∈ H1(Hom(V ′, V ′′)). De�ne γD : V→ V∗ ⊗K as the omposition

V −→ V′ γ′D−→ V′∗ ⊗K → V∗ ⊗K,where the �rst arrow omes from the exat sequene de�ning V and the third one omesfrom dualising the same exat sequene and tensoring by the pullbak of K. Similarly,de�ne βD : V∗ → V⊗K as the omposition
V∗ −→ V′′∗ β′′

D−→ V′′ ⊗K → V⊗K.The resulting triple (V, βD, γD) is a family of sympleti Higgs bundles parametrized bythe disk, whose restrition to the origin oinides with (V, ϕ), and whih integrates theelement a in the deformation omplex.It remains to show that eah member of the family (V, βD, γD) is a polystable Sp(2n,R)-Higgs bundle. This is done in Lemma 7.3 below. We have thus proved that (V, ϕ) is not aloal minimum. �Lemma 7.3. The Sp(2n,R)-Higgs bundle (Vt, ϕt = βt + γt) on X, obtained by restritingto X × {t} the family (V, βD, γD) onstruted in the proof of Lemma 7.2, is polystable.Proof. It will be onvenient to use the stability ondition for Sp(2n,R)-Higgs bundles asgiven in Lemma 3.16. Thus, if (Vt, ϕt) is not stable, there are subbundles A ⊂ Vt and
B ⊂ V ∗

t suh that γt(A) ⊂ B ⊗K and βt(B) ⊂ A⊗K, and with deg(A⊕ B) = 0. Sine
X is a Riemann surfae, the kernel of the restrition to A of the sheaf map Vt → V ′′ isloally free and orresponds to a subbundle A′ ⊂ A. The quotient A′′ := A/A′ then gives asubbundle A′′ ⊂ V ′′ so that we have a ommutative diagram with exat rows and olumns:
(7.46) 0 0 0y

y
y

0 −−−→ A′′ −−−→ A −−−→ A′ −−−→ 0y
y

y

0 −−−→ V ′′ −−−→ Vt −−−→ V ′ −−−→ 0.Similarly, we obtain subbundles B′′ ⊂ V ′′∗ and B′ ⊂ V ′∗ and a diagram:
(7.47) 0 0 0y

y
y

0 ←−−− B′ ←−−− B ←−−− B′′ ←−−− 0y
y

y

0 ←−−− V ′∗ ←−−− Vt ←−−− V ′′∗ ←−−− 0.



46 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAOne easily heks that B′,⊥ ⊂ A′ and B′′,⊥ ⊂ A′′. By de�nition of γt, the diagram
0 −−−→ V ′ −−−→ Vt −−−→ V ′′ −−−→ 0yγ′

yγt

0 ←−−− V ′∗ ←−−− Vt ←−−− V ′′∗ ←−−− 0.ommutes. Thus, sine γt(A) ⊂ B ⊗ K, we have that γ′(A′) ⊂ B′ ⊗ K. Similarly,
β ′′(B′′) ⊂ A′′⊗K. It follows that the pair of subbundles A′ ⊂ V ′ and B′ ⊂ V ′∗ destabilizes
(V ′, ϕ′) and that the pair of subbundles A′′ ⊂ V ′′ and B′′ ⊂ V ′′∗ destabilizes (V ′′, ϕ′′).Consider now the ase in whih both (V ′, ϕ′) and (V ′′, ϕ′′) are stable Sp(2n,R)-Higgsbundles. Then we must have A′⊕B′ = V ′⊕ V ′∗ or A′⊕B′ = 0 and similarly for A′′⊕B′′.The only ase in whih the original destabilizing subbundle A⊕B ⊂ Vt⊕V ∗

t is non-trivialis when A′⊕B′ = V ′⊕V ′∗ and A′′⊕B′′ = 0 (or vie-versa). But, in this ase, V ′ ∼= A′ ∼= Aand hene (7.46) shows that the non-trivial extension (7.45) splits, whih is a ontradition.Hene there is no non-trivial destabilizing pair of subbundles of (Vt, ϕt), whih is thereforestable.It remains to deal with ase in whih one, or both, of (V ′, ϕ′) and (V ′′, ϕ′′) are stable
U(p, q)-Higgs bundles. The remaining ases being similar, for de�niteness we onsiderthe ase in whih (V ′′, ϕ′′) is a stable Sp(2n′′,R)-Higgs bundle and (V ′, ϕ′) is a stable
U(n′

1, n
′
2)-Higgs bundle, i.e.,

V ′ = V ′
1 ⊕ V

′
2 , ϕ′ = γ′ ∈ H0(V ′

1 ⊗ V
′
2 ⊗K).In addition to the ases onsidered above, we now also need to onsider the ase when

A′⊕B′ is non-trivial, say A′⊕B′ = V ′
1 ⊕V

′
2
∗. There are now two possibilities for A′′⊕B′′:either it is zero or it equals V ′′ ⊕ V ′′∗; we leave the �rst (simpler) ase to the reader andonsider the seond one. In this ase, the element

a = a1 + a2 ∈ H
1(Hom(V ′, V ′′) = H1(Hom(V ′

1 , V
′′))⊕H1(Hom(V ′

2 , V
′′))hosen in the proof of Lemma 7.2 above must be taken suh that both a1 and a2 arenon-zero (this is possible by Riemann�Roh). Thus, for i = 1, 2 we have a ommutativediagram

0 −−−→ V ′′ −−−→ Vti −−−→ V ′
i −−−→ 0∥∥∥

y
y

0 −−−→ V ′′ −−−→ Vt −−−→ V ′
1 ⊕ V

′
2 −−−→ 0of non-trivial extensions, where the two vertial maps on the right are inlusions. This,together with (7.47) for B′ = V ′

2
∗ and B′′ = V ′′∗, gives rise to the ommutative diagram

0 −−−→ V ′
2
∗ −−−→ B −−−→ V ′′∗ −−−→ 0y

y
∥∥∥

0 −−−→ V ′
1
∗ ⊕ V ′

2
∗ −−−→ V ∗

t −−−→ V ′′∗ −−−→ 0y
y

∥∥∥

0 −−−→ V ′
2
∗ −−−→ V ∗

t2
−−−→ V ′′∗ −−−→ 0.The omposites of the vertial maps on the left and on the right are isomorphisms. Henethe omposite of the middle vertial maps is also an isomorphism and this provides a
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0→ V ′

1
∗
→ V ∗

t → V ∗
t2
→ 0.Denote the splitting maps in the dual split extension by

i : V ′
1 → Vt and p : Vt → Vt2 .We now have a diagram

0 −−−→ V ′′ −−−→ Vt1 −−−→ V ′
1 −−−→ 0∥∥∥

y
y

0 −−−→ V ′′ −−−→ Vt −−−→ V ′
1 ⊕ V

′
2 −−−→ 0∥∥∥

yp
y

0 −−−→ V ′′ −−−→ Vt2 −−−→ V ′
2 −−−→ 0,where the vertial maps on the right are the natural inlusion and projetion, respetively.Using the existene of the splitting map i : V ′

1 → Vt and the inlusion Vt2 → Vt one readilysees that this diagram ommutes. This �nally gives us the ommutative diagram
0 −−−→ 0 −−−→ Vt/Vt1

∼=
−−−→ V ′

2 −−−→ 0∥∥∥
y

∥∥∥

0 −−−→ V ′′ −−−→ Vt2 −−−→ V ′
2 −−−→ 0,whih shows that the sequene at the bottom is split, a ontradition. �7.3. Deforming a sum of a quiver type minimum and a minimum in Nd.Lemma 7.4. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whih deomposes as adiret sum (V, ϕ) = (V ′, ϕ′)⊕ (V ′′, ϕ′′) with ϕ′ = (β ′, γ′) and ϕ′′ = (β ′′, γ′′). Suppose that(1) (V ′, ϕ′) is a quiver type minimum,(2) (V ′′, ϕ′′) is a minimum with β ′′ = 0 or γ′′ = 0 whih is a stable G′′-Higgs bundlefor G′′ one of the following groups: Sp(2n′′,R), U(p′′, q′′), U(n′′) or GL(n′′,R).Then (V, ϕ) is not a minimum of f onMd.Proof. Consider for de�niteness the ase in whih (V ′, ϕ′) is a quiver type minimum with

deg(V ′) = n′(1 − g) and (V ′′, ϕ′′) has γ′′ = 0 and β ′′ 6= 0. The ase in whih β ′′ = 0 and
γ′′ 6= 0 an be treated along the same lines as the present ase, so we will not give thedetails. The ase in whih (V ′, ϕ′) is a quiver type minimum with deg(V ′) = n′(g − 1) isobtained by symmetry. Note that some degenerate ases an our, namely:(1) (V ′, ϕ′) is a quiver type minimum with rk(V ′) = 2 (f. (1) of Corollary 6.6).(2) (V ′′, ϕ′′) has β ′′ = γ′′ = 0.With respet to Case (1), all we need for the arguments below is that β : F ∗

3

2

∼=
−→ F− 1

2
⊗K isan isomorphism, whih is guaranteed by (1) of Corollary 6.6. In what onerns Case (2),slight modi�ations are required in the arguments given below; we leave these to the reader.With these introdutory remarks out of the way, Corollary 6.6 tells us that V ′ deom-poses as a diret sum of line bundles V ′ = Fm ⊕ · · · ⊕ FM and that restriting β ′ we get
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β ′ : F ∗

m
≃
−→ FM ⊗K.Our �rst task is to identify nonzero elements in the �rst hyperohomology of C•

−. A goodplae to look for them is in the hyperohomology of the piee of highest weight in thedeformation omplex, whih is(7.48) V ′′∗ ⊗ FM ⊕ V
′′ ⊗ F ∗

m → V ′′ ⊗ FM ⊗K.This morphism annot be an isomorphism, beause the ranks do not math. Thus Propo-sition 5.5 implies that H1 of this omplex is non-vanishing.In the hyperohomology long exat sequene (f. (2.4)) of the omplex (7.48), the map
H0(V ′′∗ ⊗ FM ⊕ V

′′ ⊗ F ∗
m) = H0(V ′′∗ ⊗ FM)⊕H0(V ′′ ⊗ F ∗

m)→ H0(V ′′ ⊗ FM ⊗K)is always onto beause the map f : H0(V ′′ ⊗ F ∗
m) → H0(V ′′ ⊗ FM ⊗ K) is indued bytensoring β ′ : F ∗

m → FM ⊗K (whih is an isomorphism) with the identity map V ′′ → V ′′,so f is also an isomorphism. Hene the image of H0(V ′′ ⊗ FM ⊗ K) → H1 is zero, andthis by exatness implies that H1 → H1(V ′′∗ ⊗ FM ⊕ V ′′ ⊗ F ∗
m) is injetive. We now wantto haraterize the image of this inlusion. Tensoring the Higgs �elds β ′′ and β ′ with theindentity on FM and V ′′ respetively, we get maps

β ′′ : V ′′∗ ⊗ FM → V ′′ ⊗ FM ⊗K,and
β ′ : V ′′ ⊗ F ∗

m
≃
−→ V ′′ ⊗ FM ⊗K.Now the map ζ in the long exat sequene

H1 → H1(V ′′∗ ⊗ FM ⊕ V
′′ ⊗ F ∗

m)
ζ
−→ H1(V ′′ ⊗ FM ⊗K)→ H2an be intepreted as follows: given elements (δ, ǫ) ∈ H1(V ′′∗ ⊗ FM)⊕H1(V ′′ ⊗ F ∗

m),
ζ(δ, ǫ) = −β ′′(δ)− β ′(ǫ) ∈ H1(V ′′ ⊗ FM ⊗K).Hene we may take a nonzero pair (δ, η) satisfying β ′′(δ) + β ′(ǫ) = 0 and orresponding toa nonzero element in the hyperohomology of the omplex (7.48). We next prove that thedeformation along (δ, η) is unobstruted, by giving an expliit onstrution of a family ofHiggs bundles (Vt, βt, γt) parameterized by t ∈ C and restriting to (V ′ ⊕ V ′′, ϕ′ + ϕ′′) at

t = 0.Pik Dolbeault representatives aδ ∈ Ω0,1(V ′′∗ ⊗ FM) and aǫ ∈ Ω0,1(F ∗
m ⊗ V

′′) of δ and ǫ.We are going to onstrut a pair (Wt, νt) satisfying the following.
• There is a C∞ isomorphism of vetor bundles Wt ≃ FM ⊕ V ′′⊕Fm with respet towhih the ∂̄ operator of Wt an be written as

∂̄Wt =




∂̄FM

taδ t2γ
0 ∂̄V ′′ taǫ
0 0 ∂̄Fm



 = ∂̄0 + ta1 + t2a2,where γ ∈ Ω0,1(F ∗
m ⊗ FM) will be spei�ed later,

• νt is a holomorphi setion of H0(S2Wt ⊗K) of the form
νt = β ′ + β ′′ + tν1.



REPRESENTATIONS OF SURFACE GROUPS 49Now the ondition ∂̄Wtνt = 0 translates into
∂̄0(β

′ + β ′′) = 0,

∂̄1ν1 + a1(β
′ + β ′′) = 0,

a1ν1 + a2(β
′ + β ′′) = 0.The �rst equation is automatially satis�ed. As for the seond equation note that

a1(β
′ + β ′′) = β ′′(aδ) + β ′(aǫ) ∈ Ω1,1(V ′′ ⊗S FM).Sine by hypothesis the Dolbeault ohomology lass represented by β ′′(aδ)+β ′(aǫ) is equalto zero, we may hose a value of ν1 ∈ Ω0,1(V ′′ ⊗S FM) solving the seond equation. Itremains to onsider the third equation. Note that a2β

′′ = 0 and that a2β
′ = γ(β ′) ∈

Ω1,1(FM ⊗FM ). Sine β ′ is an isomorphism, for any η ∈ Ω1,1(FM ⊗FM ) there exist some γsuh that γ(β ′) = η. Taking η = −a1ν1, we obtain a value of γ solving the third equationabove.It follows from the onstrution that there are short exat sequenes of holomorphibundles
0→ FM → Wt → Zt → 0, 0→ V ′′ → Zt → Fm → 0.Dualizing both sequenes we have inlusions F ∗

m → Z∗
t and Z∗

t → W ∗
t whih an beomposed to get an inlusion(7.49) F ∗

m → W ∗
t .Now let

Vt = Wt ⊕
⊕

m<λ<M

Fλ.To �nish the onstrution of the family of Higgs bundles we have to de�ne holomorphimaps
βt : V ∗

t → Vt ⊗K, γt : Vt → V ∗
t ⊗Kde�ning setions inH0(S2Vt⊗K) andH0(S2V ∗

t ⊗K) respetively. The following onditionsare in fat satis�ed by a unique hoie of maps (βt, γt):
• the restrition of βt to Wt is equal to νt,
• the restrition of βt to⊕m<λ<M Fλ is equal to β ′,
• the restrition of γt to Wt is equal to 0,
• the restrition of γt to FM ⊂ Vt is 0,
• the restrition of γt to FM−2 ⊂ Vt is the omposition of γ′ : FM−2 → F ∗

m ⊗K withthe inlusion (7.49) tensored by the identity on K,
• the restrition of γt to⊕m<λ<M−2 Fλ is equal to γ′.The proof of the lemma is ompleted by using Lemma 7.5. �Lemma 7.5. The Sp(2n,R)-Higgs bundle (Vt, ϕt), obtained by restriting the family on-struted in the proof of Lemma 7.4 to X × {t}, is polystable.Proof. Analogous to the proof of Lemma 7.3. �



50 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERA7.4. Deforming a sum of two quiver type minima.Lemma 7.6. Let (V, ϕ) be a polystable Sp(2n,R)-Higgs bundle whih deomposes as adiret sum (V, ϕ) = (V ′, ϕ′)⊕ (V ′′, ϕ′′) with ϕ′ = (β ′, γ′) and ϕ′′ = (β ′′, γ′′). Suppose thatboth (V ′, ϕ′) and (V ′′, ϕ′′) are quiver type minima. Then (V, ϕ) is not a minimum of f on
Md.Proof. Suppose we have two minima whih are quiver pairs (minimal degree)

V ′ = F ′
m′ ⊕ · · · ⊕ F ′

M ′ =
⊕

F ′
λ and V ′′ = F ′′

m′′ ⊕ · · · ⊕ F ′′
M ′′ =

⊕
F ′′
µ .All morphisms β ′, β ′′, γ′, γ′′ are isomorphisms. We want to deform V ′ ⊕ V ′′.The same ideas as before tell us (looking at the negative deformation omplex) that weshould look at the piee of the exat sequene of maximal weight, whih is

C• : F ′∗
m′ ⊗ F ′′

M ′′ ⊕ F ′′∗
m′′ ⊗ F ′

M ′ → F ′
M ′ ⊗ F ′′

M ′′ ⊗K.De�ne V ′′
0 := F ′′

m′′ ⊕ F ′′
M ′′ . The restrition of the β ′′ to V ′′

0 de�nes an isomorphism
β ′′

0 : V ∗
0 → V ′′

0 ⊗K,so we an apply exatly the same onstrution as before, replaing V ′′ by V ′′
0 , and obtaina deformation Wtδ,tǫ of the bundle

F ′
m′ ⊕ F ′

M ′ ⊕ V ′′
0 = F ′

m′ ⊕ F ′
M ′ ⊕ F ′′

m′′ ⊕ F ′′
M ′′ .A very important point, however, is that now the extension lasses of the bundles Wδ and

Wǫ are more restrited, sine they belong respetively to the groups H1(F ′′∗
m′′ ⊗ F ′

M ′) and
H1(F ′∗

m′ ⊗ F ′′
M ′′). In partiular, to de�ne Wtǫ the line bundle F ′

m′ only merges with F ′′
M ′′ ,and not with F ′′

m′′ . This implies that there is a map(7.50) Wtǫ → F ′′
m′′whih deforms the projetion V ′′

0 → F ′′
m′′ .We leave all the remaining F ′

λ and F ′′
µ untouhed. There are only two maps whih haveto be deformed (apart from the β's whih are internal in Wδ,ǫ). These are

γ′ : F ′
m′ → F ′∗

M ′−2 ⊗K and γ′′ : F ′′
m′′ → F ′′∗

M ′′−2 ⊗K.The �rst one an be deformed to a map
γ′δ,ǫ : Wtδ,tǫ → F ′∗

M ′−2 ⊗Kexatly as in the previous setion. As for γ′′, we ombine the projetion Wtδ,tǫ →Wtǫ withthe map in (7.50) and with γ′′ to obtain the desired deformation
Wtδ,tǫ → F ′′∗

M ′′−2 ⊗K.Lemma 7.7 below ompletes the proof. �Lemma 7.7. The Sp(2n,R)-Higgs bundle (Vt, ϕt), obtained by restriting the family on-struted in the proof of Lemma 7.6 to X × {t}, is polystable.Proof. Analogous to the proof of Lemma 7.3. �



REPRESENTATIONS OF SURFACE GROUPS 517.5. GL(n,R)-Higgs bundles. In this setion, we will assume that
(V, ϕ) = υGL(n,C)

∗ ((W,Q), ψ)is an Sp(2n,R)-Higgs bundle assoiated to a GL(n,R)-Higgs bundle ((W,Q), ψ). Reallthat d = deg(V ) = 0 in this ase.Lemma 7.8. Let (V, ϕ) be the Sp(2n,R)-Higgs bundle assoiated to a GL(n,R)-Higgsbundle ((W,Q), ψ) as in (3.28). If (V, ϕ) is a minimum of f onM0 then ϕ = 0.Proof. In [7℄ it is shown that there are two types of minima on the moduli spae GL(n,R)-Higgs bundles ((W,Q), ψ). The �rst type has ψ = 0. The seond type orresponds to theminimum on the Hithin�Teihmüller omponent and has non-vanishing Higgs �eld. Theyare of the form:
W = F−m ⊕ · · · ⊕ Fmfor line bundles Fi, indexed by integers for n = 2m+1 odd and half-integers for n = 2m+1even. More preisely, Fi ∼= K−i suh that, in partiular, Fi ∼= F ∗

−i. With respet to thisdeomposition of W ,
Q =




0 · · · · · · 0 1
... . .

.
0

... 1
...

0 . .
. ...

1 0 · · · · · · 0




and ψ =




0 · · · · · · · · · 0
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0



.

We shall apply the riterion in (2) of Proposition 5.4 to show that υGL(n,C)
∗ ((W,Q), ψ) isnot a minimum of the Hithin funtional for suh ((W,Q), ψ).Reall that V = W , β = ψf−1 and γ = fψ, where f : V → V ∗ is the symmetriisomorphism assoiated to Q. Hene the omponents of β and γ are the anonial setions

β : F ∗
i → F−i+1 ⊗K and γ : Fi → F ∗

−i−1 ⊗K.Sine ϕ has weight one, the weight of Fi is i (f. Proposition 5.3). It follows that thehighest weight piee of the omplex C•
− de�ned in (5.36) is

C•
2m : Hom(F−m, Fm)→ 0.Hene

H1(C•
2m) = H1(Hom(F−m, Fm)) = H1(K−2m),whih is non-vanishing. Take a non-zero a ∈ H1(Hom(F−m, Fm)). Let D be the open unitdisk and let Fj be the pull-bak of Fj to X ×D. Let(7.51) 0→ Fm →Wa → F−m → 0be the extension with lass

a⊗ 1 ∈ H1(Hom(F−m,Fm)) ∼= H1(X; Hom(F−m, Fm))⊗H0(D; C).Then Va = Wa ⊕
⊕

i<m Fi is a family deforming V whih is tangent to a at t = 0 ∈ D.To obtain the required deformation of (V, ϕ) it thus remains to de�ne the Higgs �eld
ϕD ∈ H0(S2Va ⊗ K) deforming ϕ. The only piees of ϕ whih do not automatiallylift are the ones involving F−m and Fm, i.e., β ∈ H0(Hom(F ∗

−m+1, Fm) ⊗ K) and γ ∈
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H0(Hom(F−m, F

∗
m−1) ⊗ K). In order to lift β, learly we should de�ne βD to be theomposition

F∗
−m+1

β
−→ Fm →Wa,where the last map is indued from the injetion in (7.51). A similar onstrution givesthe lift γD of γ. We have thus onstruted a family (Va, βD, γD) whih is tangent to

a ∈ H1(C•
2m(V, ϕ)) for t = 0 ∈ D. Hene Lemma 7.9 below ompletes the proof. �Lemma 7.9. The Sp(2n,R)-Higgs bundle (Vt, ϕt), obtained by restriting (Va, βD, γD)onstruted in the proof of Lemma 7.8 above to X × {t}, is polystable.Proof. Analogous to the proof of Lemma 7.3. �8. Counting omponents: main results8.1. Conneted omponents ofMd for d = 0 and |d| = n(g−1). With the desriptionof the minima of the Hithin funtional given in Theorem 5.10 at our disposal we are nowin a position to omplete the ount of onneted omponents of the moduli spae in thesituation of d = 0 and |d| = n(g − 1).Proposition 8.1. The quiver type minima belong to a Hithin�Teihmüller omponent ofthe moduli spae. In partiular, they are stable and simple and orrespond to smooth pointsof the moduli spae.Proof. This is immediate from the desription of the Sp(2n,R)-Higgs bundles of the Hithin�Teihmüller omponent given in [32℄. �Proposition 8.2. Assume that d = −n(g − 1) and let (V, β, γ) be a quiver type minimumfor the Hithin funtional. Let L0 be a �xed square root of the anonial bundle, givingrise to the Cayley orrespondene isomorphism M−n(g−1)

∼=
−→ M′ of Theorem 4.4, via

V 7→ W ⊗ L0. Then the following holds.(1) The seond Stiefel�Whitney lass w2(W ) ∈ H2(X,Z2) vanishes.(2) If n is odd, the �rst Stiefel�Whitney lass w1(W ) orresponds to the two-torsionpoint L−1L0 in the Jaobian of X under the standard identi�ation J2
∼= H1(X,Z2).(3) If n is even, the �rst Stiefel�Whitney lass w1(W ) ∈ H1(X,Z2) vanishes.Proof. Easy (similar to the arguments given in [32℄ for G = SL(n,R)). �Theorem 8.3. Let X be a ompat oriented surfae of genus g. Let Md be the modulispae of polystable Sp(2n,R)-Higgs bundles of degree d. Let n ≥ 3. Then(1) M0 is non-empty and onneted;(2) M±n(g−1) has 3.22g non-empty onneted omponents.Proof. (1) When d = 0, we have from Theorem 5.10 that the subspae of minima of theHithin funtional onM0 is N0. It is immediate from Theorem 3.13 that N0 is isomorphito the moduli spae of poly-stable vetor bundles of degree zero. This moduli spae is wellknown to be non-empty and onneted and heneM0 is non-empty and onneted.



REPRESENTATIONS OF SURFACE GROUPS 53(2) For de�niteness assume that d = −n(g − 1). The deomposition (4.30) given by theCayley orrespondene gives a deomposition(8.52) M−n(g−1) =
⋃

w1,w2

Mw1,w2
,whereMw1,w2

orresponds toM′
w1,w2

under the Cayley orrespondene.For eah possible value of (w1, w2), there may be one or more orresponding Hithin-Teihmüller omponents ontained in Mw1,w2
(f. Proposition 8.2); denote by M̃w1,w2the omplement to these. Sine minima in N−n(g−1) (i.e. with γ = 0) learly do notbelong to Hithin�Teihmüller omponents, we see that the subspae of minima of M̃w1,w2onsists of those (V, β, γ) whih have γ = 0. Thus, under the Cayley orrespondene,this subspae of minima is identi�ed with the moduli spae of poly-stable O(n,C)-bundleswith the given Stiefel�Whitney lasses (w1, w2). The moduli spae of prinipal bundles fora onneted group and �xed topologial type is known to be onneted by Ramanathan[41, Proposition 4.2℄. However, sine O(n,C) is not onneted the result of Ramanathanannot be applied diretly. But, all that is required for his argument is that semistabilityis an open ondition and thus, in fat the moduli spae in question is onneted (f. [40℄).It follows that the subspae of minima on M̃w1,w2
is onneted and, hene, this spae itselfis onneted by Proposition 5.1. Additionally, eah M̃w1,w2

is non-empty (see, e.g., [40℄).Therefore, there is one onneted omponent M̃w1,w2
for eah of the 22g+1 possible valuesof (w1, w2). Adding to this the 22g Hithin�Teimüller omponents gives a total of 3.22gonneted omponents, as stated.This aounts for all the onneted omponents of M−n(g−1) sine there are no otherminima of the Hithin funtional. �8.2. Representations and Sp(2n,R)-Higgs bundles. Let R := R(Sp(2n,R)) be themoduli spae of redutive representations of π1(X) in Sp(2n,R). Sine U(n) ⊂ Sp(2n,R)is a maximal ompat subgroup, we have

π1(Sp(2n,R)) ∼= π1(U(n)) ∼= Z,and the topologial invariant attahed to a representation ρ ∈ R is hene an element
d = d(ρ) ∈ Z. This integer is alled the Toledo invariant and oinides with the �rstChern lass of a redution to a U(n)-bundle of the �at Sp(2n,R)-bundle assoiated to ρ.Fixing the invariant d ∈ Z we onsider, as in (2.9),

Rd := {ρ ∈ R suh that d(ρ) = d}.Proposition 8.4. The transformation ρ 7→ (ρt)
−1 in R indues an isomorphism of themoduli spaes Rd and R−d.As shown in Turaev [53℄ (f. also Domi�Toledo [18℄, the Toledo invariant d of a repre-sentation satis�es the Milnor�Wood type inequality(8.53) |d| ≤ n(g − 1).As a onsequene we have the following.Proposition 8.5. The moduli spae Rd is empty unless

|d| ≤ n(g − 1).



54 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAAs a speial ase of Theorem 2.28 we have the following.Proposition 8.6. The moduli spaes Rd andMd are homeomorphi.From Proposition 8.6 and Theorem 8.3 we have the main result of this paper regardingthe onnetedness properties of R given by the following.Theorem 8.7. Let X be a ompat oriented surfae of genus g. Let Rd be the modulispae of redutive representations of π1(X) in Sp(2n,R). Let n ≥ 3. Then(1) R0 is non-empty and onneted;(2) R±n(g−1) has 3.22g non-empty onneted omponents.Appendix A. Stability of twisted pairs and Hithin�KobayashiorrespondeneA.1. Standard paraboli subgroups. Here we set up some notations about parabolisubgroups , whih will be used when stating a general notion of (poly, semi)-stability (seeChapter IV in [4℄ for more details). First some basi notation.
H − a ompat and onneted Lie group
HC − the omplexi�ation of H

h− the Lie algebra of H
hC − the Lie algebra of HC

hC

s = [hC, hC]− the semisimple part of hC

z ⊂ a− the enter of hC

T ⊂ H − a maximal torus
t ⊂ h− the Lie algebra of T

a ⊂ hC − the omplexi�ation of t

〈·, ·〉 − an invariant C-bilinear pairing on hC extending the Killing form on hC

s

R ⊂ c∗ = HomC(c,C)− the roots of hC

s

hδ ⊂ hC − the root spae orresponding to δ ∈ R
∆ ⊂ R− a hoie of simple roots.De�ning c = a ∩ hC

s we have a = z⊕ c and moreover
hC = z⊕ c⊕

⊕

δ∈R
hδ.For any A ⊂ ∆ de�ne RA to be the set of roots δ =
∑

β∈∆mββ ∈ R with mβ ≥ 0 for all
β ∈ A (so if A = ∅ then RA = R). Then

pA = z⊕ c⊕
⊕

δ∈RA

hδis a Lie subalgebra of hC. Denote by PA ⊂ HC the onneted subgroup whose Lie algebrais pA. The group PA is a paraboli subgroup of HC, and any paraboli subgroup of HC is



REPRESENTATIONS OF SURFACE GROUPS 55onjugate to PA for some A. De�ne similarly R0
A as the set of roots δ =

∑
β∈∆mββ with

mβ = 0 for all β ∈ A. The vetor spae(A.54) lA = z⊕ c⊕
⊕

δ∈R0
A

hδis a Lie subalgebra of pA. Let LA be the onneted subgroup with Lie algebra lA. Then
LA is a Levi subgroup of PA, i.e., a maximal redutive subgroup of PA. Finally,(A.55) uA =

⊕

δ∈RA\R0
A

hδis also a Lie subalgebra of pA, and the onneted Lie group UA ⊂ PA with Lie algebra uAis the unipotent radial of PA. UA is a normal subgroup of PA and the quotient PA/UA isnaturally isomorphi to LA so we have(A.56) PA = LAUA.A.2. Charaters of paraboli subgroups. Let Z be the enter of HC, and let Γ =
Ker(exp : z → Z). Then zR = Γ ⊗Z R ⊂ z is the Lie algebra of the maximal ompatsubgroup of Z. Let z∗

R
= HomR(zR, iR) and let Λ = {λ ∈ z∗

R
| λ(Γ) ⊂ 2πiZ}. Let

{λδ}δ∈∆ ⊂ c∗ be the set of fundamental weights of hC

s , i.e., the duals with respet to theKilling form of the oroots {2δ/〈δ, δ〉}δ∈∆. We extend any λ ∈ Λ to a morphism of omplexLie algebras λ : z ⊕ cA → C by setting λ|z = 0, and similarly for any δ ∈ A we extend
λδ : cA → C to λδ : z⊕ cA → C by setting λδ|z = 0.Let Z◦

A be the identity omponent of the enter of LA, and let LssA be the maximalonneted semisimple Lie subgroup of LA (i.e., the onneted subgroup whose Lie algebrais [lA, lA]. De�ne
Z◦ss(LA) := Z◦

A ∩ L
ss
A .The produt map Z◦

A × LssA → LA indues an isomorphism LA ≃ Z◦
A ×Z◦ss(LA) L

ss
A , andprojetion to the �rst fator gives a map LA → Z◦

A/Z
◦ss(LA). Composing this projetionwith the quotient map PA → PA/UA ≃ LA we obtain a morphism of Lie groups

πA : PA → Z◦
A/Z

◦ss(LA).Let zA ⊂ lA be the Lie algebra of Z◦
A. Let cA =

⋂
β∈∆\A Ker λβ if A 6= ∆ and let cA = c if

A = ∆. Then we have
zA = z⊕ cA.This follows from the fat that for any δ, δ′ ∈ R we have [hδ, hδ′ ] = hδ+δ′ if δ + δ′ 6= 0 and

[hδ, h−δ] = (Kerλδ)
⊥ (see Theorem 2 in Chapter VI of [46℄).Lemma A.1. There exists some positive integer n (depending on the fundamental group of

LA) suh that for any λ ∈ Λ and any δ ∈ A the morphisms of Lie algebras nλ : z⊕ cA → Cand nλδ : z⊕ cA → C exponentiate to morphisms of Lie groups
exp(nλ) : Z◦

A/Z
◦ss(LA)→ C×, exp(nλδ) : Z◦

A/Z
◦ss(LA)→ C×.Composing the morphisms given by the previous lemma with the morphism PA we getfor any λ ∈ Λ and δ ∈ A morphisms of Lie groups

κnλ : PA → C×, κnδ : PA → C×.



56 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAA.3. Antidominant haraters of pA. An antidominant harater of pA is any ele-ment of z∗ ⊕ c∗A of the form χ = z +
∑

δ∈A nδλδ, where z ∈ z∗
R
and eah nδ is a nonpositivereal number. If for eah δ ∈ A we have nδ < 0 then we say that χ is stritly antidomi-nant. The restrition of the invariant form 〈, 〉 to z⊕ cA is nondegenerate, so it indues anisomorphism z∗⊕c∗A ≃ z⊕cA. For any antidominant harater χ we de�ne sχ ∈ z⊕cA ⊂ z⊕cto be the element orresponding to χ via the previous isomorphism. One heks that sχbelongs to ih. The following lemma implies that one an reover from sχ the parabolisubgroup PA and all related objets.Lemma A.2. Let s ∈ ih and de�ne the sets

ps := {x ∈ hC | Ad(ets)(x) is bounded as t→∞} ⊂ hC,

ls := {x ∈ hC | [x, s] = 0 } ⊂ hC,

Ps := {g ∈ HC | etsge−ts is bounded as t→∞} ⊂ HC,

Ls := {g ∈ HC | Ad(g)(s) = s } ⊂ HC.The following properties hold:(1) Both ps and ls are Lie subalgebras of hC and Ps and Ls are subgroups of HC.Furthermore Ps and Ls are onneted.(2) Let χ be an antidominant harater of PA. There are inlusions pA ⊂ psχ, lA ⊂ lsχ,
PA ⊂ Psχ and LA ⊂ Lsχ, with equality if χ is stritly antidominant.(3) For any s ∈ ih there exists h ∈ H and a standard paraboli subgroup PA suh that
Ps = hPAh

−1 and Ls = hLAh
−1. Furthermore, there is an antidominant harater

χ of PA suh that s = hsχh
−1.Proof. That ls, ps are subalgebras and Ls, Ps are subgroups is immediate from the de�ni-tions. Let Ts be the losure of {eits | t ∈ R}. Then Ls is the entralizer of the torus Ts in

HC, so by Theorem 13.2 in [3℄ is onneted. To prove that Ps is also onneted, note thatif g belongs to Ps, so that etsge−ts is bounded as t→∞, then the limit of πs(g) := etsge−tsas t→∞ exists and belongs to Ls. Note by the way that the resulting map πs : Ps → Lsis a morphism of Lie groups whih an be identi�ed with the projetion Ps → Ps/Us ≃ Ls,where
Us = {g ∈ HC | etsge−ts onverges to 1 as t→∞} ⊂ Psis the unipotent radial of Us. So if g ∈ Ps then the map γ : [0,∞) → HC de�ned as

γ(t) = etsge−ts extends to give a path from g to Ls, and sine Ls is onneted it followsthat Ps is also onneted. This proves (1). Let now χ = z+
∑

β∈∆ nβλβ be an antidominantharater of PA. Let δ =
∑

β∈∆mββ be a root and let u ∈ hδ. We have [sχ, u] = 〈sχ, δ〉u =

〈χ, δ〉u = (
∑

β∈∆mβnβ〈β, β〉/2)u. Hene Ad(etsχ)(u) = (
∑

β∈∆ exp(tnβmβ〈β, β〉/2))u, sothis remains bounded as t → ∞ if mβ ≥ 0 for any β suh that nβ ≤ 0. This impliesthat pA ⊂ ps and lA ⊂ ls and that the inlusions are equalities when χ is stritly domi-nant. The analogous statements for PA, LA, Ps, Ls follow from this, beause the subgroups
PA, LA, Ps, Ls are onneted. Hene (2) is proved. To prove (3) take a maximal torus Tsontaining {eits | t ∈ R} and hoose h ∈ H suh that h−1Tsh = T and Ad(h−1)(s) belongsto the Weyl hamber in t orresponding to the hoie of ∆ ⊂ R. Then use (2). �Lemma A.3. Let P ⊂ HC be any paraboli subgroup, onjugate to PA. Let χ be anantidominant harater of pA. There exists an element sP,χ ∈ ih, depending smoothly on
P , whih is onjugate to sχ and suh that P ⊂ PsP,χ

, with equality if and only if χ is stritlyantidominant.



REPRESENTATIONS OF SURFACE GROUPS 57Proof. Assume that P = gPAg
−1 for some g ∈ HC. From the well known equalityHC/PA =

H/(PA∩H) = H/(LA∩H) we dedue that there exists some h ∈ H suh that P = hPAh
−1.Then we set sP,χ = hsχh

−1. This is well de�ned beause h is unique up to multipliationon the right by elements of LA ∩H , and these elements ommute with sχ. �A.4. Prinipal bundles and paraboli subgroups. If E is aHC-prinipal holomorphibundle over X and M is any set on whih HC ats on the left, we denote by E(M) thetwisted produt E ×HC M , de�ned as the quotient of E ×M by the equivalene relation
(eh,m) ∼ (e, hm) for any e ∈ E, h ∈ HC and m ∈ M . The setions ϕ of E(M) are innatural bijetion with the maps φ : E →M satisfying ϕ(eh) = h−1ϕ(e) for any e ∈ E and
h ∈ HC (we all suh maps antiequivariant). Furthermore, φ is holomorphi if and only if
ϕ is holomorphi.If M is a vetor spae (resp. omplex variety) and the ation of HC on M is linear(resp. holomorphi) then E(M) is a vetor bundle (resp. holomorphi �bration). In thissituation, for any omplex line bundle L → X we an form a vetor bundle E(M) ⊗ Lwhih an be identi�ed with EL(M), where EL denotes the prinipal HC × C× bundle
EL = {(e, l) ∈ E ×X L | l 6= 0} and we form the assoiated produt by making (h, λ) ∈
HC×C× at on m ∈M as λhm. Consequently, the setions of E(M)⊗L an be identi�edwith antiequivariant maps EL →M .Let B be a Hermitian vetor spae and let ρ : H → U(B) be a unitary representation.The morphism ρ extends to a holomorphi representation of HC in GL(B), whih wedenote also by ρ. Suppose that PA ⊂ HC is the paraboli subgroup orresponding to asubset A ⊂ ∆ and let χ be an antidominant harater. De�ne

B−
χ = {v ∈ B | ρ(etsχ)v remains bounded as R ∋ t→∞}.This is a omplex subspae of B and by (2) in Lemma A.2 it is invariant under the ationof PA. De�ne also

B0
χ = {v ∈ B | ρ(etsχ)v = v for any t } ⊂ B−

χ .This is a omplex subspae of B−
χ and, using again (2) in Lemma A.2, we dedue that B0

χis invariant under the ation of LA.Suppose that σ is a holomorphi setion of E(HC/PA). Sine E(HC/PA) ≃ E/PAanonially and the quotient E → E/PA has the struture of a PA-prinipal bundle, thepullbak Eσ := σ∗E is a PA-prinipal bundle over X, and we an identify anonially
E ≃ Eσ×PA

HC as prinipal HC-bundles (hene, σ gives a redution of the struture groupof E to PA). Equivalently, we an look at Eσ as a holomorphi subvariety Eσ ⊂ E invariantunder the ation of PA ⊂ HC and inheriting a struture of prinipal bundle. It follows that
E(B) ≃ Eσ ×PA

B, so the vetor bundle Eσ ×PA
B−
χ an be identi�ed with a holomorphisubbundle

E(B)−σ,χ ⊂ E(B).Now suppose that σL is a holomorphi setion of Eσ(PA/LA). This setion indues,exatly as before, a redution of the struture group of Eσ from PA to LA. So we obtainfrom σL a prinipal LA bundle EσL
and an isomorphism Eσ ≃ EσL

×LA
PA. Hene E(B) ≃

EσL
×LA

B, and we an thus identify the vetor bundle EσL
×LA

B0
χ with a holomorphisubbundle

E(B)0
σL,χ
⊂ E(B)−σ,χ.



58 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERALet us write χ = z +
∑

δ∈A nδλδ, with z ∈ z∗
R
, and z = z1λ1 + · · · + zrλr, where

λ1, . . . , λr ∈ Λ and the zj are real numbers. Let n be an integer as given by Lemma A.1.Using the haraters κnλ, κnδ : PA → C× de�ned in Subsetion A.2 we an onstrut fromthe prinipal PA bundle Eσ line bundles Eσ ×κnλ
C and Eσ ×κnδ

C. We de�ne the degreeof the bundle E with respet to the redution σ and the antidominant harater χ to bethe real number:(A.57) deg(E)(σ, χ) :=
1

n

(
∑

j

zj deg(Eσ ×κnλj
C) +

∑

δ∈A
nδ deg(Eσ ×κnδ

C)

)
.This expression is independent of the hoie of the λj 's and the integer n.Although this will play no role in our results, we now stop to give another de�nitionof the degree in terms of the urvature of onnetions, in the spirit of Chern�Weil theory.De�ne HA = H ∩ LA and hA = h ∩ lA. Then HA is a maximal ompat subgroup of LA,so the inlusions HA ⊂ LA is a homotopy equivalene. Sine the inlusion LA ⊂ PA is alsoa homotopy equivalene, given a redution σ of the struture group of E from HC to PAone an further restrit the struture group of E to HA in a unique way up to homotopy.Denote by E ′

σ the resulting HA prinipal bundle. Let πA : pA → z⊕ cA be the di�erentialof the projetion πA de�ned in Subsetion A.2. Let χ = z+
∑

δ∈A nδλδ be an antidominantharater. De�ne κχ = (z+
∑

δ nδλδ)◦πA ∈ p∗
A. Let hA ⊂ lA ⊂ pA be the Lie algebra ofHA.Then κχ(hA) ⊂ iR. Choose a onnetion A on E ′

σ and denote by FA ∈ Ω2(X,E′
σ ×Ad hA)its urvature. Then κχ(FA) is a 2-form on X with values in iR, and we have

deg(E)(σ, χ) :=
i

2π

∫

X

κχ(FA).A.5. Stability of L-twisted pairs. Let L be a holomorphi line bundle over X. Wede�ne an L-twisted pair to be a pair of the form (E,ϕ), where E is a holomorphi HC-prinipal bundle over X and ϕ is a holomorphi setion of E(B) ⊗ L. When it does notlead to onfusion we say that (E,ϕ) is a pair, instead of a L-twisted pairs.Let α ∈ izR ⊂ z. We say that (E,ϕ) is:
• α-semistable if: for any paraboli subgroup PA ⊂ HC, any antidominant har-ater χ for PA, and any holomorphi setion σ ∈ Γ(E(HC/PA)) suh that ϕ ∈

H0(E(B)−σ,χ ⊗ L), we have
deg(E)(σ, χ)− 〈α, χ〉 ≥ 0.

• α-stable if it is α-semistable and furthermore: for any PA, χ and σ as above, suhthat ϕ ∈ H0(E(B)−σ,χ ⊗ L) and suh that A 6= ∅ and χ /∈ z∗
R
, we have

deg(E)(σ, χ)− 〈α, χ〉 > 0.

• α-polystable if it is α-semistable and for any PA, χ and σ as above, suh that
ϕ ∈ H0(E(B)−σ,χ ⊗ L), PA 6= HC and χ is stritly antidominant, and suh that

deg(E)(σ, χ)− 〈α, χ〉 = 0,there is a holomorphi redution of the struture group σL ∈ Γ(Eσ(PA/LA)),where Eσ denotes the prinipal PA-bundle obtained from the redution σ of thestruture group. Furthermore, under these hypothesis ϕ is required to belong to
H0(E(B)0

σL,χ
⊗ L) ⊂ H0(E(B)−σ,χ ⊗ L).



REPRESENTATIONS OF SURFACE GROUPS 59Remark A.4. For some instanes of group HC and representation HC → GL(B) the lastondition in the de�nition of polystability is redundant (for example, HC = GL(n,C)with its fundamental representation on Cn). This does not seem to be general fat, butwe do not have any example whih illustrates that the ondition ϕ ∈ H0(E(B)0
σL,χ
⊗ L)is not a onsequene of the α-semistability of (E,ϕ) and the existene of σL whenever

deg(E)(σ, χ) = 〈α, χ〉 and ϕ ∈ H0(E(B)−σ,χ ⊗ L).A.6. The stability ondition in terms of �ltrations. In order to obtain a workablenotion of α-(poly,semi)stability it is desirable to have a more onrete way to desribe, forany holomorphi HC-prinipal bundle E,
• the redutions of the struture group of E to paraboli subgroups P ⊂ HC, andthe (stritly or not) antidominant haraters of P ,
• the subbundle E(B)−σ,χ ⊂ E(B),
• the degree deg(E)(σ, χ) de�ned in (A.57),
• redutions to Levi fators of paraboli subgroups and the orresponding vetorbundle E(B)0

σL,χ
⊂ E(B)−σ,χ.We now disuss how to obtain in some ases suh onrete desriptions, beginning withthe notion of degree. In [10℄ the degree deg(E)(σ, χ) is de�ned in terms of a so-alledauxiliary representation (see �2.1.2 in [10℄) and ertain linear ombinations of degrees ofsubbundles. The following lemma implies that de�nition (A.57) ontains the one given in[10℄ as a partiular ase. Suppose that ρW : H → U(W ) is a representation on a Hermitianvetor spae, and denote the holomorphi extension HC → GL(W ) with the same symbol

ρW . Let (Ker ρW )⊥ ⊂ hC be the orthogonal with respet to invariant pairing on hC of thekernel of ρW : hC → gl(W ), and let π : hC → (Ker ρW )⊥ be the orthogonal projetion.Lemma A.5. Take some element s ∈ ih. Then ρW (s) diagonalizes with real eigenvalues
λ1 < · · · < λk. Let Wj = Ker(λj IdW −ρW (s)) and de�ne W≤i =

⊕
j≤iWj.(1) The subgroup PW,s ⊂ HC onsisting of those g suh that ρW (g)(W≤i) ⊂ W≤i forany i is a paraboli subgroup, whih an be identi�ed with Pπ(s). Let χ ∈ (z⊕ c)∗ bea harater suh that sχ = s. Then χ is stritly antidominant for PW,s.(2) Suppose that for any a, b ∈ (Ker ρW )⊥ we have 〈a, b〉 = Tr ρW (a)ρW (b). Let u ∈

(Ker ρW )⊥ be any element, and write ρW (u) =
∑
ρW (u)ij the deomposition inpiees ρW (u)ij ∈ Hom(Wi,Wj). Then(A.58) 〈χ, u〉 = Tr(ρW (s)ρW (u)) = λk Tr ρW (u) +

k−1∑

i=1

(λi − λi+1) Tr ρW (u)ii.(3) Suppose that ρW satis�es the onditions of (2). Let E be a holomorphi HC-prinipal bundle and let W = E(W ) be the assoiated holomorphi vetor bundle.Let σ be a redution of the struture group of E to a paraboli subgroup P and anlet χ be an antidominant harater of P . The endomorphism ρW (sχ) diagonalizeswith onstant eigenvalues, giving rise to a deomposition W =
⊕k

j=1Wj, where
ρW (sχ) restrited to Wj is multipliation by λj ∈ R. Suppose that λ1 < · · · < λk.For eah i the subbundle W≤i =

⊕
j≤iWj ⊂ W is holomorphi. We have:

deg(E)(σ, χ) = λk degW +

k−1∑

i=1

(λi − λi+1) degW≤i.



60 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProof. The �rst assertion and formula (A.58) follows from easy omputations. (3) followsfrom (2). �Remark A.6. Condition (2) of the lemma is satis�ed when W = h, endowed with theinvariant metri, and ρW : hC → EndW is the adjoint representation, sine the invariantmetri on h is supposed to extend the Killing pairing in the semisimple part hs.To larify the other ingredients in the de�nition of (poly,semi)stability, we put ourselvesin the situation where HC is a lassial group, so that there is the so-alled fundamentalrepresentation ρ : HC → GL(N,C) with N depending on HC. Suppose that E is an
HC-prinipal bundle, and denote by V the vetor bundle assoiated to E and ρ. One andesribe pairs (σ, χ) onsisting of a redution σ of the struture group of E to a parabolisubgroup P ⊂ HC and an antidominant harater χ of P in terms of �ltrations of vetorbundles(A.59) V = (0 ( V1 ( · · · ( Vk−1 ( Vk = V ),and inreasing sequenes of real numbers (usually alled weights)(A.60) λ1 ≤ · · · ≤ λk,whih are arbitrary if HC = GL(n,C), and whih satisfy otherwise:

• if HC = O(n,C) then, for any i, Vk−i = V ⊥
i = {v ∈ V | 〈v, Vi〉 = 0}, where 〈, 〉denotes the bilinear pairing given by the orthogonal struture (we impliitly de�ne

V0 = 0), and λk−i+1 + λi = 0.
• if HC = Sp(2n,C) then, for any i, Vk−i = V ⊥

i = {v ∈ V | ω(v, Vi) = 0}, where ω isthe sympleti form on V (as before, V0 = 0), and furthermore λk−i+1 + λi = 0.The resulting harater χ is stritly antidominant if all the inequalities in (A.60) are strit.Given positive integers p, q de�ne the vetor bundle V p,q = V ⊗p⊗(V ∗)⊗q. For any hoieof redution and antidominant harater (σ, χ) spei�ed by a �ltration (A.59) and weights(A.60) we de�ne
(V p,q)−σ,χ =

∑

λi1
+···+λip≤λj1

+···+λjq

Vi1 ⊗ · · · ⊗ Vip ⊗ V
⊥
j1
⊗ · · · ⊗ V ⊥

jq ⊂ V p,q,where V ⊥
j = {v ∈ V ∗ | 〈v, Vj〉 = 0} and 〈, 〉 is the natural pairing between V and V ∗. Sine

HC is a lassial group, there is an inlusion of representations
B ⊂ (ρ⊗p1 ⊗ (ρ∗)⊗q1)⊕ · · · ⊕ (ρ⊗pr ⊗ (ρ∗)⊗qr),so that the vetor bundle E(B) is ontained in V p1,q1 ⊕ · · · ⊕ V pr,qr . One then has

E(B)−σ,χ = E(B) ∩ ((V p1,q1)−σ,χ ⊕ · · · ⊕ (V pr ,qr)−σ,χ).Suppose that the invariant pairing 〈, 〉 on the Lie algebra hC is de�ned using the funda-mental representation as 〈x, y〉 = Tr ρ(x)ρ(y). This learly satis�es the ondition of (2) ofLemma A.5, so by (3) in the same lemma we have
deg(E)(σ, χ) = λk deg V +

k−1∑

i=1

(λi − λi+1) deg Vi.We now speify what it means to have a redution to a Levi fator of a parabolisubgroup, as appears in the de�nition of polystability. Assume that (σ, χ) is a pair spei�edby (A.59) and (A.60), so that σ de�nes a redution of the struture group of E to a



REPRESENTATIONS OF SURFACE GROUPS 61paraboli subgroup P ⊂ HC, and that ϕ ∈ H0(L⊗ E(B)−σ,χ) and deg(E)(σ, χ) = 0. If thepair (E,ϕ) is α-polystable all these assumptions imply the existene of a further redution
σL of the struture group of HC from P to a Levi fator L ⊂ P ; this is given expliitly byan isomorphism of vetor bundles

V ≃ GrV := V1 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1.WhenHC = GL(n,C) suh isomorphism is arbitrary. WhenHC is O(n,C) (resp. Sp(2n,C)),it is also assumed that the pairing of an element of Vj/Vj−1 with an element of Vi/Vi−1,using the salar produt (resp. sympleti form), is always zero unless j + i = k + 1. We�nally desribe the bundle E(B)0
σL,χ

in this situation. Let
(GrV

p,q)0
σL,χ

=
∑

λi1
+···+λip=λj1

+···+λjq

(Vi1/Vi1−1)⊗· · ·⊗(Vip/Vip−1)⊗(V ⊥
j1 /V

⊥
j1+1)⊗· · ·⊗(V ⊥

jq /V
⊥
jq+1).Then

E(B)0
σL,χ

= E(B) ∩ ((GrV
p1,q1)0

σL,χ
⊕ · · · ⊕ (GrV

pr,qr)0
σL,χ

).A.7. In�nitesimal automorphism spae. For any pair (E,ϕ) we de�ne the in�nitesi-mal automorphism spae of (E,ϕ) as
aut(E,ϕ) = {s ∈ H0(E(hC)) | ρ(s)(ϕ) = 0},where we denote by ρ : hC → End(B) the morphism of Lie algebras indued by ρ. Wesimilarly de�ne the semisimple in�nitesimal automorphism spae of (E,ϕ) as

autss(E,ϕ) = {s ∈ aut(E,ϕ) | s(x) is semisimple for any x ∈ X }.Proposition A.7. Suppose that (E,ϕ) is a α-polystable pair. Then (E,ϕ) is α-stable ifand only if autss(E,ϕ) ⊂ H0(E(z)). Furthermore, if (E,ϕ) is α-stable then we also have
aut(E,ϕ) ⊂ H0(E(z)).Proof. Suppose that (E,ϕ) is α-polystable and that autss(E,ϕ) = H0(E(z)). We provethat (E,ϕ) is α-stable by ontradition. If (E,ϕ) were not α-stable, then there wouldexist a paraboli subgroup PA ( HC, a holomorphi redution σ ∈ Γ(E/PA), a stritlyantidominant harater χ suh that deg(E)(σ, χ)− 〈α, χ〉 = 0, and a further holomorphiredution σL ∈ Γ(Eσ/LA) to the Levi LA (here Eσ is the prinipal PA bundle given by σ,satisfying Eσ ×PA

HC ≃ E) suh that ϕ ∈ H0(E(B)0
σL,χ
⊗ L). Sine the adjoint ation of

LA on hC �xes sχ, there is an element
sσ,χ ∈ H0(EσL

(hC)) ≃ H0(E(hC))whih oinides �berwise with sχ. On the other hand sχ is semisimple beause it belongsto ih. The ondition that ϕ ∈ H0(E(B)0
σL,χ
⊗ L) implies that ρ(sσ,χ)(ϕ) = 0, so sσ,χ ∈

autss(E,ϕ). And the ondition that PA 6= HC implies that sχ /∈ z. This ontradits theassumption that autss(E,ϕ) = H0(E(z)), so (E,ϕ) is α-stable.Now suppose that (E,ϕ) is α-stable. We want to prove that aut(E,ϕ) = H0(E(z)). Let
ξ ∈ aut(E,ϕ). Sine ξ is a setion of E ×HC hC, it an be viewed as an antiequivariantholomorphi map ψ : E → hC. The bundle E is algebrai (to prove this, take a faithfulrepresentation HC → GL(n,C) and use the fat that any holomorphi vetor bundle overan algebrai urve is algebrai), so by Chow's theorem ψ is algebrai. Hene ψ induesan algebrai map ϕ : X → hC//HC, where hC//HC denotes the a�ne quotient, whih is



62 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAan a�ne variety. Sine X is proper, ϕ is onstant, hene it is ontained in a unique �ber
Y := π−1(y) ⊂ hC, where π : hC → hC//HC is the quotient map.By a standard results on a�ne quotients, there is a unique losed HC orbit O ⊂ Y ,and by a theorem of Rihardson the elements in O are all semisimple. Consider the map
σ : Y → O whih sends any y ∈ Y to ys, where y = ys + yn is the Jordan deompositionof y (see for example [4℄). We laim that this map is algebrai (note that the Jordandeomposition, when de�ned on the whole Lie algebra hC, is not even ontinuous). Toprove the laim �rst onsider the ase hC = gl(n,C). Then Y ⊂ gl(n,C) is the set of n×nmatries with harateristi polynomial equal to some �xed polynomial, say ∏(x− λi)mi ,with λi 6= λj for i 6= j. By the Chinese remainder theorem there exists a polynomial
P ∈ C[t] suh that P ≡ λi mod (t−λi)mi and P ≡ 0 mod t. Then the map σ : Y → O isgiven by σ(A) = P (A), whih is learly algebrai. The ase of a general hC an be reduedto the previous one using the adjoint representation ad : hC → End(hC) ≃ gl(dim hC,C).By onstrution σ is equivariant, so it indues a projetion pE : H0(E(Y ))→ H0(E(O)).We de�ne ξs = pE(ξ) and ξn = ξ − ξs. Note that the deomposition ξ = ξs + ξn issimply the �berwise Jordan deomposition of an element of the Lie algebra as the sum of asemisimple element plus a nilpotent one. We laim that both ξs and ξn belong to aut(E, φ).To prove this we have to hek that ρ(ξs)(φ) = ρ(ξn)(φ) = 0. But ρ(ξ) = ρ(ξs) + ρ(ξn)is �berwise the Cartan deomposition of ρ(ξ), sine Cartan deomposition ommutes withLie algebra representations. In addition, if f = fs + fn is the Cartan deomposition of anendomorphism f of a �nite dimensional vetor spae V and v ∈ V satis�es fv = 0, then
fsv = fnv = 0, as the reader an hek putting f in Jordan form. This proves the laim.We want to prove that ξs ∈ H0(E(z)) and that ξn = 0. We will need for that thefollowing lemma.Lemma A.8. Let s ∈ hC be a semisimple element. There exists some h ∈ HC suh that:(1) if we write u = Ad(h−1)(s) = h−1sh = ur + iui with ur, ui ∈ h, then [ur, ui] = 0;(2) there exists an element a ∈ h suh that

Ker ad(s) = Ad(h)(Ker ad(ur) ∩Ker ad(ui)) = Ad(h) Ker ad(a).Proof. Using the deomposition hC = h⊕ ih we de�ne a real valued salar produt on hC asfollows: given ur + iui, vr + ivi ∈ hC we set 〈ur + iui, vr + ivi〉R := −〈ur, vr〉 − 〈ui, vi〉. Thebilinear pairing 〈, 〉 restrited to h is negative de�nite, so the pairing 〈, 〉R is positive de�niteon the whole hC and hene the funtion ‖ ·‖2 : hC → R de�ned by ‖s‖2 := 〈s, s〉R is proper.Let Os be the adjoint orbit of s. Sine s is semisimple, Os is a losed subset of hC, and henethe funtion ‖ · ‖2 : Os → R attains its minimum at some point u = ur + iui ∈ Os. That
u minimizes ‖ · ‖2 on its adjoint orbit means that for any v ∈ hC we have 〈u, [v, u]〉R = 0,sine we an identify TuOs = {[v, u] | v ∈ hC}. Now we develop for any v = vr + ivi, usingthe biinvariane of 〈, 〉 and Jaobi rule:

0 = 〈ur + iui, [ur + iui, vr + ivi]〉R

= 〈ur + iui, ([ur, vr]− [ui, vi]) + i([ui, vr] + [ur, vi])〉R

= −〈ur, [ur, vr]− [ui, vi]〉 − 〈ui, [ui, vr] + [ur, vi]〉

= 〈ur, [ui, vi]〉 − 〈ui, [ur, vi]〉

= −2〈[ui, ur], vi〉.



REPRESENTATIONS OF SURFACE GROUPS 63Sine this holds for any hoie of v, it follows that [ui, ur] = 0. So the endomorphisms
ad(ui) and ad(ur) ommute and hene diagonalize in the same basis with purely imaginaryeigenvalues (beause they respet the pairing 〈·, ·〉R). Hene Ker ad(u) = Ker ad(ur+iui) =
Ker(ad(ur) + iad(ui)) = Ker ad(ur) ∩Ker ad(ui). Sine ur and ui ommute, they generatea torus Tu ⊂ H . Take h suh that u = Ad(h−1)(s) and hoose a ∈ h suh that the losureof {eta | t ∈ R} is equal to Tu. Then Ker ad(a) = Ker ad(ur) ∩ Ker ad(ui), so the resultfollows. �We now prove that ξs is entral. Let u = ur + iui = h−1ysh be the element given bythe previous lemma suh that [ur, ui] = 0. Let ψs : E → hC be the antiequivariant maporresponding to ξs ∈ H0(E(hC)), whose image oinides with the adjoint orbit Os. De�ne
E0 = {e ∈ E | ψs(e) = u} ⊂ E. Then E0 de�nes a redution of the struture group of Eto the entralizer of u, whih we denote by HC

0 = {g ∈ HC | Ad(g)(u) = u}. De�ne thesubgroups P± = {g ∈ HC | e±ituige∓tiui is bounded as t→∞ } ⊂ HC. By (3) in LemmaA.2, P± are paraboli subgroups and Lui
= P+ ∩ P− = {g ∈ HC | Ad(g)(ui) = ui} is aommon Levi subgroup of P+ and P−. By (1) in Lemma A.2, HC

0 is a onneted subgroupof HC, so by the same argument as in the end of the proof of Lemma A.8 we an identify
HC

0 with {g ∈ HC | Ad(g)(ui) = ui, Ad(g)(ur) = ur}. This implies that HC

0 ⊂ Lui
, hene

E0 indues a redution σ+ (resp. σ−) of the struture group of E to P+ (resp. P−).One the other hand, if χ orresponds to iui via the isomorphism (z⊕ c)∗ ≃ z⊕ c (so that
sχ = iui), then χ is antidominant for P+ and −χ is antidominant for P−.Let φ : EL → B be the antiequivariant map orresponding to ϕ. Sine ρ(ξs)(ϕ) = 0we have ρ(u)φ(e) = 0 for any e ∈ E0. Let v ∈ B be any element. Sine ui and urommute, the vetors ρ(eitui)v are uniformly bounded as t→∞ if and only if the vetors
ρ(etur)ρ(eitui)v = ρ(etu)v are bounded. It follows that ϕ belongs both to H0(E(B)−σ+,χ⊗L)and to H0(E(B)−σ−,−χ ⊗ L). Applying the α-stability ondition we dedue that

degE(σ+, χ)− 〈α, χ〉 ≥ 0, and degE(σ−,−χ)− 〈α,−χ〉 ≥ 0.These inequalities, together with degE(σ+, χ) − 〈α, χ〉 = −(degE(σ−,−χ) − 〈α,−χ〉),imply that degE(σ, χ)− 〈α, χ〉 = 0. Sine we assume that (E,ϕ) is α-stable, suh a thingan only happen if χ, and hene any element in the image of ψs, is entral.Finally, we prove that ξn = 0 proeeding by ontradition. Sine the set of nilpotentelements hC

n ⊂ hC ontains �nitely many adjoint orbits, whih are loally losed in theZariski topology, and sine ξn is algebrai, there exists a Zariski open subset U ⊂ X andan adjoint orbit On ⊂ hC

n suh that ξn(x) ∈ On for any x ∈ U . Assume that ξn(x) 6= 0 for
x ∈ U (otherwise ξn vanishes identially). Consider for any x ∈ U the weight �ltration ofthe ation of ad(ξn(x)) on E(hC)x:

· · · ⊂W−k
x ⊂W−k+1

x ⊂ · · · ⊂W k−1
x ⊂W k

x ⊂ . . . ,whih is uniquely de�ned by the onditions: ad(ξn(x))(W
j
x) ⊂W j−2

x , ad(ξn(x))
j+1(W j

x) = 0and the indued map on graded spaes Gr ad(ξn(x))
j : GrW j

x → GrW−j
x is an isomor-phism. As x moves along U the spaes W j

x give rise to an algebrai �ltration of vetorbundles · · · ⊂W−k
U ⊂ W−k+1

U ⊂ · · · ⊂ W k−1
U ⊂ W k

U ⊂ · · · ⊂ E(hC)|U . By the properness ofthe Grassmannian of subspaes of hC these vetor bundles extend to vetor bundles de�nedon the whole X(A.61) · · · ⊂ W−k ⊂W−k+1 ⊂ · · · ⊂W k−1 ⊂W k ⊂ · · · ⊂ E(hC)



64 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAand the indued map between graded bundles Gr ad(ξn)
j : GrW j → GrW−j is an isomor-phism away from �nitely many points. This implies that(A.62) deg GrW j ≤ deg GrW−j.By Jaobson�Morozov's theorem the weight �ltration (A.61) indues a redution σ of thestruture group of E to a paraboli subgroup P ⊂ HC (the so-alled Jaobson�Morozov'sparaboli subgroup assoiated to the nilpotent elements in the image of ξn|U), and thereexists an antidominant harater χ of P suh that ad(sχ) preserves the weight �ltrationand indues on the graded piee GrW j the map given by multipliation by j.The subbundle E(B)−σ,χ ⊗ L ⊂ E(B) ⊗ L an be identi�ed with the piee of degree

0 in the weight �ltration on E(B) ⊗ L indued by the nilpotent endomorphism ρ(ξn).Sine ρ(ξn)(φ) = 0, we have φ ∈ H0(E(B)−σ,χ ⊗ L) (the kernel of a nonzero nilpotentendomorphism is inluded in the piee of degree zero of the weight �ltration). Hene, by
α-stability, deg(E)(σ, χ) − 〈α, χ〉 has to be positive. On the other hand, the harater χan be hosen to be perpendiular to z, so by (3) in Lemma A.5 we have

degE(σ, χ)− 〈α, χ〉 =
∑

j∈Z

j deg GrW j .By (A.62) this is ≤ 0, thus ontraditing the stability of (E,ϕ). �A.8. Jordan�Hölder redution. In this subsetion we assoiate to eah α-polystablepair (E,ϕ) an α-stable pair. This is aomplished by piking an appropriate subgroup
H ′ ⊂ H (de�ned as the entralizer of a torus in H) and by hoosing a redution of thestruture group of E to H ′C. The resulting new pair is alled the Jordan�Hölder redutionof (E,ϕ). It is onstruted using a reursive proedure in whih ertain hoies are made,and the main result of this subsetion (see Proposition A.12) is the proof that the resultingredution is anonial up to isomorphism.Let G′ ⊂ G be an inlusion of omplex onneted Lie subgroup with Lie algebras g′ ⊂
g. Assume that the normalizer NG(g′) of g′ in G is equal to G′. Suppose that E is aholomorphi prinipal G-bundle.Lemma A.9. The holomorphi redutions of the struture group of E to G′ are in bijetionwith the holomorphi subbundles F ⊂ E(g) of Lie subalgebras satisfying this property:for any x ∈ X and trivialization Ex ≃ G, the �ber Fx, whih we identify toa subspae of g via the indued trivialization E(g)x ≃ g, is onjugate to g′.Proof. Let d = dim g′ and let Grd(g) denote the Grassmannian of omplex d-subspaes in-side g. Let Og′ = {Ad(h)(g′) | h ∈ G} ⊂ Grd(g). By assumption there is a biholomorphism
Og′ ≃ G/G′. Furthermore, the set of vetor bundles F ⊂ E(g) satisfying the ondition ofthe lemma is in bijetion with the holomorphi setions of E(Og′), so the result follows. �We now apply this priniple to a partiular ase. Let P ⊂ HC be a paraboli subgroup,let L ⊂ P be a Levi subgroup and let U ⊂ P be the unipotent radial. Denote u = LieU ,
p = LieP and l = LieL. The adjoint ation of P on p preserves u and using the standardprojetion P → P/U ≃ L (see Setion A.1 and reall that P is isomorphi to PA for somehoie of A) we make P at linearly on l via the adjoint ation. Hene P ats linearly onthe exat sequene 0 → u → p → l → 0. We laim that NP (l) = L. To hek this weidentify P (up to onjugation) with some PA, then use (A.54) and (A.55) together with



REPRESENTATIONS OF SURFACE GROUPS 65the surjetivity of the exponential map uA → UA to dedue that no nontrivial element of
U normalizes l, and �nally use the deomposition P = LU .Lemma A.10. Suppose that Eσ is a holomorphi prinipal P -bundle. The redutions ofthe struture group of Eσ from P to L ⊂ P are in bijetion with the splittings of the exatsequene of holomorphi vetor bundles(A.63) 0→ Eσ(u)→ Eσ(p)→ Eσ(l)→ 0given by holomorphi maps Eσ(l)→ Eσ(p) whih are �berwise morphisms of Lie algebras.Proof. Sine NP (l) = L, we may use Lemma A.9 with G = P and G′ = L. The subalgebras
g′ ⊂ p whih are onjugate to p are the same as the images of setions l→ p of the exatsequene 0 → u → p → l → 0 whih are morphisms of Lie algebras. Hene the vetorsubbundles F ⊂ E(p) satisfying the requirements of Lemma A.9 an be identi�ed with theimages of maps E(l) → E(p) whih give a setion of the sequene (A.63) and whih are�berwise a morphism of Lie algebras. �Suppose that (E,ϕ) is a α-polystable pair whih is not α-stable. By Proposition A.7there exists a semisimple non entral in�nitesimal automorphism s ∈ autss(E,ϕ). Thesplitting hC = z ⊕ hC

s (reall that hC

s = [hC, hC] is the semisimple part) is invariant underthe adjoint ation of HC (whih is onneted by assumption) hene we have H0(E(hC)) =
H0(E(z)) ⊕ H0(E(hC

s )) so projeting to the seond summand we an assume that s ∈
H0(E(hC

s )).As shown in the proof of Proposition A.7, the image of s is ontained in an adjoint orbitin hC whih ontains an element u = ur+ iui suh that ur, ui are ommuting elements of h.Let a ∈ hs = [h, h] be an in�nitesimal generator of the torus generated by ur and ui and let
HC

1 be the omplexi�ation of H1 := ZH(a) = {h ∈ H | Ad(h)(a) = a}. Let ψs : E → hCbe the antiequivariant map orresponding to the setion s. Then
E1 = {e ∈ E | ψs(e) = u} ⊂ Eis a HC

1 -prinipal bundle, whih de�nes a redution of the struture group of E. We saythat the pair (E1, H
C

1 ) is the redution of (E,HC) indued by s and u.De�ne B1 = {v ∈ B | ρ(a)(v) = 0}. The restrition of ρ to H1 preserves B1, so wehave a subbundle E1(B1) ⊂ E1(B) ≃ E(B). Let φ : EL → B be the antiequivariantmap induing the setion ϕ ∈ H0(E(B) ⊗ L) (see Subsetion A.4). By the de�nition ofthe in�nitesimal automorphisms, for any (e, l) ∈ EL
1 we have ρ(ψs(e))φ(e, l) = 0. Now

ρ(ψs(e)) = ρ(ur + iui) = ρ(ur) + iρ(ui). Sine ρ restrited to H is Hermitian, ρ(ur) and
ρ(ui) have purely imaginary eigenvalues, and sine [ρ(ur), ρ(ui)] = 0 it follows that

ρ(ψs(e))φ(e, l) = 0 ⇐⇒ ρ(ur)φ(e, l) = ρ(ui)φ(e, l) = 0 ⇐⇒ ρ(a)φ(e, l) = 0for any (e, l) ∈ EL. This implies that φ(EL
1 ) ⊂ B1, and onsequently ϕ lies in the subbundle

E1(B1) ⊗ L ⊂ E(B) ⊗ L. To stress this fat we rename ϕ with the symbol ϕ1. To sumup: assuming that (E,ϕ) is α-polystable but not α-stable we have obtained a subgroup
H1 = ZH(a) ⊂ H , a H1-invariant subspae B1 ⊂ B, and a new pair (E1, ϕ1), where E1 isa HC

1 prinipal bundle and ϕ1 ∈ H0(E1(B1) ⊗ L). We denote the Lie algebras of H1 andits omplexi�ation by h1 and hC

1 .Proposition A.11. The pair (E1, B1) is α-polystable.



66 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAProof. Sine H1 is the entralizer of a and α belongs to the enter of hC, we have α ∈ hC

1 .Hene the statement of the proposition makes sense. We �rst prove that (E1, B1) is α-semistable. Let P1 ⊂ HC

1 be a standard paraboli subgroup. By (2) in Lemma A.2 thereis some s ∈ ih1 (satisfying s = sχ for an appropriate antidominant harater χ of P1) suhthat P1 = {g ∈ HC

1 | e
tsge−ts is bounded as t→∞ }. Sine ih1 ⊂ ih it makes sense tode�ne P = {g ∈ HC | etsge−ts is bounded as t→∞ }, whih is a paraboli subgroup of

HC, and learly P1 ⊂ P . Hene, any redution σ1 of the struture group of E1 to P1, say
(E1)σ1

⊂ E1, gives automatially a redution σ of the struture group of E to P , spei�edby Eσ = (E1)σ1
×P1

P ⊂ (E1)σ1
×P1

HC = E. Furthermore, any antidominant harater
χ ∈ ih of P1 is an antidominant harater of P , and there is an equality deg(E1)(σ1, χ) =
deg(E)(σ, χ). Finally, if the setion ϕ1 belongs to H0(E1(B1)

−
σ1,χ
⊗L), then it also belongsto H0(E(B)−σ,χ ⊗ L). All this implies that (E1, ϕ1) is α-semistable.To prove that (E1, ϕ1) is α-polystable it remains to show that if the redution σ1 and χhave been hosen so that deg(E1)(σ1, χ)−〈α, χ〉 = 0, then there is a holomorphi redution

σL1
of the struture group of (E1)σ1

to the Levi L1 = {g ∈ HC
1 | Ad(g)(s) = s} suh that(A.64) ϕ1 ∈ H0(E(B1)

0
σL1

,χ ⊗ L).De�ne L = {g ∈ HC | Ad(g)(s) = s}, whih is a Levi subgroup of P , let U1 ⊂ P1 and
U ⊂ P be the unipotent radials, and denote the orresponding Lie algebras by u1 = LieU1,
p1 = LieP1, l1 = LieL1, u = LieU , p = LieP , l = LieL. By Lemma A.10 it su�es tohek that there exists a bundle morphism w1 : (E1)σ1

(l1)→ (E1)σ1
(p1) given �berwise bymorphisms of Lie algebras, de�ning a splitting of the exat sequene(A.65) 0→ (E1)σ1

(u1)→ (E1)σ1
(p1)→ (E1)σ1

(l1)→ 0.Let T ⊂ H be the losure of {eta | t ∈ R}, whih is a torus. Denote by T∨ = Hom(T, S1)the group of haraters of T . We have deompositions
u =

⊕

η∈T∨

uη, p =
⊕

η∈T∨

pη, l =
⊕

η∈T∨

lη,and sine the elements of HC

1 �x a, the ation of HC

1 on u, p and l respets the splittingsabove. It follows that we have a ommutative diagram with exat rows
0 // Eσ(u) //

≃
��

Eσ(p) //

≃
��

Eσ(l)

≃
��

// 0

0 // (E1)σ1(u) // (E1)σ1
(p) // (E1)σ1

(l) // 0

0 //
⊕

η∈T∨(E1)σ1(uη) //
⊕

η∈T∨(E1)σ1
(pη) //

⊕
η∈T∨(E1)σ1

(lη) // 0Taking in the bottom row the summands orresponding to the trivial harater η = 0 (theonstant representation T → {1} ∈ S1) we get the exat sequene (A.65). By hypothesisthe pair (E,ϕ) is α-polystable, so there is a setion v : Eσ(l) → Eσ(p) of the top row,given �berwise by morphisms of Lie algebras. Using the isomorphisms and equalities inthe diagram, this gives rise to a setion
w :

⊕

η∈T∨

(E1)σ1
(lη)→

⊕

η∈T∨

(E1)σ1
(pη)



REPRESENTATIONS OF SURFACE GROUPS 67of the bottom row. Then w = (wηµ)η,µ∈T∨ , where wηµ : (E1)σ1
(lη) → (E1)σ1

(pµ), andone heks that w1 := w00 is �berwise a morphism of Lie algebras and that it gives thedesired splitting of the sequene (A.65). To hek (A.64) we proeed as follows. Firstnote that sχ belongs both to the enter of l1 and l, hene it de�nes holomorphi setions
sσ1,χ ∈ H0((E1)σ1

(l1)) and sσ,χ ∈ H0(Eσ(l)). Condition (A.64) is equivalent to(A.66) ρ(w1(sσ1,χ))(ϕ) = 0(note that (E1)σ1
(p1) is a subbundle of (E1)σ1

(hC
1 ) ≃ E1(h

C
1 ), hene it ats �berwise on

E(B)⊗L). To prove this equality, we use again the hypothesis that (E,ϕ) is α-polystable,whih implies that ϕ ∈ H0(E(B)−σL,χ
⊗ L), where σL is the redution spei�ed by w. Thisis equivalent to ρ(w(sσ,χ))(ϕ) = 0, and this implies (A.66) beause sχ ∈ l0 ⊂

⊕
η∈T∨ lη. �Let (E,ϕ) be a α-polystable pair. Iterating the proedure desribed in the previoussubsetion as many times as possible we obtain a sequene of groups H = H0 ⊃ H1 ⊃ H2 ⊃

. . . and elements aj ∈ (hj−1)s = [hj−1, hj−1] suh that Hj = ZHj−1
(aj), vetor subspaes

B = B0 ⊃ B1 ⊃ B2 ⊃ . . . , and α-polystable pairs (E,ϕ) = (E0, ϕ0), (E1, ϕ1), . . . , where
Ej is a HC

j -prinipal bundle over X and ontained in Ej−1, and ϕj ∈ H0(Ej(Bj)⊗L). Sine
dimHj < dimHj−1, this proess has to eventually stop at some pair, say (Er, ϕr), whihwill neessarily be α-stable. We say that (Er, ϕr, Hr, Br) is the Jordan�Hölder redutionof (E,ϕ,H,B). To justify this terminology we need to prove that the onstrution isindependent of the hoies made in the proess. Note that the elements in the sequene
{a0, a1, . . . , al} all belong to the initial Lie algebra h and they ommute pairwise. Henethey generate a torus T ⊂ H , the losure of the set {exp

∑
tjaj | t0, . . . , tl ∈ R}, and Hlis the entralizer in H of T(E,ϕ). With this in mind, the following proposition implies theuniqueness of the Jordan�Hölder redution.Let Hs ⊂ H be the onneted Lie subgroup whose Lie algebra is hs = [h, h].Proposition A.12. Let (E,ϕ) be a α-polystable pair. Suppose that T ′, T ′′ ⊂ Hs are tori,and de�ne H ′ (resp. H ′′) to be the entralizer in H of T ′ (resp. T ′′). Let B′ (resp. B′′)be the �xed point set of the ation of T ′ (resp. T ′′) on B, and assume that there areredutions E ′ ⊂ E (resp. E ′′ ⊂ E) of the struture group of E to H ′C (resp. H ′′C). Let

φ : EL → B the equivariant map orresponding to ϕ. Assume that φ(E ′L) ⊂ B′ ⊗ L and
φ(E ′′L) ⊂ B′′ ⊗ L. Denote by ϕ′ ∈ H0(E ′(B′)⊗ L) and ϕ′′ ∈ H0(E ′′(B′′)⊗ L) the induedsetions. Finally, suppose that both (E ′, ϕ′) and (E ′′, ϕ′′) are α-stable. Then there is some
g ∈ HC suh that H ′C = g−1(H ′′C)g, E ′ = E ′′g, T ′C = g−1(T ′′C)g and B′ = ρ(g−1)B′′.Before proving Proposition A.12 we state and prove two auxiliary lemmas.Lemma A.13. Let u′, u′′ ∈ h and let s′, s′′ ∈ H0(E(hC)) be setions suh that s′(x) (resp.
s′′(x)) is onjugate to iu′ (resp. iu′′) for any x ∈ X. Let (E ′, H ′C) (resp. (E ′′, H ′′C)) bethe redutions of (E,HC) indued by s′ and iu′ (resp. s′′ and iu′′).(1) Assume that [s′, s′′] = 0. Let h′′C be the Lie algebra of H ′′C. Then we an naturallyidentify s′ with a setion of E ′′(h′′C).(2) Let z′′ be the enter of h′′C. If s′ ∈ H0(E ′′(z′′)) then there is some h ∈ HC suh that

E ′′ ⊂ E ′h as subsets of E.Proof. Let ψ′, ψ′′ : E → hC be the antiequivariant maps orresponding to s′, s′′. Theondition [s′, s′′] = 0 implies that for any e ∈ E the elements ψ′(e), ψ′′(e) ∈ hC ommute.Sine E ′′ = (ψ′′)−1(iu′′), this implies that, for any e ∈ E ′′, ψ′(e) ommutes with iu′′, so
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ψ′(e) belongs to h′′C. This proves (1). We now prove (2). First observe that, being aentralizer of a semisimple element in hC, H ′′C is onneted (see e.g. Theorem 13.2 in[3℄). Hene, the adjoint ation of H ′′C on h′′C �xes any element in z′′. Take some element
e ∈ E ′′. By hypothesis, there is some h ∈ HC suh that ψ′(e) = Ad(h−1)(iu′), so e ∈ E ′h.The ondition s′ ∈ H0(E ′′(z′′)) implies that ψ′(e) ∈ z′′ so, by the previous observation, forany g ∈ H ′′C we have ψ′(eg) = Ad(g−1) Ad(h−1)(iu′) = Ad(h−1)(iu′), hene eg ∈ E ′h. Itfollows that E ′′ ⊂ E ′h. �For any u ∈ h we denote by Tu ⊂ H the torus generated by u, i.e., the losure of
{exp tu | t ∈ R}, and TC

u denotes the omplexi�ation of Tu.Lemma A.14. Let u′, u′′ ∈ hs = [h, h] and let H ′C (resp. H ′′C) be the omplexi�ation ofthe entralizer ZH(u′) (resp. ZH(u′′)). If there is some g ∈ HC suh that H ′C = g−1(H ′′C)gthen TC

u′ = g−1TC

u′′g.Proof. The enter of h′C is z⊕Lie TC

u′, and the sum is diret beause u′ is assumed to belongto hs. Similarly, the enter of h′′C is z⊕ LieTC

u′′ . Sine HC is onneted, its adjoint ationon z is trivial, and hene taking the enter of the Lie algebra in eah side of the equality
TC

u′ = g−1TC

u′′g we dedue that LieTC

u′ = g−1(LieTC

u′′)g. This implies the equality betweenthe omplexi�ed tori. �We now prove Proposition A.12.Proof. Let u′, u′′ ∈ hs satisfy T ′ = Tu′ and T ′′ = Tu′′ . The existene of redutions of E tothe entralizers of u′ and u′′ gives rise to setions s′, s′′ ∈ autss(E,ϕ) ⊂ H0(E(hC)) suhthat s′(x) (resp. s′′(x)) is onjugate to is′ (resp. is′′) for any x ∈ X.If [s′, s′′] = 0 then by (1) Lemma A.13 we an view s′ ∈ autss(E ′′, ϕ′′) and s′′ ∈
autss(E ′, ϕ′). Sine by assumption (E ′′, ϕ′′) and (E ′, ϕ′) are α-stable, by Proposition A.7 wededue that s′ is entral in the entralizer of s′′ and vie-versa. By (2) in Lemma A.13 thereexist g, h ∈ HC suh that E ′ ⊂ E ′′g and E ′′ ⊂ E ′h. This implies that E ′ ⊂ E ′′g ⊂ E ′hg,but E ′ ⊂ E ′hg learly implies that E ′ = E ′hg, whih ombined with the previous hainof inlusions gives E ′ = E ′′g. It then follows that H ′C = g−1(H ′′C)g. By Lemma A.14 wehave TC

s′ = g−1TC

s′′g. Finally, sine the �xed point set of TC

s′ ating on B oinides with the�xed point set of Ts′ (and similarly for TC

s′′) we have B′ = ρ(g−1)B′′.Suppose now that [s′, s′′] 6= 0. There are holomorphi splittings(A.67) E(hC) = E1 ⊕ · · · ⊕Ep = F1 ⊕ · · · ⊕ Fqsuh that ad(s′)|Ej
= λj IdEj

and ad(s′′)|Fk
= µk IdFk

, where the real numbers λ1 < · · · < λp(resp. µ1 < · · · < µq) are the eigenvalues of ad(is′) (resp. ad(is′′)). De�ne for any
j the subbundles F≤j =

⊕
k≤j Fk ⊂ E(hC) and E≤j =

⊕
k≤j Ek ⊂ E(hC). Denote by

πk : E(hC) → Ek the projetion using the deomposition (A.67). Let E≤k (resp. Ek, F≤j ,
Fj) be the sheaf of loal holomorphi setions of E≤k (resp. Ek, F≤j , Fj). De�ne for any
j the sheaf

F
♯
≤j =

p⊕

k=1

πk(E≤k ∩F≤j).This is a subsheaf of the sheaf assoiated to E(hC), and we denote by F ♯
≤j ⊂ E(hC) thesubbundle obtained by taking the saturation of F

♯
≤j .



REPRESENTATIONS OF SURFACE GROUPS 69By (1) in Lemma A.5 s′′ indues a holomorphi redution σ′′ ∈ Γ(E(HC/P )) of thestruture group of E to P = Piu′′.Lemma A.15. The �ltration F ♯
≤1 ⊂ · · · ⊂ F ♯

≤q = E(hC) also indues a redution σ♯ of thestruture group of E to P .Proof. For any t ∈ R there is a natural �berwise ation of ets′ on E(HC/P ), whih allowsto de�ne ets′σ′′ ∈ Γ(E(HC/P )). For the reader's onveniene, we reall how this is de�ned.For any x ∈ X we an identify σ′′(x) with an antiequivariant map ξσ′′ : Ex → HC/P (here
HC ats on the left of HC/P ). Similarly, s′(x) orresponds to a map ψ : Ex → hC whihis antiequivariant and hene satis�es, for any f ∈ Ex and g ∈ HC,(A.68) etψ(fg) = g−1etψ(f)g.Then ets′σ′′(x) orresponds to the antiequivariant map ξets′σ′′ : Ex → HC/P de�ned as

ξets′σ′′(f) = etψ(f)ξσ′′(f) = ξσ′′(fe
−tψ(f)).That ξets′σ′′ is antiequivariant follows from (A.68). For eah x the ation of ets′(x) de�neson the �ber Ex(HC/P ) a deomposition in Zariski loally losed subvarieties {Cx,i}, theShubert ells. Eah Cx,i orresponds to a onneted omponent Cx,i ⊂ Ex(H

C/P ) ofthe �xed point set of the ation of {ets′(x) | t ∈ R} on Ex(HC/P ), and Cx,i is the set of
z ∈ Ex(HC/P ) suh that ets′(x)z onverges to Cx,i as t→∞. Sine s′ is algebrai and, forany x, s′(x) is onjugate to the same element iu′, eah Ci =

⋃
x∈X Cx,i is a Zariski loallylosed subvariety of E(HC/P ). Sine σ′′ is an algebrai setion of E(HC/P ), there is aZariski open subset U ⊂ X suh that σ′′|U is ontained in a unique ell Cj ⊂ E(HC/P ).Then for any x ∈ U the limit σ♯x := limt→∞ ets

′

σ′′(x) ∈ Cx,j ⊂ Cj is well de�ned, and the�ltration {F ♯
≤j,x} orresponds to σ♯x. As x moves along U the elements σ♯x desribe analgebrai setion σ♯U ∈ Γ(U ;E(HC/P )). Finally, F ♯

≤j results from extending the redution
σ♯U to an algebrai setion σ♯ ∈ Γ(E(HC/P )), whih exists and is unique thanks to theproperness of the �ag variety HC/P . �Let χ be the antidominant harater of P orresponding to u′′, so that sχ = iu′′.Lemma A.16. We have ϕ ∈ H0(E(B)−

σ♯,χ
⊗ L).Proof. Let U ⊂ X denote, as in the preeeding lemma, a nonempty Zariski open subsetsuh that for any x ∈ U we have σ♯(x) = limt→∞ ets

′

σ′′(x). By ontinuity, it su�es toprove that for any x ∈ U(A.69) ϕ(x) ∈ E(B)−
σ♯,χ
⊗ L.The vetor ϕ(x) orresponds to an antiequivariant map φ : EL

x → B, whereas σ♯ orre-sponds to an antiequivariant map ξσ♯ : Ex → HC/P . De�ne P ♯
x = ξ−1

σ♯ (P ) ⊂ Ex. Then P ♯
xis an orbit of the ation of P on Ex on the right (whih an also be obtained by identi-fying E(HC/P ) with the quotient E/P ). And (A.69) is equivalent to requiring that φ(x)restrited to (P ♯

x)
L is ontained in B−

χ . De�ne for any real t the map ξσt : Ex → HC/Pas ξσt(f) = ξσ′′(fe
−tψ(f)), where ψ : Ex → hC is the antiequivariant map orresponding to

s′. Let also P t
x be ξ−1

σt (P ). By the previous lemma, we have ξσ♯ = limt→∞ ξσt , so we have
P ♯
x = limt→∞ P t

x as orbits of Ex/P . By ontinuity, it su�es to hek that for any t therestrition of φ(x) to (P t
x)
L is ontained in B−

χ .



70 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERASine s′, s′′ ∈ aut(E,ϕ), we have(A.70) ρ(ets
′

)(ϕ) = ϕand we also have ϕ ∈ H0(E(B)−σ′′,χ ⊗ L). De�ning P ′′
x = ξ−1

σ′′ (P ) this implies that(A.71) φ(g, l) ∈ B−
χ for any g ∈ P ′′

x and l ∈ Lx.Assume that f ∈ P t
x and l ∈ Lx. Then ξσt(f) = ξσ′′(fe

−tψ(f)) ∈ P , so fe−tψ(f) ∈ P ′′
x .Hene

φ(f, l) = φ(fe−tψ(f), l) ∈ B−
χ ,where the equality follows from (A.70) and the inlusion follows from (A.71). This provesthat φ(x) maps (P t

x)
L inside B−

χ , so we are done. �Hene we an apply the α-polystability ondition, whih in view of Lemma A.5 andRemark A.6 reads(A.72) deg(E)(σ♯, χ) = µq deg F ♯
≤q +

q−1∑

j=1

(µj − µj+1) degF ♯
≤j ≥ 0(the 〈α, χ〉 term vanishes beause we assume that s′′ is orthogonal to the enter of h). Onthe other hand, sine s′′ ∈ autss(E,ϕ), the same arguments as in the proof of PropositionA.7 imply that(A.73) deg(E)(σ′′, χ) = µq degF≤q +

q−1∑

j=1

(µj − µj+1) degF≤j = 0.An easy omputation shows that deg F
♯
≤j = deg F≤j, whereas in general deg F

♯
≤j ≤ degF ♯

≤jwith equality if and only if F
♯
≤j = (F ♯

≤j)
∨∨, so that in general

degF≤j ≤ deg F ♯
≤j.Sine deg F≤q = deg F

♯
≤q = degF ♯

≤q (beause F≤q is equal to the sheaf assoiated to
E(hC)) and µj − µj+1 < 0 for any 1 ≤ j ≤ q − 1, we have

deg(E)(σ′′, χ) ≥ deg(E)(σ♯, χ),whih ombined (A.72) and (A.73) yields deg(E)(σ′′, χ) = deg(E)(σ♯, χ) = 0. By theprevious omments, this equality implies F
♯
≤j = (F ♯

≤j)
∨∨ for any j, so that F

♯
≤j is thesheaf of loal holomorphi setions of a subbundle F ♯

≤j ⊂ E(hC). This has the followingonsequene: if we de�ne F
♯
l =

⊕
k πk(Fl ∩ E≤k), then F

♯
l is also the sheaf of setionsof a subbundle F ♯

l ⊂ E(hC) and we have F ♯
≤j =

⊕
l≤j F

♯
l . In partiular, we obtain adeomposition E(hC) =

⊕
l≤q F

♯
l . Let s♯ =

∑
j µj IdF ♯

j
∈ H0(E(hC)). Then we have

[s′, s♯] = 0 and furthermore s♯ ∈ autss(E,ϕ). These two properties imply that s♯ ∈
autss(E ′, ϕ′), so by Proposition A.7 s♯ is entral in the entralizer of s′. Similarly s′ isentral in the entralizer of s♯, so we an proeed as in the �rst ase and dedue thestatement of the theorem with s′′ replaed by s♯. Reversing the roles of s′ and s′′ we obtainthe theorem. �



REPRESENTATIONS OF SURFACE GROUPS 71A.9. Hithin-Kobayashi orrespondene. Choose a Hermitian metri hL, on the om-plex line bundle L, and denote by FL ∈ Ω2(X; iR) the urvature of the orresponding Chernonnetion. Suppose that Eh ⊂ E de�nes a redution of the struture group of E from
HC to H . Then the vetor bundle E(B) = E ×HC B an be anonially identi�ed with
Eh×HB, and hene inherits a Hermitian struture (obtained from the Hermitian strutureon B, whih is preserved by H). So for any ϕ ∈ H0(E(B)⊗ L) it makes sense to de�ne

µh(ϕ) := ρ∗
(
−

i

2
ϕ⊗ ϕ∗h,hL

)
.Here we identify iϕ⊗ϕ∗h,hL with a skew symmetri setion of End(E(B)⊗L)∗ = End(E(B))∗,hene a setion of Eh(u(B))∗. The map ρ∗ : Eh(u(B))∗ → Eh(h)∗ is indued by the dualof the in�nitesimal ation of h on B. Using the isomorphism h∗ ≃ h given by the nonde-generate pairing 〈·, ·, 〉 we view µh(ϕ) as a setion of Eh(h).Theorem A.17. . Let (E,ϕ) be a α-polystable pair. There exists a redution h of thestruture group of E from HC to H, given by a subbundle Eh ⊂ E, suh that(A.74) Λ(Fh + FL) + µh(ϕ) = −iα,where Fh ∈ Ω2(X;Eh(h)) denotes the urvature of the Chern onnetion on E with respetto h and Λ : Ω2(X) → Ω0(X) is the adjoint of wedging with the volume form on X.Furthermore, if (E,ϕ) is α-stable then h is unique. Conversely, if (E,ϕ) is a pair whihadmits a solution to equation (A.74), then (E,ϕ) is α-polystable.Proof. Suppose �rst of all that (E,ϕ) is α-stable. Then by Proposition A.7 we have

autss(E,ϕ) = H0(E(z)), so (E,ϕ) is simple in the sense of De�nition 3.8 in [10℄. Henewe an apply Theorem 4.1 of [10℄ to dedue the existene and uniqueness of h. (Reallthat the notion of α-stability given in the present paper oinides with the one in [10℄thanks to (3) in Lemma A.5.) If (E,ϕ) is α-polystable but not stable, then we onsiderthe Jordan�Hölder redution (E ′, ϕ′, H ′, B′) of (E,ϕ,H,B). Now the pair (E ′, ϕ′) is simpleand we an proeed as before to get a redution h′ of the struture group of E ′ from H ′Cto H ′ satisfying (A.74). But h′ also de�nes a redution of the struture group of E from
HC to H , by de�ning Eh := Eh′ ×H′ H ⊂ Eh′ ×H′ HC = E. For this hoie of h, equation(A.74) still holds.The proof of the onverse is standard. One �rst proves that if (E,ϕ) admits a solution tothe equations then (E,ϕ) is α-semistable (see for example [10℄). To prove α-polystabilityone an use the same strategy as in the Hithin�Kobayashi orrespondene for vetorbundles. Namely, assume that h ∈ E(HC/H) de�nes a redution of the struture group to
H , in suh a way that equation (A.74) is satis�ed. Assume also that P ⊂ HC is a parabolisubgroup, that there is a holomorphi redution σ of the struture group of E to P , anantidominant harater χ of P suh that ϕ is ontained in E(B)−σ,χ ⊗ L and suh that(A.75) deg(E)(σ, χ)− 〈α, χ〉 = 0.We want to prove that there is a further redution σL of the strutrue group of E from Pto L and that ϕ is ontained in E(B)0

σL,χ
⊗ L.Let Eh ⊂ E be the prinipal H bundle spei�ed by h. The redution σ orresponds toan antiequivariant map ξ : E → HC/P , so that ξ(f) is a paraboli subgroup of HC for eah

f ∈ E. Then, using the onstrution given in Lemma A.3 we de�ne an H-antiequivariant



72 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAmap ψ : Eh → ih by setting ψ(f) = sξ(f),χ for any f ∈ Eh. The map ψ orresponds to asetion of Eh(ih), whih we denote by
sh,σ,χ ∈ Eh(ih).For details on the following notions the reader an onsult [38℄. Let E be the C∞ H-prinipal bundle underlying Eh, and let A be the set of onnetions on E. Eah elementof A ∈ A de�nes a holomorphi struture ∂A on E. Let also S be the spae of smoothsetions of E×HB⊗L, and let G be the gauge group of E. The spae A ×S has a naturalstruture of in�nite dimensional sympleti manifold, with respet to whih the ation of

G is Hamiltonian and (A, φ) 7→ µ(A, φ) := Λ(Fh+FL)+µh(ϕ)+ iα an be identi�ed with amoment map for this ation (see Setion 4 in [38℄). Furthermore, −ish,σ,χ an be identi�edwith an element in the Lie algebra of the gauge group G .We will now apply the notions of maximal weight λ and the funtion λt (see Setion 2.3in [38℄). Let A ∈ A be the element giving rise to the ∂-operator whih orresponds tothe holomorphi struture E. A simple omputation tells that (A.75) is equivalent to themaximal weight of −ish,σ,χ on (∂A, ϕ) being zero:
λ((∂A, ϕ),−ish,σ,χ) = lim

t→∞
λt((∂A, ϕ),−ish,σ,χ) = 0.Equation (A.74) is equivalent to the vanishing of the moment map of the ation of G atthe pair (∂A, φ). Hene we have λ0((∂A, ϕ),−ish,σ,χ) = 0, and sine λt((∂A, ϕ),−ish,σ,χ)is nondereasing as a funtion of t it follows that λt((∂A, ϕ),−ish,σ,χ) = 0 for any t. Thisimplies that etsh,σ,χ �xes the pair (∂A, ϕ). That ∂A is �xed implies that sh,σ,χ indues aholomorphi redution σL of the struture group of E to L, and that ϕ is �xed impliesthat ϕ is ontained in E(B)−σ,χ ⊗ L. �A.10. Automorphism groups of polystable pairs. In this setion we inlude a resultwhih is required for the proof of Theorem 3.12. We also �nd it interesting by itselfand think it might be of use in other ontext. Let (E,ϕ) be an L-twisted pair. Let

Aut(E,ϕ) denote the holomorphi automorphisms of (E,ϕ), i.e., the holomorphi gaugetransformations g : E → E suh that φ ◦ gL = φ, where φ : EL → B is the antiequivariantmap orresponding to ϕ and gL : E ×X L→ E ×X L is the transformation ating as g inthe E fator and the identity in the L fator.The group Aut(E,ϕ) arries a natural struture of Lie group with Lie algebra equal to
aut(E, φ).Lemma A.18. Let (E,ϕ) be an α-polystable pair. Then Aut(E,ϕ) is a redutive Liegroup.Proof. If (E,ϕ) is α-polystable, then by Theorem A.17 there exists a redution h ∈
Γ(E(HC/H)) of the struture group satisfying equation (A.74). By the arguments inthe proof of Theorem A.17 this an be interpreted as the vanishing of the moment mapof the ation of G (the gauge group of Eh) on A × S at the point (A,ϕ), where A isthe Chern onnetion of E and h. It follows (see for example Proposition 1.6 in [51℄) that
Aut(E, φ) is the omplexi�ation of Aut(E, φ) ∩ G . Any g ∈ Aut(E, φ) ∩ G preservessimultaneously the omplex struture of E and the redution h, hene it also preservesthe Chern onnetion A. But the group of gauge transformations in G preserving a givenonnetion an be identi�ed with a losed subgroup of the automorphisms of the �ber of



REPRESENTATIONS OF SURFACE GROUPS 73
Eh at any given point, and onsequently is a ompat Lie group. Hene Aut(E, φ) ∩ G isa ompat Lie group, so by the previous argument Aut(E, φ) is redutive. �Appendix B. Twisted G-Higgs pairs and simplified stabilityB.1. Twisted G-Higgs pairs. Let G be a real redutive Lie group, let H ⊂ G be amaximal ompat subgroup and let g = h⊕m be a Cartan deomposition, so that the Liealgebra struture on g satis�es

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h.The group H ats linearly on m through the adjoint representation, and this ation extendsto a linear holomorphi ation of HC on mC = m⊗C (this is the isotropy representation).Furthermore, the Killing form on g indues on mC a Hermitian struture whih is preservedby the ation of H .Let X be a ompat Riemann surfae and let L be a holomorphi line bundle on X.We de�ne an L-twisted G-Higgs pair to be a pair (E,ϕ), where E is a holomorphi HC-prinipal bundle over X and ϕ is a holomorphi setion of E(mC)⊗ L. Here E(mC) is the
mC-bundle assoiated to E via the isotropy representation. Let z be the entre of hC and let
α ∈ ih ∩ z. The notions of α-stability, semistability and polystability given in Setion A.5apply naturally to L-twisted G-Higgs pairs. A polystable L-twisted G-Higgs pair satis�esthe following.Proposition B.1. Let (E,ϕ) be an L-twisted G-Higgs pair whih is α-polystable but not
α-stable. Then the Jordan�Hölder redution of (E,ϕ) is an L-twisted G′-Higgs pair forsome redutive subgroup G′ ⊂ G.Proof. Reall from Setion A.8 that in the Jordan�Hölder redution (E ′, ϕ′, H ′, (mC)′) of
(E,ϕ,H,mC) the subgroup H ′ ⊂ H is de�ned as the entralizer of a torus T ⊂ H and that
(mC)′ is the �xed point set of T ating on mC. So it su�es to prove that the Lie algebrastruture on h⊕m indues a struture of Cartan pair on (h′, (mC)′ ∩m). The ation of Ton h and m indues deompositions

h =
⊕

η∈T∨

hη and m =
⊕

η∈T∨

mη,where T∨ denotes the group of haraters of T (for whih we use additive notation). Thenone has, as usual,
[hη, hµ] ⊂ hη+µ, [hη,mµ] ⊂ mη+µ, [mη,mµ] ⊂ hη+µfor any pair of haraters η, µ ∈ T∨. Taking η = µ = 0 and observing that h′ = h0 and

(mC)′ ∩m = m0, it follows that
[h′, h′] ⊂ h′, [h′, (mC)′ ∩m] ⊂ (mC)′ ∩m, [(mC)′ ∩m, (mC)′ ∩m] ⊂ h′,so that h′, (mC)′ ∩m) is ertainly a Cartan pair.We an make a more preise statement: de�ning G′ as the entralizer of T inside G wehave proved that the Jordan�Hölder redution of (E,ϕ) is an L-twisted G′-Higgs bundle.

�



74 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAB.2. L-twisted Sp(2n,R)-Higgs pairs. Let G = Sp(2n,R). The maximal ompat sub-group of G is H = U(n) and hene HC = GL(n,C). Now, if V = Cn is the fundamentalrepresentation of GL(n,C), then the isotropy representation spae is:
mC = S2V⊕ S2V∗.An L-twisted Sp(2n,R)-Higgs pair is thus a pair onsisting of a rank n holomorphi vetorbundle V over X and a setion

ϕ = (β, γ) ∈ H0(L⊗ S2V ⊕ L⊗ S2V ∗).Let α be a real number. Following Setions A.5 and A.6 (see also [10℄), (V, ϕ) is said tobe α-semistable if for any �ltration by holomorphi subbundles
V = (0 ( V1 ( V2 ( · · · ( Vk = V ),the following ondition holds. For any sequene of real numbers λ = (λ1 ≤ λ2 ≤ · · · ≤ λk)de�ne the subbundle

N(V , λ) =
∑

λi+λj≤0

L⊗ Vi ⊗S Vj ⊕
∑

λi+λj≥0

L⊗ V ⊥
i−1 ⊗S V

⊥
j−1 ⊂ L⊗ (S2V ⊕ S2V ∗),where, if V ′, V ′′ are subbundles of V , V ′ ⊗S V ′′ denotes the subbundle of S2V indued by

V ′⊗V ′′ under the projetion V ⊗V → S2V . (This is the same as the bundle L⊗E(B)−σ,χof Appendix A; we use the notation N(V , λ) for onveniene.) De�ne also
d(V , λ, α) = λk(deg Vk − αnk) +

k−1∑

j=1

(λj − λj+1)(deg Vj − αnj),where nj = rkVj (this expression is equal to deg(E)(σ, χ) − 〈α, χ〉). Then, if ϕ ∈
H0(N(V , λ)), we must have(B.76) d(V , λ, α) ≥ 0.The pair (V, ϕ) is α-stable if it is α-semistable and furthermore, for any hoie of Vand λ for whih there is a j < k suh that λj < λj+1, whenever ϕ ∈ H0(N(V , λ)), we have(B.77) d(V , λ, α) > 0.It is well known that when ϕ = 0, the α-(semi)stability is equivalent to α = µ(V ) (where
µ(V ) = deg V/ rkV is the slope of V ) and V being (semi)stable. The next two theoremsgive a generalization of this fat for general ϕ, providing a muh simpler (semi)stabilityondition for quadrati pairs. It is important to notie that in the statement of the the-orems, the inlusions in the �ltration of V are not neessarily strit, in ontrast to theoriginal de�nition. The proofs of these theorems will be given in Subsetions B.4 and B.5.Theorem B.2. Let (V, ϕ) be an L-twisted Sp(2n,R)-Higgs pair. The pair (V, ϕ) is α-semistable if and only if for any �ltration of holomorphi subbundles 0 ⊂ V1 ⊂ V2 ⊂ Vsuh that(B.78) ϕ = (β, γ) ∈ H0(L⊗ ((S2V2 + V1 ⊗S V )⊕ (S2V ⊥

1 + V ⊥
2 ⊗S V

∗)))we have(B.79) deg V − deg V2 − deg V1 ≥ α(n− n2 − n1),where n = rkV .



REPRESENTATIONS OF SURFACE GROUPS 75Remark B.3. The statement of the Theorem also overs the ase ϕ = 0, as we shallnow explain. If 0 = V1 = V2, then the ondition (B.78) is equivalent to β = 0 and theinequality (B.79) reads deg V ≥ αn. If V1 = V2 = V , then (B.78) is equivalent to γ = 0and the inequality (B.79) says that deg V ≤ αn. Consequently, if ϕ = (β, γ) = 0, then
α-semistability implies α = deg V/ rkV = µ(V ). In this ase, taking V1 = 0 and V2 ⊂ Vany subbundle, the ondition (B.79) is equivalent to µ(V2) ≤ µ(V ), so V is semistable. Onthe other hand one an hek that if V is semistable and α = µ(V ), then the ondition(B.79) is satis�ed for any �ltration 0 ⊂ V1 ⊂ V2 ⊂ V .Theorem B.4. Let (V, ϕ) be an L-twisted Sp(2n,R)-Higgs pair. The pair (V, ϕ) is α-stable if and only if the following ondition is satis�ed. For any �ltration of holomorphisubbundles 0 ⊂ V1 ⊂ V2 ⊂ V suh that

ϕ ∈ H0(L⊗ ((S2V2 + V1 ⊗S V )⊕ (S2V ⊥
1 + V ⊥

2 ⊗S V
∗)))the following holds: if at least one of the subbundles V1 and V2 is proper (that is, non-zeroand di�erent from V ) then

deg V − deg V2 − deg V1 > α(n− n2 − n1),(where n = rkV ), and in any other ase
deg V − deg V2 − deg V1 ≥ α(n− n2 − n1).Remark B.5. Arguing as in Remark B.3 we dedue from the previous theorem that if ϕ = 0,then (V, 0) is α-stable if and only if α = deg V/ rkV and V is a stable vetor bundle.B.3. Some results on onvex sets. LetW be an n dimensional vetor spae over R. Wedenote the onvex hull of any subset S ⊂W by CH(S) ⊂W. Let h1, h2, . . . , hl be elementsof the dual spae W ∗. We assume that l ≥ n and that the �rst n elements h1, . . . , hn area basis of W ∗. De�ne for any h ∈ W ∗ the set
{h ≤ a} = {v ∈W | h(v) ≤ a} ⊂W,and de�ne {h = a} ⊂W similarly.Consider the onvex subset of W

C =
⋂

i

{hi ≤ 0}(here and below if no range is spei�ed for the index then it is supposed to be the wholeset {1, . . . , l}).Remark B.6. The fat that {h1, . . . , hl} span W ∗ is equivalent to the ondition that Cdoes not ontain any positive dimensional vetor subspae of W . Indeed, if h ∈ W ∗ and
Z ⊂W is a subspae ontained in {h ≤ 0}, then Z is ontained in {h = 0}. Consequentlyany vetor subspae of W ontained in C has to lie in ⋂i{hi = 0} = 0.Lemma B.7. C = CH(∂C).Proof. For any α ≤ 0 de�ne Cα = C ∩ {h1 + · · ·+ hn = α}. Sine for any x ∈ C we have
hi(x) ≤ 0 and furthermore h1, . . . , hn is a basis of W ∗, we dedue that Cα is ompat.Hene Cα = CH(∂Cα). Now, take any x ∈ C and set α = h1(x) + · · · + hn(x). Then
x ∈ Cα = CH(∂Cα) ⊂ CH(∂C). This proves the inlusion C ⊂ CH(∂C). The otherinlusion follows from the fat that C is onvex. �



76 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERANow we have ∂C =
⋃
i Ci, where Ci = {hi = 0} ∩ C. On the other hand, for any i theolletion of elements h1, . . . , hl indue elements h′1, . . . , h′l on the dual of {hi = 0} whihobviously span. Hene we may apply again the lemma to Ci and dedue that Ci = CH(∂Ci).Proeeding reursively, we dedue that C is the onvex hull of the union of the sets

CI =
⋂

i∈I
{hi = 0} ∩ Cwhere I runs over the olletion of subets of {1, . . . , l} satisfying(B.80) |I| = n− 1 and the vetors {hi | i ∈ I} are linearly independent.Eah suh subset CI is a hal�ine.Lemma B.8. Fix a basis e1, . . . , en of W , and denote by e∗1, . . . , e∗n the dual basis. Assumethat any hi an be written either as e∗a − e∗b or ±(e∗a + e∗b) for some indies a, b dependingon i. Then for any I satisfying (B.80) there are disjoint subsets P,N ⊂ {1, . . . , n} so thatde�ning the element cI =

∑
i∈P ei −

∑
j∈N ej we have CI = R≥0cI .Proof. Pik some I satisfying (B.80), so that CI =

⋂
i∈I{hi = 0} is one dimensional, andlet cI ∈W be an element suh that CI = R≥0cI . Write cI =

∑
λjej and take some nonzero

λ ∈ {λ1, . . . , λn}. De�ne Pλ = {j | λj = λ} and Nλ = {j | λj = −λ}. We want to provethat for any j /∈ Pλ ∪Nλ, λj = 0. Suppose the ontrary. Then
c′I =

∑

j∈Pλ∪Nλ

2λjej +
∑

j /∈Pλ∪Nλ

λjejdoes not belong to RcI . However, for any pair of indies a, b we learly have
(e∗a − e

∗
b)cI = 0 =⇒ (e∗a − e

∗
b)c

′
I = 0 and (e∗a + e∗b)cI = 0 =⇒ (e∗a + e∗b)c

′
I = 0.This implies by our assumption that c′I ∈ ⋂i∈I{hi = 0} = CI , in ontradition with thefat that CI is one dimensional. �B.4. Proof of Theorem B.2. As already mentioned, when ϕ = 0 the pair (V, 0) is α-semistable if and only if α = µ(V ) and V is semistable. Thus, by Remark B.3, it su�esto onsider the ase ϕ 6= 0. Let V be any �ltration of V , and de�ne

Λ(V , ϕ) = {λ ∈ Rk | λ1 ≤ · · · ≤ λk, ϕ ∈ N(V , λ)}.The pair (V, ϕ) is α-semistable if for any λ ∈ Λ(V , ϕ) we have
d(V , λ, α) ≥ 0.But d(V , λ, α) is learly a linear funtion on λ, so to hek stability it su�ies to verifythat d(V , λ, α) ≥ 0 for any λ belonging to a set Λ′ ⊂ Rk whose onvex hull is Λ(V , ϕ).De�ne for any i, j the subbundles

Di,j = Vi ⊗S Vj + Vi−1 ⊗S V + V ⊗S Vj−1 ⊂ S2Vand
D∗
i,j = V ⊥

i−1 ⊗S V
⊥
j−1 + V ⊥

i ⊗S V
∗ + V ∗ ⊗S V

⊥
j ⊂ S2V ∗.A tuple λ1 ≤ · · · ≤ λk belongs to Λ(V , ϕ) if and only if these two onditions holds:

• for any i, j suh that β is ontained in H0(L ⊗ Di,j) but is not ontained in thesum H0(L⊗Di−1,j) +H0(L⊗Di,j−1), we have λi + λj ≤ 0.
• for any i, j suh that γ is ontained in H0(L⊗D∗

i,j) but is not ontained in the sum
H0(L⊗D∗

i+1,j) +H0(L⊗D∗
i,j+1), we have λi + λj ≥ 0.



REPRESENTATIONS OF SURFACE GROUPS 77Hene Λ(V , ϕ) ⊂ Rk is the intersetion of halfspaes of the form {λi − λi+1 ≤ 0} and,
{λa + λb ≤ 0} (for at least one pair (a, b), if β 6= 0) or {λc + λd ≥ 0} (for at leastone pair (c, d), if γ 6= 0). Sine the only nonzero vetor subspae inluded in the set
Λ = {λ1 ≤ · · · ≤ λk} is the line generated by (1, . . . , 1) and the set Λ(V , ϕ) is ontainedand Λ and furthermore satis�es at least one equation of the form λa+λb ≥ 0 or λc+λd ≤ 0,it follows that Λ(V , ϕ) does not ontain any nonzero vetor subspae.So by the arguments in the previous subsetion Λ(V , ϕ) is the onvex hull of a ol-letion of half lines of the form R≥0λI , and by Lemma B.8 we an assume that theoordinates of λI are 0 and ±1. But if λI ∈ Λ(V , ϕ) we neessarily must have cI =
(−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1), say a opies of −1, b of 0 and k − (a + b) of 1. Consider�rst the ase when 0 < a < a+ b < k. De�ne now the �ltration

V
′ = (0 ( Va ( Va+b ( V ).One an easily hek that

d(V , λI , α) = d(V ′, (−1, 0, 1), α) = deg V − deg Va − deg Va+b − α(n− na − na+b),and that N(V , λ) = L⊗ ((S2Va+b + Va ⊗S V )⊕ (S2V ⊥
a + V ⊥

a+b ⊗S V
∗)).Next we need to onsider the ases where one or more of the inequalities in the ondition

0 < a < a + b < k beomes an equality, in whih ase some of the inlusions in 0 ( Va (
Va+b ( V will not be strit. Sine in the semistability ondition one has to onsiderstrit inlusions, a priori we should onsider separately eah ase (so for example, if 0 <
a < a + b = k, we onsider the �ltration 0 ( Va ( V with weights λ = (−1, 0), andso on). In the following table we list the possible degenerations (apart from the ase
a = a + b = k = 0, whih is impossible sine k ≥ 1) and the orresponding form of theonditions ϕ ∈ H0(N(V , λ)) and d(V , λ, α) ≥ 0.Degeneration ϕ ∈ H0(N(V , λ)) d(V , λ, c) ≥ 0
0 = a < a+ b = k always satis�ed always satis�ed
0 = a = a+ b < k β = 0 deg V ≥ αn
0 < a = a+ b = k γ = 0 deg V ≤ αn
0 < a < a+ b = k γ ∈ H0(L⊗ S2V ⊥

a ) deg Va ≤ αna
0 < a = a+ b < k ϕ ∈ H0(L⊗ (Va ⊗ V ⊕ V ⊥

a ⊗ V
∗)) deg V − 2 deg Va ≥ α(n− 2na)

0 < a < a+ b < k β ∈ H0(L⊗ S2Va+b) deg V − deg Va+b ≥ α(n− na+b)Table B.1. Semistability onditions for degenerate �ltrationsInspeting eah of these ases in turn we see that they orrespond to instanes of the α-semistability ondition stated in the Theorem with some inlusions not being strit. Morepreisely, in eah ase the subbundle N(V , λ) turns out to oinide with L ⊗ ((S2Va+b +
Va ⊗S V )⊕ (S2V ⊥

a + V ⊥
a+b ⊗S V

∗)), and the degree d(V , λ, α) is equal to deg V − deg Va −
deg Va+b − α(n− na − na+b).B.5. Proof of Theorem B.4. The proof is exatly like that of Theorem B.2, exept thatwe have to distinguish the ases in whih stability implies strit inequality. We assume that
ϕ 6= 0. Following the notation of Subsetion B.5, these are the ases in whih λ ontainsat least two di�erent values. If λI = (−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1) ontains a opies of
−1, b opies of 0 and k − (a + b) opies of 1, admitting that some of the numbers a, b or
k − (a + b) is equal to 0, the ondition that λI ontains at least two di�erent numbers is



78 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAequivalent to asking that at least one of the bundles Va and Va+b is a proper subbundle of
V (this happens in the last three rows of Table B.1). Using the fat that N(V , c) is thepositive span of vetors of the form λI (beause ϕ 6= 0), the theorem follows.B.6. Polystable Sp(2n,R)-Higgs pairs. Let α be a real number. Aording to Se-tions A.5 and A.6, a twisted Sp(2n,R)-Higgs pair (V, ϕ) with ϕ = (β, γ) ∈ H0(L⊗ S2V ⊕
L⊗S2V ∗) is said to be α-polystable if it is semistable and for any �ltration by holomor-phi strit subbundles

V = (0 ( V1 ( V2 ( · · · ( Vk = V ),and sequene of stritly inreasing real numbers λ = (λ1 < · · · < λk) suh that ϕ ∈
H0(N(V , λ)) and d(V , λ, α) = 0 there is a splitting of vetor bundles

V ≃ V1 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1with respet to whih
β ∈ H0(

⊕

λi+λj=0

L⊗ Vi/Vi−1 ⊗S Vj/Vj−1)and
γ ∈ H0(

⊕

λi+λj=0

L⊗ (Vi/Vi−1)
∗ ⊗S (Vj/Vj−1)

∗).This implies that if (V, ϕ) is α-polystable but not α-stable, then it an be deomposed asthe sum of a polystable vetor bundle, L-twisted U(p, q)-Higgs pairs (arising from pairs
0 6= λi = −λj with i 6= j), and lower rank twisted sympleti Higgs pairs (arising in asethere is some λi = 0). Furthermore, by the results in Setion A.8 eah of these pieesis α-polystable, so the proedure an be repeated until one reahes a deomposition allof whose piees are α-stable. Again by the results in Setion A.8, suh deomposition isunique up to isomorphism, and is in fat the Jordan-Hölder redution of (V, ϕ).B.7. L-twisted Sp(2n,C)-Higgs pairs. Consider now the ase G = Sp(2n,C). A maxi-mal ompat subgroup of G is H = Sp(2n) and hene HC oinides with Sp(2n,C). Now,if W = C2n is the fundamental representation of Sp(2n,C) and ω denotes the standardsympleti form on W, the isotropy representation spae is

mC = sp(W) = sp(W, ω) := {ξ ∈ End(W) | ω(ξ·, ·) + ω(·, ξ·) = 0} ⊂ End W,so it oinides with the adjoint representation of Sp(2n,C) on its Lie algebra. An L-twisted
Sp(2n,C)-Higgs pair is thus a pair onsisting of a rank 2n holomorphi sympleti vetorbundle (W,Ω) over X (so Ω is a holomorphi setion of Λ2W ∗ whose restrition to eah�ber of W is nondegenerate) and a setion

Φ ∈ H0(L⊗ sp(W )),where sp(W ) is the vetor bundle whose �ber over x is given by sp(Wx,Ωx).De�ne for any �ltration by holomorphi subbundles
W = (0 = W0 ( W1 ( W2 ( · · · ( Wk = W )satisfying Wk−i = W⊥Ω

i for any i (here ⊥Ω denotes the perpendiular with respet to Ω)the set
Λ(W) = {(λ1, λ2, . . . , λk) ∈ Rk | λi ≤ λi+1 and λk−i+1 + λi = 0 for any i }.



REPRESENTATIONS OF SURFACE GROUPS 79For any λ ∈ Λ(W) de�ne the following subbundle of L⊗ EndW :
N(W, λ) = L⊗ sp(W ) ∩

∑

λi≥λj

L⊗ End(Wi,Wj).De�ne also
d(W, λ) =

k−1∑

j=1

(λj − λj+1) degWj(note that sine W arries a sympleti struture we have W ≃ W ∗ and hene degW =
degWk = 0).Following again Setions A.5 and Setion A.6, the pair ((W,Ω),Φ) is said to be

• semistable if for any �ltration W as above and any λ ∈ Λ(W) suh that Φ ∈
H0(N(W, λ)), the following inequality holds: d(W, λ) ≥ 0.
• stable if it is semistable and furthermore, for any hoie of �ltration W and λ ∈

Λ(W) whih is not identially zero (so for whih there is a j < k suh that λj <
λj+1), and suh that Φ ∈ H0(N(W, λ)), we have d(W, λ) > 0.
• polystable if it is semistable and for any �ltration W as above and λ ∈ Λ(W)satisfying λi < λi+1 for eah i, ψ ∈ H0(N(W, λ)) and d(W, λ) = 0, there is anisomorphism

W ≃W1 ⊕W2/W1 ⊕ · · · ⊕Wk/Wk−1suh that the pairing via Ω any element of the summand Wi/Wi−1 with an ele-ment of the summand Wj/Wj−1 is zero unless i + j = k + 1; furthermore, via theisomorphism above,
Φ ∈ H0(

⊕

i

L⊗ Hom(Wi/Wi−1,Wi/Wi−1)).We now prove an analog of Theorems B.2 and B.4, whih implies that the de�nition of(semi)stability whih we have given oinides with the usual one in the literature. Reallthat if (W,Ω) is a sympleti vetor bundle, a subbundle W ′ ⊂ W is said to be isotropiif the restrition of Ω to W ′ is identially zero.Theorem B.9. An L-twisted Sp(2n,C)-Higgs pair ((W,Ω),Φ) is semistable if and onlyif for any isotropi subbundle W ′ ⊂ W suh that Φ(W ′) ⊂ L ⊗W ′ we have degW ′ ≤ 0.Furthermore, ((W,Ω),Φ) is stable if for any nonzero and strit isotropi subbundle 0 6=
W ′ ⊂W suh that Φ(W ′) ⊂ L⊗W ′ we have degW ′ < 0. Finally, ((W,Ω),Φ) is polystableif it is semistable and for any nonzero and strit isotropi subbundle W ′ ⊂ W suh that
Φ(W ′) ⊂ L⊗W ′ and degW ′ = 0 there is another isotropi subbundle W ′′ ⊂W suh that
Φ(W ′′) ⊂ L⊗W ′′ and W = W ′ ⊕W ′′.Proof. The proof follows the same ideas as the proofs of Theorems B.2 and B.4, so we justgive a sketh. Take an L-twisted Sp(2n,C)-Higgs pair ((W,Ω),Φ), and assume that forany isotropi subbundle W ′ ⊂ W suh that Φ(W ′) ⊂ L ⊗W ′ we have degW ′ ≤ 0. Wewant to prove that ((W,Ω),Φ) is semistable. Choose any �ltration W = (0 ( W1 ( W2 (

· · · ( Wk = W ) satisfying Wk−i = W⊥Ω

i for any i. We have to understand the geometry ofthe onvex set
Λ(W,Φ) = {λ ∈ Λ(W) | Φ ∈ N(W, λ)} ⊂ Rk.



80 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERADe�ne for that J = {j | Φ(Wj) ⊂ L ⊗ Wj} = {j1, . . . , jr}. One heks easily that if
λ = (λ1, . . . , λk) ∈ Λ(W) then(B.81) λ ∈ Λ(W,Φ)⇐⇒ λa = λb for any ji ≤ a ≤ b ≤ ji+1.We laim that the set of indies J is symmetri:(B.82) j ∈ J ⇐⇒ k − j ∈ J .To hek this it su�es to prove that Φ(Wj) ⊂ L⊗Wj implies that Φ(W⊥Ω

j ) ⊂ L⊗W⊥Ω

j .Suppose that this is not true, so that for some j we have ΦWj ⊂ L ⊗ Wj and thereexists some w ∈ W⊥Ω

j suh that Φw /∈ L ⊗W⊥Ω

j . Then there exists v ∈ Wj suh that
Ω(v,Φw) 6= 0. However, sine Φ ∈ H0(L⊗ sp(W )), we must have Ω(v,Φw) = −Ω(Φv, w),and the latter vanishes beause by assumption Φv belongs to Wj . So we have reahed aontradition.Let J ′ = {j ∈ J | 2j ≤ k} and de�ne for any j ∈ J ′ the vetor

Lj = −
∑

c≤j
ec +

∑

d≥k−j+1

ed,where e1, . . . , ek is the anonial basis of Rk. It follows from (B.81) and (B.82) that Λ(W,Φ)is the positive span of the vetors {Lj | j ∈ J ′}. Consequently, we have
d(W, λ) ≥ 0 for any λ ∈ Λ(W,Φ) ⇐⇒ d(W, Lj) ≥ 0 for any j .One omputes d(W, Lj) = − degWk−j−degWj . On the other hand, sine we have an exatsequene 0 → Wk−j → W ∗ → W ∗

j → 0 (the injetive arrow is given by the pairing with
Ω) we have 0 = degW ∗ = degWk−j + degW ∗

j , so degWk−j = degWj and onsequently
d(W, Lj) ≥ 0 is equivalent to degWj ≤ 0, whih holds by assumption. Hene ((W,Ω),Φ)is semistable.The onverse statement, namely, that if ((W,Ω),Φ) is semistable then for any isotropisubbundle W ′ ⊂ W suh that Φ(W ′) ⊂ L ⊗ W ′ we have degW ′ ≤ 0 is immediate byapplying the stability ondition of the �ltration 0 ⊂W ′ ⊂W ′⊥Ω ⊂W .Finally, the proof of the seond statement on stability is very similar to ase of semista-bility, so we omit it. The statement on polystability is also straightforward. �B.8. L-twisted SL(n,C)-Higgs pairs. If G = SL(n,C) then the maximal ompat sub-group of G is H = SU(n) and hene HC oinides with SL(n,C). Now, if W = Cn is thefundamental representation of SL(n,C), the isotropy representation spae is given by thetraeless endomorphisms of W

mC = sl(W) = {ξ ∈ End(W) | Tr ξ = 0} ⊂ End W,so it oinides again with the adjoint representation of SL(n,C) on its Lie algebra. An
L-twisted SL(n,C)-Higgs pair is thus a pair onsisting of a rank n holomorphi vetorbundle W over X endowed with a trivialization detW ≃ O and a holomorphi setion

Φ ∈ H0(L⊗ End0W ),where End0W denotes the bundle of traeless endomorphisms of W .De�ne for any �ltration by holomorphi subbundles
W = (0 = W0 ( W1 ( W2 ( · · · ( Wk = W )



REPRESENTATIONS OF SURFACE GROUPS 81the onvex set
Λ(W) = {(λ1, λ2, . . . , λk) ∈ Rk | λi ≤ λi+1 for any i and ∑

i

rkWi(λi − λi+1) = 0}.For any λ ∈ Λ(W) de�ne the following subbundle of L⊗ EndW :
N(W, λ) = L⊗ End0W ∩

∑

λi≥λj

L⊗ End(Wi,Wj).De�ne also
d(W, λ) =

k−1∑

j=1

(λj − λj+1) degWj(sine detW is trivial we have degW = degWk = 0).Following again Setions A.5 and A.6, (W,Φ) is said to be:
• semistable if for any �ltrationW and λ ∈ Λ(W) suh that Φ ∈ H0(N(W, λ)), wehave d(W, λ) ≥ 0.
• stable if it is semistable and furthermore, for any hoie of �ltration W and λ ∈

Λ(W) whih is not identially zero (so for whih there is a j < k suh that λj <
λj+1), and suh that Φ ∈ H0(N(W, λ)), we have d(W, λ) > 0.
• polystable if it is semistable and for any �ltration W as above and λ ∈ Λ(W)satisfying λi < λi+1 for eah i, ψ ∈ H0(N(W, λ)) and d(W, λ) = 0, there is anisomorphism

W ≃W1 ⊕W2/W1 ⊕ · · · ⊕Wk/Wk−1with respet to whih
Φ ∈ H0(

⊕

i

L⊗ Hom(Wi/Wi−1,Wi/Wi−1)).Again we have a result as Theorem B.9 implying that the present notions of (semi)stabilityoinide with the usual ones.Theorem B.10. An L-twisted SL(n,C)-Higgs pair (W,Φ) is semistable if and only if forany subbundle W ′ ⊂ W suh that Φ(W ′) ⊂ L ⊗W ′ we have degW ′ ≤ 0. Furthermore,
(W,Φ) is stable if for any nonzero and strit subbundleW ′ ⊂W suh that Φ(W ′) ⊂ L⊗W ′we have degW ′ < 0. Finally, (W,Φ) is polystable if it is semistable and for eah subbundle
W ′ ⊂W suh that Φ(W ′) ⊂ L⊗W ′ and degW ′ = 0 there is another subbundle W ′′ ⊂Wsatisfying Φ(W ′′) ⊂ L⊗W ′′ and W = W ′ ⊕W ′′.The proof of Theorem B.10 is very similar to that of Theorem B.9, so we omit it.B.9. L-twisted GL(n,R)-Higgs pairs. We study now L-twisted G-Higgs pairs for G =
GL(n,R). When L = K2, these will be related to maximal degree Sp(2n,R)-Higgs bundles.A maximal ompat subgroup of GL(n,R) is H = O(n) and hene HC = O(n,C). Now,if W is the standard n-dimensional omplex vetor spae representation of O(n,C), thenthe isotropy representation spae is:

mC = S2W.



82 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERAAn L-twisted GL(n,R)-Higgs pair over X is thus a pair ((W,Q), ψ) onsisting of aholomorphi O(n,C)-bundle, i.e. a rank n holomorphi vetor bundle W over X equippedwith a non-degenerate quadrati form Q, and a setion
ψ ∈ H0(L⊗ S2W ).Note that when ψ = 0 a twisted GL(n,R)-Higgs pair is simply an orthogonal bundle.Sine the entre of o(n) is trivial, α = 0 is the only possible value for whih stabilityof an L-twisted GL(n,R)-Higgs pair is de�ned. The stability ondition is formulated asfollows.For any �ltration of vetor bundles

W = (0 = W0 ( W1 ( W2 ( · · · ( Wk = W )of satisfying Wj = W
⊥Q

k−j (here W⊥Q

k−j denotes the orthogonal omplement of Wk−j withrespet to Q) de�ne
Λ(W) = {(λ1, λ2, . . . , λk) ∈ Rk | λi ≤ λi+1 and λi + λk−i+1 = 0 for any i }.De�ne for any λ ∈ Λ(W) the following bundle.

N(W, λ) =
∑

λi+λj≤0

L⊗Wi ⊗S Wj .Also we de�ne
d(W, λ) =

k−1∑

j=1

(λj − λj+1) degWj(note that the quadrati form Q indues an isomorphism W ≃ W ∗ so degW = degWk =
0).Aording to Setions A.5 and A.6, an L-twisted GL(n,R)-Higgs pair (W,Q, ψ) is saidto be

• semistable if for all �ltrations W as above and all λ ∈ Λ(W) suh that ψ ∈
H0(N(W, λ)), we have d(W, λ) ≥ 0,
• stable if it is semistable and for any hoie of �ltrationW and nonzero λ ∈ Λ(W)suh that ψ ∈ H0(N(W, λ)), we have d(W, λ) > 0,
• polystable if it is semistable and for any �ltration W as above and λ ∈ Λ(W)satisfying λi < λi+1 for eah i, ψ ∈ H0(N(W, λ)) and d(W, λ) = 0, there is anisomorphism

W ≃W1 ⊕W2/W1 ⊕ · · · ⊕Wk/Wk−1suh that pairing via Q any element of the summand Wi/Wi−1 with an elementof the summand Wj/Wj−1 is zero unless i + j = k + 1; furthermore, via thisisomorphism,
ψ ∈ H0(

⊕

λi+λj=0

L⊗ (Wi/Wi−1)⊗S (Wj/Wj−1)).There is a simpli�ation of the stability ondition for orthogonal pairs analogous toTheorem B.2 and Theorem B.4.



REPRESENTATIONS OF SURFACE GROUPS 83Theorem B.11. The L-twisted GL(n,R)-Higgs pair ((W,Q), ψ) is semistable if and onlyif for any isotropi subbundle W ′ ⊂ W suh that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L) theinequality degW ′ ≤ 0 holds. Furthermore, ((W,Q), ψ) is stable if it is semistable and forany isotropi strit subbundle 0 6= W ′ ⊂ W suh that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L)we have degW ′ < 0 holds. Finally, ((W,Q), ψ) is polystable if it is semistable and for anyisotropi strit subbundle 0 6= W ′ ⊂ W suh that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L) and
degW ′ = 0 there is another isotropi subbundle W ′′ ⊂ W suh that ψ ∈ H0(S2W ′′⊥Q ⊕
W ′′ ⊗S W ⊗ L) and W = W ′ ⊕W ′′.Proof. The proof is analogous to the proofs of Theorems B.2 and B.4. Take an L-twisted
GL(n,R)-Higgs pair ((W,Q), ψ), and assume that for any isotropi subbundle W ′ ⊂ Wsuh that ψ ∈ H0(S2W ′⊥Q ⊕W ′ ⊗S W ⊗ L) the inequality degW ′ ≤ 0 holds. We alsoassume that ψ is nonzero, for otherwise the result follows from the usual haraterizationof (semi)stability for SO(n,C)-prinipal bundles due to Ramanathan (see [41℄). We wantto prove that ((W,Q), ψ) is semistable. Choose any �ltrationW = (0 ( W1 ( W2 ( · · · (
Wk = W ) satisfying Wk−i = W⊥Ω

i for any i. Consider the onvex set
Λ(W, ψ) = {λ ∈ Λ(W) | ψ ∈ N(W, λ)} ⊂ Rk.De�ne for any i, j the subbundle

Di,j = Wi ⊗S Wj +Wi−1 ⊗S W +W ⊗S Wj−1 ⊂ S2W.A tuple λ = (λ1, . . . , λk) ∈ Λ(W) belongs to Λ(W, ψ) if and only if:for any i, j suh that ψ is ontained in H0(L⊗Di,j) but is not ontained inthe sum H0(L⊗Di−1,j) +H0(L⊗Di,j−1), we have λi + λj ≤ 0.Hene Λ(W, ψ) is the intersetion of Λ(W) with the set of points in Rk satisfying a olletionof inequalities of the form λa+λb ≤ 0 and λc+λd ≥ 0 (the latter follow from the restritions
λi+λk−i+1 = 0). Sine Λ(W) does not ontain any line, a fortiori Λ(W, ψ) neither does, so(using Lemma B.8) Λ(W, ψ) is the onvex hull of a set of half lines {R≥0Li | i ∈ I}, where
Li = (−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1) ontains i opies of −1 and i opies of 1. Consequently,we have

d(W, λ) ≥ 0 for any λ ∈ Λ(W, ψ) ⇐⇒ d(W, Li) ≥ 0 for any i ∈ I .It follows from the de�nition that N(W, Li) = Wi⊗SW +S2Wk−i and sine Wk−i = W
⊥Q

ithe ondition Li ∈ Λ(W, ψ) an be translated into the ondition
ψ ∈ H0(S2W

⊥Q

i ⊕Wi ⊗S W ⊗ L).One omputes d(W, Li) = − degWk−i−degWi. On the other hand, sine we have an exatsequene 0 → Wk−i → W ∗ → Wi∗ → 0 (the injetive arrow is given by the pairing withthe quadrati form Q) we have 0 = degW ∗ = degWk−i + degW ∗
i , so degWk−i = degWiand onsequently d(W, Li) ≥ 0 is equivalent to degWi ≤ 0, whih holds by assumption.Hene ((W,Q), ψ) is semistable.The onverse statement, namely, that if ((W,Q), ψ) is semistable then for any isotropisubbundle W ′ ⊂ W suh that Φ(W ′) ⊂ L ⊗ W ′ we have degW ′ ≤ 0 is immediate byapplying the stability ondition of the �ltration 0 ⊂W ′ ⊂W ′⊥Q ⊂W .Finally, the proof of the seond statement on stability is very similar to the ase ofsemistability, so we omit it. The statement on polystability is also straightforward. �
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⊥Q

1 ⊕W1 ⊗S W ⊗ L) is equivalent to ψ̃(W1) ⊆
W1 ⊗ L, where ψ̃ = ψ ◦ Q : W → W ⊗ L. The reasoning is analogous to the proof ofCorollary 4.2. Referenes[1℄ M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaes, Philos. Trans. Roy. So.London Ser. A 308 (1982), 523�615.[2℄ I. Biswas and S. Ramanan, An in�nitesimal study of the moduli of Hithin pairs, J. London Math.So. (2) 49 (1994), 219�231.[3℄ A. Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20�82.[4℄ , Linear algebrai groups, Seond edition, Graduate Texts in Mathematis, vol. 126, Springer�Verlag, New York, 1991.[5℄ S. B. Bradlow, O. Garía-Prada, and P .B. Gothen, Representations of the fundamental group of asurfae in PU(p, q) and holomorphi triples, C. R. Aad. Si. Paris Sér. I Math. 333 (2001), 347�352.[6℄ , Surfae group representations and U(p, q)-Higgs bundles, J. Di�erential Geom. 64 (2003),111�170.[7℄ , Representations of surfae groups in the general linear group, Proeedings of the XII FallWorkshop on Geometry and Physis (H. Albuquerque, R. Caseiro, J. Clemente-Gallardo, J. M. Nunesda Costa, and J. Teles, eds.), Publiaiones de la RSME, vol. 7, 2004, pp. 83�94.[8℄ , Maximal surfae group representations in isometry groups of lassial Hermitian symmetrispaes, Geometriae Dediata 122 (2006), 185�213.[9℄ , Homotopy groups of moduli spaes of representations, Topology 47 (2008), 203�224.[10℄ S. B. Bradlow, O. Garía-Prada, and I. Mundet i Riera, Relative Hithin-Kobayashi orrespondenesfor prinipal pairs, Quart. J. Math. 54 (2003), 171�208.[11℄ M. Burger and A. Iozzi, Bounded Kähler lass rigidity of ations on Hermitian symmetri spaes,Ann. Si. Éole Norm. Sup. (4) 37 (2004), no. 1, 77�103.[12℄ , Bounded di�erential forms, generalized Milnor-Wood inequality and an appliation to defor-mation rigidity, Geom. Dediata 125 (2007), 1�23.[13℄ M. Burger, A. Iozzi, F. Labourie, and A. Wienhard, Maximal representations of surfae groups:sympleti Anosov strutures, Pure Appl. Math. Q. 1 (2005), no. 3, 543�590.[14℄ M. Burger, A. Iozzi, and A. Wienhard, Surfae group representations with maximal Toledo invariant,C. R. Math. Aad. Si. Paris 336 (2003), no. 5, 387�390.[15℄ , Surfae group representations with maximal Toledo invariant, 2006,arXiv:math.DG/0605656v2.[16℄ , Hermitian symmetri spaes and Kähler rigidity, Transform. Groups 12 (2007), no. 1, 5�32.[17℄ K. Corlette, Flat G-bundles with anonial metris, J. Di�erential Geom. 28 (1988), 361�382.[18℄ A. Domi and D. Toledo, The Gromov norm of the Kaehler lass of symmetri domains, Math. Ann.276 (1987), 425�432.[19℄ S. K. Donaldson, Twisted harmoni maps and the self-duality equations, Pro. London Math. So. (3)55 (1987), 127�131.[20℄ S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematial Mono-graphs, The Clarendon Press Oxford University Press, New York, 1990.[21℄ V. V. Fok and A. B. Gonharov,Moduli spaes of loal systems and higher Teihmuller theory, Publ.Math. Inst. Hautes Études Si. 103 (2006), 1�211.[22℄ T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1�8.[23℄ O. Garía-Prada, P. B. Gothen, and V. Muñoz, Betti numbers of the moduli spae of rank 3 paraboliHiggs bundles, Mem. Amer. Math. So. 187 (2007), no. 879, viii+80.[24℄ O. Garía-Prada and I. Mundet i Riera, Representations of the fundamental group of a losed orientedsurfae in Sp(4, R), Topology 43 (2004), 831�855.[25℄ W. M. Goldman, Disontinuous groups and the Euler lass, Ph.D. thesis, University of California,Berkeley, 1980.[26℄ , The sympleti nature of fundamental groups of surfaes, Adv. Math. 54 (1984), No. 2,200�225.[27℄ , Representations of fundamental groups of surfaes, Springer LNM 1167, 1985, pp. 95�117.



REPRESENTATIONS OF SURFACE GROUPS 85[28℄ , Topologial omponents of spaes of representations, Invent. Math. 93 (1988), 557�607.[29℄ P. B. Gothen, Components of spaes of representations and stable triples, Topology 40 (2001), 823�850.[30℄ S. Helgason, Di�erential geometry, Lie groups, and symmetri spaes, Mathematis, vol. 80, AademiPress, San Diego, 1998.[31℄ N. J. Hithin, The self-duality equations on a Riemann surfae, Pro. London Math. So. (3) 55(1987), 59�126.[32℄ , Lie groups and Teihmüller spae, Topology 31 (1992), 449�473.[33℄ D. Huybrehts, Fourier�Mukai transforms in algebrai geometry, Oxford University Press, 2006.[34℄ S. Kobayashi, Di�erential Geometry of Complex Vetor Bundles, Prineton University Press, 1987.[35℄ F. Labourie, Cross ratios, Anosov representations and the energy funtional on Teihmüller spae,Ann. Si. Éole Norm. Sup. (4), to appear.[36℄ , Anosov �ows, surfae groups and urves in projetive spae, Invent. Math. 165 (2006), no. 1,51�114.[37℄ J. W. Milnor, On the existene of a onnetion with urvature zero, Commm. Math. Helv. 32 (1958),215�223.[38℄ I. Mundet i Riera, A Hithin�Kobayashi orrespondene for Kähler �brations, J. Reine Angew. Math.528 (2000), 41�80.[39℄ M. S. Narasimhan and C. S. Seshadri, Stable and unitary vetor bundles on a ompat Riemannsurfae, Ann. of Math.(2) 82 (1965), 540�567.[40℄ A. G. Oliveira, Representations of surfae groups in the projetive general linear group, preprint(2008).[41℄ A. Ramanathan, Stable prinipal bundles on a ompat Riemann surfae, Math. Ann. 213 (1975),129�152.[42℄ , Moduli for prinipal bundles over algebrai urves: I and II, Pro. Indian Aad. Si. Math.Si. 106 (1996), 301�328 and 421�449.[43℄ R.W. Rihardson, Conjugay lasses of n-tuples in Lie algebras and algebrai groups, Duke Math. J.57 (1988) 1�35.[44℄ A. H. W. Shmitt, Moduli for deorated tuples for sheaves and representation spaes for quivers, Pro.Indian Aad. Si. Math. Si. 115 (2005), 15�49.[45℄ , Geometri invariant theory and deorated prinipal bundles, Zürih Letures in AdvanedMathematis, European Mathematial Soiety, 2008.[46℄ J. P. Serre, Complex Semisimple Lie Algebras, Springer�Verlag, 1987.[47℄ C. T. Simpson, Construting variations of Hodge struture using Yang-Mills theory and appliationsto uniformization, J. Amer. Math. So. 1 (1988), 867�918.[48℄ , Higgs bundles and loal systems, Inst. Hautes Études Si. Publ. Math. 75 (1992), 5�95.[49℄ , Moduli of representations of the fundamental group of a smooth projetive variety I, Publ.Math., Inst. Hautes Étud. Si. 79 (1994), 47�129.[50℄ , Moduli of representations of the fundamental group of a smooth projetive variety II, Publ.Math., Inst. Hautes Étud. Si. 80 (1995), 5�79.[51℄ R. Sjamaar, Holomorphi slies, sympleti redution and multipliities of representations, Ann. ofMath. (2) 141 (1995), 87�129.[52℄ D. Toledo, Representations of surfae groups in omplex hyperboli spae, J. Di�erential Geom. 29(1989), 125�133.[53℄ V. G. Turaev, A oyle of the sympleti �rst Chern lass and the Maslov index, Funt. Anal. Appl.18 (1984), 35�39.[54℄ A. Wienhard, The ation of the mapping lass group on maximal representations, Geom. Dediata120 (2006), 179�191.[55℄ J. W. Wood, Bundles with totally disonneted struture group, Comment. Math. Helv. 46 (1971),257�273.



86 O. GARCÍA-PRADA, P. B. GOTHEN, AND I. MUNDET I RIERADepartamento de Matemátias, CSIC, Serrano 121, 28006 Madrid, SpainE-mail address : osar.garia-prada�uam.esDepartamento de Matemátia Pura, Fauldade de Ciênias, Universidade do Porto, Ruado Campo Alegre, 4169-007 Porto, PortugalE-mail address : pbgothen�f.up.ptDepartament d'Àlgebra i Geometria, Faultat de Matemàtiques, Universitat de Barelona,Gran Via de les Corts Catalanes 585, 08007 Barelona, SpainE-mail address : mundet�mat.ub.es


