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Abstract

This paper analyzes the theory of Global Neural Workspace Theory
(GNW), by Stanislas Dehaene and Jean Pierre Changeux, developed from the
theory of Global Workspace Theory (GWT), proposed by Bernard Baars in
the 1980s. GNW is a cognitive model of consciousness that seeks to explain
how the brain integrates, selects, and disseminates information among dif-
ferent modules or specialized systems, such as vision, hearing, memory,
language, etc. Next, several proposals for mathematical and computational
modeling are made, using various neural network architectures used in
”Deep Learning.”.
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1 Introduction

The Global Neuronal Workspace (Global Neuronal Workspace, GNW) model
has been one of the most influential theories in cognitive neuroscience for
explaining the mechanisms underlying human consciousness. Initially pro-
posed by Dehaene, Changeux, and Naccache ([Dehaene & Changeux 2006],
[Dehaene & Changeux 1998]), GNW suggests that consciousness emerges from
the integration and dissemination of information across a global network of
neurons, which acts as a ”workspace” for processing and sharing informa-
tion between different brain regions. This model offers a robust framework for
understanding how the brain selects, amplifies, and maintains relevant infor-
mation, enabling conscious experience.

In this work, we explore an innovative approach to integrate the GNW model
with Hopfield networks, a type of recurrent neural network known for its abil-
ity to store and retrieve patterns stably. Hopfield networks, with their attractor-
based dynamics, offer an interesting perspective for modeling the stability and
resilience of the global workspace proposed by GNW. By combining these two
concepts, we seek to investigate how attractor dynamics can contribute to the
integration and maintenance of information in the global workspace, providing
a deeper understanding of the neural mechanisms of consciousness.

The purpose of this work is, therefore, to present a hybrid model that inte-
grates GNW with Hopfield networks, exploring how attractor dynamics can be
applied to simulate conscious cognitive processes. Through simulations and
theoretical analyses, we hope to contribute to advancing our understanding of
consciousness by offering a new perspective on how the brain implements the
global workspace and how the dynamic stability of neural networks can play a
crucial role in this process.

It is worth mentioning that the GNW model had a precursor – the Global
Workspace Theory (GWT), proposed by Bernard Baars in the 80s of the last
century ([Baars 1997], [Baars 1988]). This is a cognitive model of conscious-
ness that seeks to explain how the brain integrates, selects, and disseminates
information among different modules or specialized systems, such as vision,
hearing, memory, language, etc. It is worth briefly describing what it consists
of.

The GWT presents consciousness as a ”mental theater,” where various sources
of unconscious processing compete to ”access the center stage,” making certain
information globally accessible to the cognitive system. The GWT argues that
consciousness arises from the distribution and coordination of information
across a global space accessible to multiple brain systems. 1 The key con-

1Mind and Consciousness (title). The mind is the set of mental processes and thoughts.
It is often associated with cognitive processes, such as reasoning, memory, imagination, and
decision-making. Consciousness is the capacity to have subjective experiences, to feel emo-
tions, perceptions, and self-awareness. It involves the ability to be aware of the external world
and our own internal world (mental processes and thoughts).
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cept is this: when information is amplified and disseminated throughout the
brain network (through a neuronal ”ignition”), it triggers the synchronization
of various processes (attention, memory, planning) into a common workspace.
Thus, consciousness is the result of a global selection and diffusion of activity
that makes information accessible to multiple cognitive functions. It’s a sort of
virtual ”switchboard” in which information, after being amplified by attention,
becomes widely available to all brain modulesmemory, language, planning, etc.

Most brain processing is unconscious. Consciousness emerges when cer-
tain content becomes predominant and ”earns the right” to be widely dissem-
inated. The critical aspect of consciousness is global availability, not so much
the content itself, but the fact that it can be accessed, used, and manipulated
by multiple specialized systems.

2 Baars’s Theater of Consciousness Metaphor

Bernard Baars ([Baars 1997], [Baars 1988]) uses the analogy of a theater to
explain how consciousness works. Just like in a theater, the mind has:

Figure 1: Metaphor from Bernard Baars’s Theater of Consciousness.

The Stage, which represents working memory – the space where you unfold
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the thoughts, images, and sensations of which you are conscious at any given
moment. It is a limited space, just like a theater stage, which can only accom-
modate a restricted number of actors and props; our consciousness can only
hold a small number of items simultaneously. Events on stage are dynamic
and changing: actors enter and exit the scene, lights change, and the scenery
transforms, reflecting the fluid and transient nature of consciousness.

The Actors (Mental Contents) are the thoughts, sensations, images, memo-
ries, and other forms of information that compete for access to the stage (con-
sciousness). Only a few ”actors” can be on stage at the same time, reflecting
the limited capacity of conscious attention. The quality and intensity of their
performance (level of neuronal excitation, salience, relevance) determine their
likelihood of being selected to occupy center stage.

The Attentional Spotlight (Selective Focus) represents the mechanism of se-
lective attention, which illuminates certain actors (mental contents) on stage,
making them the focus of our consciousness. Attention is selectively directed
to certain aspects of the experience (a speaker’s voice, a captivating image,
a persistent thought), while others remain in the shadows. Metaphorically,
attention functions as a filter through which only certain content passes.

The Audience (Unconscious Processors) represents the wide range of un-
conscious mental processes that operate in parallel, processing information,
generating emotions, controlling the body, etc. The ”audience” is not directly
aware of what is happening onstage, but receives the information that is dif-
fused from there.

The Backstage Crew (Unconscious Context) refers to the unconscious pro-
cesses that shape the conscious experience (like stage setup). Expectations,
beliefs, memories, and other background information influence the way we
perceive and interpret what is happening onstage (consciousness). They act as
”commands” that select the direction of the performance stage.

Finally, the Director (Executive Functions), which represents the executive
control systems located in the frontal cortex that oversee and coordinate activ-
ities on stage. The director makes decisions about which actors should appear
onstage, which props should be used, and how the story should be told, re-
flecting the role of executive functions in regulating and organizing conscious
thought. In summary, the functions of Baars’s Theater Metaphor are:

• Explain the limits of conscious capacity: Just as a stage can only accom-
modate a limited number of actors, our consciousness can only process
a limited amount of information at any given moment.

• Illustrating the importance of the unconscious: Most mental activity
occurs outside our awareness, as do the actors behind the scenes and the
technical crew who make the show possible.

• Giving sense to the free flow of consciousness: The actors enter and
leave the stage, the lights go on and off, the scenery changes, reflecting
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the dynamic and fluid nature of our thoughts and sensations.

• Facilitating understanding of the functions of consciousness: The
metaphor of theater helps to understand how consciousness allows us
to integrate information, plan actions, solve problems, and interact with
the world flexibly.

Baars’s metaphor has, however, been widely criticized. Some have criti-
cized it for implying the existence of an internal observer (a ”homunculus”)
that watches the spectacle of consciousness. To this, Baars responded that
the ”audience” in theater is not a conscious homunculus, but rather the vast
array of unconscious processors in the brain, each acting according to its own
competence.

Baars also argues that consciousness is not a physical location in the brain,
but rather a process of information dissemination.

In short: Baars’s Theater of Consciousness metaphor offers an intuitive
and powerful way to understand how consciousness emerges from the inter-
action between conscious and unconscious mental processes. By highlighting
the importance of attention, integration, and the dissemination of information,
this metaphor provides a rich framework for investigating the neural mecha-
nisms underlying conscious experience.

3 The Global Neural Workspace (GNW)

Stanislas Dehaene and Jean-Pierre Changeux (see [Dehaene & Changeux 2006],
[Dehaene & Changeux 1998], when developing the Global Neural Workspace
(GNW) model, took Bernard Baars’s Theater of Consciousness metaphor and
”neuronalized” it, adding biological specificity, experimental testability, and
computational rigor. The main changes and improvements were as follows:

The replacement of the ”mental theater” with a neural architecture. Al-
though Baars sees his metaphor as a cognitive architecture, with actors and
spotlights representing functional processes, he does not define where this
theater is located in the brain or how it is physically implemented.

Dehaene and Changeux locate the ”global work” in a specific neural network
involving areas of the prefrontal and parietal cortex. and cingulate2, long-range
connections over long distances, pyramidal neurons, etc.

The GNW model identifies a true ”neuronal work” – a distributed network,
composed primarily of areas of the prefrontal, parietal, and cingulate cortex,
connected by long-range axons. These ”workn̈eurons receive signals from var-
ious sensory areas and can amplify and globally process the selected content.

2refers to the ”cingulate gyrus”, a part of the brain involved in processing emotions, memory,
and aggression control.
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Replacing the ”attentional spotlight” with mechanisms of neuronal ignition.
For Baars, the spotlight is an abstract concept of selection and amplification.
Dehaene Changeux propose specific neuronal mechanisms for this amplifica-
tion.

The GNW introduces the concept of neuronal ignition – when a stimulus
reaches a certain threshold (by strength, novelty, attention), abruptly activates
a pattern of sustained, large-scale activity (seen in EEG3, MEG4, fMRI5). Only
content that triggers this sudden ignition becomes conscious; others remain
subliminal or unconscious. The ”ignition” is a sudden wave of synchronized
activity that spreads throughout the workspace, sustained by neurons with
long-range axons and specialized synapses. Feedback (reentry) between the
cortical areas and the thalamus reinforces these signals, keeping the informa-
tion active in working memory.

Integrated activity instead of ”actors” and ”audience”! For Baars, the ”ac-
tors” were pieces of information, and the audience the receivers of that infor-
mation. For Dehaene Changeux, this distinction is replaced by a more complex
system of interactions. distributed among neurons that form complex circuits.

Incorporating executive functions into feedback. The metaphor has a direc-
tor, but it doesn’t quite explain how this figure manages everything. Dehaene
Changeux use the recurrent cycle, mediated by the thalamus, to explain how
the networks of consciousness interact.

Replacing subjective reporting with objective measurements. The events
of Baars’ theater are highly dependent on what a person or observer sees.
For Dehaene Changeux, the model allows for the identification of events that
could relate to the experience in neurobiological terms, making the existence
of subjective reporting unnecessary and testing the theory.

Let’s delve into more detail into the main concepts that characterize the
functioning of Dehaene Changeux’s GNW

• Consciousness as global amplification (broadcast). Consciousness emerges
when information processed locally (in sensory, perceptual, etc.) zones
is ”amplified” and distributed throughout the brain network, becoming
available to multiple systems (attention, memory, planning).

• Ignition (Ignition). There is a critical moment (”ignition”) when certain
3An electroencephalogram is a test that records the brain’s electrical activity using elec-

trodes placed on the scalp. It is a non-invasive and painless test primarily used to diagnose
and monitor neurological conditions such as epilepsy, sleep disorders, and brain injuries.

4Magnetoencephalography is a functional neuroimaging technique for mapping brain ac-
tivity by recording magnetic fields produced by naturally occurring electrical currents in the
brain, using highly sensitive magnetometers.

5functional Magnetic Resonance Imaging – Functional magnetic resonance imaging is a non-
invasive brain imaging technique that measures brain activity through by detecting changes
in blood flow. It works by identifying the areas of the brain that are most active during a
specific task or at rest, based on the principle that active brain regions require more oxygen
and, therefore, have increased blood flow.

Página 7



J N Tavares Global Neural Workspace

patterns of neuronal activity expand rapidly and globally, for example, via
gamma synchrony6, correlating with conscious experience.

• Objective Experiences. Using techniques such as fMRI, EEG, magne-
toencephalography, and paradigms such as the ”visual mask,” Dehaene
identifies brain markers of consciousness, such as sustained activation
of the parietal-frontal cortex. He advocates an empiricist stance – con-
scious states can (and should) be investigated by objective methods, with-
out falling into metaphysical speculations.

• Meaning and Limits of Consciousness. Dehaene distinguishes strongly
between unconscious (extensive and efficient) and conscious (limited, se-
quential, but flexible) processing.

For Dehaene, the ”Global Workspace” (GNW), consciousness allows access,
coordination, and manipulation, functioning as a high-level RAM. Conscious-
ness is a neurocomputational phenomenon, emerging from the selection and
diffusion of information in complex brain networks, capable of being experi-
mentally tested in the laboratory.

The GNW model is compatible with processes of attention, working memory,
and conscious recognition. Sustained activation of regions of the frontopari-
etal cortex is a strong neuronal marker of these states of consciousness. Each
module works in parallel, unconsciously. The ”Global Workspace” is a means
of integrating and circulating information between modules. Becoming ”con-
scious” means being amplified into this common space. Furthermore, GNW
explains many phenomena such as blocks of consciousness, attention, multi-
tasking, amnesia, etc.

Dehaene and Changeux developed network models (simulated neural net-
works) that reproduce experimental phenomena: conscious access, blocking,
masking, ”all-or-none” neural access, etc. GNW predicts clear experimental
signatures: sustained fronto-parietal activation, gamma synchrony, bursts,
delays in conscious reports. It has inspired many paradigms of neuroscience
and experimental psychology tested in the laboratory with patients, anesthesia
studies, sleep studies, etc.

6Gamma synchrony refers to brain activity in the gamma frequency range, typically be-
tween 25 and 100 Hz, although most frequently observed around 40 Hz. This brain activity
is associated with highly active mental states, such as learning, short-term memory, complex
problem-solving, and expanded consciousness. When gamma synchrony increases, with many
neurons firing simultaneously, the amplitude (intensity) of the signal also tends to increase. In
simpler terms, gamma synchrony is a pattern of brain activity that occurs when many areas of
the brain are working together in a coordinated manner, at high speed. This is linked to com-
plex mental processes and heightened states of consciousness. In summary: (i). Frequency:
25-100 Hz, with a focus around 40 Hz. (ii). Associations: Learning, memory, problem-solving,
expanded consciousness. (iii). Synchrony: Increased coordinated activity between different
brain areas. (iv). Amplitude: Gamma synchrony tends to increase the amplitude (intensity) of
the brain signal.
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In summary: The original theory (GWT, Baars) paved the way for viewing
consciousness as a phenomenon of global content integration and diffusion.
GNW made this model scientific, computationally simulable, and testable by
identifying the actual circuitry, dynamics, and neurophysiological predictions
of the ”global workspace” in the human brain.

4 From GWT to GNW. Formal aspects

Figure 2: Global Neuronal Workspace. Original diagram from Dehaene
et al. (1998).

Legend Fig. 2. Global Neuronal Workspace (GNW). Original diagram from
Dehaene et al. (1998) illustrating the principles main aspects of the GNW hy-
pothesis: local and specialized cortical processors are linked, at the central
level, by a central set of highly interconnected areas containing a high density
of large pyramidal neurons with long-distance axons. At any time, this archi-
tecture can select information within one or several processors, amplify it, and
transmit it to all other processors, thus making it consciously accessible and
available for verbal reporting. Recent studies tracking global cortical connec-
tivity of feedforward and feedback confirm a bowtie architecture with a central
core composed primarily of parietal and prefrontal areas, forming a structural
bottleneck capable of routing information between other cortical processors.
■
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The Central Hypothesis of GNW is that consciousness arises when local
information (processed by specific sensory areas) is ”amplified” and rapidly
diffuses into an extensive frontoparietal network of long-range neurons – the
”global neuronal workspace”. On the other hand, consciousness is different
from unconscious processing – much information is processed unconsciously
at local levels. Only when you access the global workspace does it become
conscious and available for thinking, planning, or reporting.

The GNW structure consists of a network of highly connected frontal and
parietal neurons (with long, branched axons). Its dynamics involve conscious
ignition (”all-or-none”) – a content reaches consciousness when it induces a
”neuronal ignition” – a burst of sustained activity across a vast network, visible
in EEG, MEG, fMRI, as gamma oscillations, sustained activation, positive delays
in ERP (P3), etc. This access is abrupt: stimuli just above threshold elicit a
global response, others remain subthreshold.

The GNW model confirms several predictions: conscious access occurs dis-
continuously, not progressively. Workspace allows content access to multiple
functionsmemory, language, planning, etc. The global space allows that, al-
though many processes are ”concurrent”, only one (or a few) can access con-
sciousness, avoiding overload.

The Global Neuronal Workspace (GNW) is a computational model of how
consciousness can emerge in the brain. Instead of thinking of the brain as
a collection of separate zones, this model imagines it as a network of inter-
connected neurons, where many areas process information locally and un-
consciously. However, only some information can be ”diffused” throughout the
network, becoming conscious. The GNW can be simulated on a computer using
neural networks of various architectures.

The model attempts to match real components of the brain that make con-
scious experience possible (”Neuronal Correlates of Consciousness”).

Higher brain functions (such as consciousness, decision-making, attention
control, etc.) are not performed by a single area, but by the joint work of many
parts, as in a swarm of bees or a school of fish (”swarm behavior”), where col-
lective emergent phenomena are observed. This expression (”swarm behavior”)
refers to the fact that in GNW, neurons work locally, but some activation pat-
terns can ”contagious” and involve the entire network (spreading like a ”spark”),
leading to emergent phenomena: conscious decisions or central control.
In short. GNW presents a robust and testable framework to explain the emer-
gence of consciousness from global brain dynamics. Evidence shows that con-
sciousness depends on a sudden integration (ignition) in a specific network,
allowing the diffusion and manipulation of content throughout the system –
and that the loss of this network corresponds to the loss of consciousness
itself.

The GNW is a model that uses neural networks (real or computer-simulated)
to explain how consciousness works. It shows that the brain, like a group of
ants or a swarm, only makes conscious information that can be shared and
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amplified by a vast network, thus creating a mathematical basis for phenomena
such as consciousness, decision-making, and central mental control.

5 GNW model with Hopfield networks.

In this work, we explore an innovative approach to integrate the GNW model
with Hopfield networks, a type of recurrent neural network known for its abil-
ity to store and retrieve patterns stably. Hopfield networks, with their attractor-
based dynamics, offer an interesting perspective for modeling the stability and
resilience of the global workspace proposed by GNW. By combining these two
concepts, we seek to investigate how attractor dynamics can contribute to the
integration and maintenance of information in the global workspace, providing
a deeper understanding of the neural mechanisms of consciousness.

The purpose of this work is, therefore, to present a hybrid model that inte-
grates GNW with Hopfield networks, exploring how attractor dynamics can be
applied to simulate conscious cognitive processes. Through simulations and
theoretical analyses, we hope to contribute to advancing our understanding of
consciousness by offering a new perspective on how the brain implements the
global workspace and how the dynamic stability of neural networks can play a
crucial role in this process.

The goal of a mathematical model for GNW is to create a system that cap-
tures:

1. The existence of specialized local modules ;

2. The ”global Workspace”, which integrates distributed signals;

3. Ignition dynamics (all-or-none transitions and critical thresholds);

4. The notion of broadcasting and global accessibility;

5. Synaptic plasticity, attention and learning phenomena.

The GNW model we will develop in this section uses binary Hopfield networks
([Hopfield 1982], [Hertz 1991]), which offer several advantages that make them
an appropriate choice for modeling both local modules (sensory) and Workspacein
the GNWmodel.

In fact, Hopfield networks are inherently associative memories. This means
they can recover a complete and correct pattern from an incomplete or noisy
version of it. This is extremely useful for modeling the brain’s ability to rec-
ognize objects or situations, even when sensory information is imperfect. Be-
cause of their ability to correct errors, Hopfield networks are robust to noise.
This is important in sensory modules, where the incoming information may be
noisy or ambiguous.
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They can be trained using Hebb’s rule ([Hebb 1949]), which is a form of
unsupervised learning. This means that the network can learn to recognize
patterns without the need for labeled data. This is useful in environments
where labeled data is scarce or nonexistent. The plasticity in weights, coupled
with the ability to store memories, ensures the stability of the system.

Recurrent connections in Hopfield networks allow neurons to interact with
each other, creating complex dynamics that can be used to model complex
cognitive processes.

Although simplified, Hopfield networks capture some important aspects of
neural computation, such as synaptic plasticity and recurrent dynamics. This
can make the model biologically more plausible.

Similarly, Workspace needs to integrate information from multiple sources
(sensory modules). Hopfield networks are capable of combining information
from different sources and generating a coherent global state. The Workspace
is responsible for decision-making. Hopfield networks can be used to model
decision-making, where the network’s attractors represent different options or
actions. The workspace needs to be flexible and adaptable to different tasks
and environments. Hopfield networks can be trained to learn new patterns and
adapt their behavior based on experience.

Although simple, Hopfield networks can be extended and combined with
other techniques to create more complex and powerful models. The structure
of Hopfield networks (neurons, connections, weights) is relatively easy to inter-
pret, which can help understand how the GNW model works and what cognitive
processes it simulates.

In summary, Hopfield networks offer a good balance between simplicity,
computational power, and biological plausibility, making them a suitable choice
for modeling both the local modules and the Workspace in the GNW model we
will develop next. They provide a solid foundation for exploring important con-
cepts such as associative memory, information integration, decision-making,
and consciousness.

Let us now move on to the mathematical model announced above. Its goal is
to model consciousness as an emergent phenomenon of distributed interaction.

From now on, this model will be referred to as the GNWmodel. It is based
on the architecture

GNW =
M⋃

m=1

Mm ∪W (1)

In this architecture, the local modules Mm are implemented as binary
Hopfield networks 7, which represent specialized brain areas. The Workspace
W, also implemented as a Hopfield network, integrates information from local
modules, interconnected by activation and feedback signals. This architecture

7that is, each neuron can only take the values ??−1 or +1.
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combines the associative memory capacity of Hopfield networks with a global
integration mechanism represented by the Workspace.

This model will be refined in the following sections, increasing its complexity,
to more realistically reproduce conscious activity. The sensory inputs for the
Mm modules will be discussed in the 8 section.

We will detail the dynamic equations and how this structure influences the
system’s dynamics, including the concept of ”ignition” and the modulation of
attractors.

We will use a presentation style that facilitates computational modeling, ex-
posing the theory, translating it into pseudocode that can later be programmed,
for example, in Python.

Formal architecture, parameters, and dynamic variables. The basic GNW
model, which we propose, has the following formal architecture, parameters,
and dynamic variables.

Figure 3: GNW model. Connections of the neurons of each module to the
neurons of the Workspace, and their respective weights.

It has M local Hopfield modules {Mm}m=1,2,··· ,M, each with Nm neurons. Each
Hopfield module represents a specialized brain area, which is composed of
thousands or millions of neurons. Each module Mm has Pm memorized pat-
terns (memories). The Workspace W is also a Hopfield network, with NW neu-
rons.

The matrix (Nm ×Nm) of synaptic weights in the moduleMm is

J(m) = (J
(m)
ij )i,j=1,··· ,Nm
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(symmetric and with zero diagonal). They are defined by Hebb’s rule:

J
(m)
ij =

Pm∑
p=1

ξ
(m,p)
i · ξ(m,p)

j (2)

where {ξ(m,p)}p=1,··· ,Pm, are the Pm patterns memorized in the moduleMm.
The matrix (NW ×NW ) of synaptic weights in the Workspace is

JW = (JWuv )u,v=1,··· ,NW

(symmetric and with zero diagonal). They are also defined by Hebb’s rule:

JW
uv =

PW∑
q=1

ηqu · ηqv (3)

where {ηq}q=1,··· ,PW
are the patterns memorized in the Workspace.

The module connection matrix (NW ×M) for the workspace is C = (Cum); u =
1, · · · , NW , and m = 1, · · · ,M . The feedback matrix (Nm×NW ) from the workspace
to module m is F(m) = (F

(m)
iu ), i = 1, · · · , Nm, and u = 1, · · · , NW . The feedback

signals from the workspace serve as inputs for modules.
x(m) is the state vector of module m. The activation signals of the modules

serve as inputs for Workspace. y = yW is the Workspace state vector. Finally,
θ is the activation threshold for Workspace ignition, α is the strength of lat-
eral competition between modules, β is the strength of Workspace feedback to
modules, and σ(x) is the sigmoid function.

The states of the Hopfield modules x(m)(0), the Workspace Hopfield state
y(0), and the connection matrices C and feedback matrices F are randomly
initialized.

Dynamics and Propagation (matrix notation). The state of module m is up-
dated using the ”update” equation:

x(m)(t+∆t) = σ
(
J(m)x(m)(t) + β F(m)y(t) + ε(m)(t)

)
(4)

where σ is the activation function Signal (for binary networks) and, more gen-
erally, the function sigmoid, tanh, or others, for continuous networks, which we
do not address in this article. See, however, [Ramsauer 2021]).

To define Lateral Competition between Modules, we first calculate the av-
erage activation of each module m:

Am(t) =
1

Nm

Nm∑
i=1

x
(m)
i (t) (5)

Lateral competition is then defined by:

Lm(t) = Am(t)− α
∑
n̸=m

An(t) (6)
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that enters as ”input” of the modules to the Workspace:

I(t) = C · L(t); that is Iu(t) =
M∑

m=1

CumLm(t) (7)

Updating the Workspace state is done through the ”update” equation:

y(t+∆t) = σ(JWy(t) + I(t)) (8)

Workspace Ignition. Now let’s mathematically formalize the Workspace Ig-
nition (the critical moment of Workspace activation). First, we calculate their
average activation:

aW (t) =
1

NW

NW∑
u=1

yu(t) (9)

Later, we apply an activation threshold for ignition:

Ignição(t) =

{
1 if aW (t) > θ

0 otherwise
(10)

6 Explanatory Notes.

1. Storing ”conscious patterns” in the weights structure. In the architec-
ture proposed above, the weights internal to Workspace (matrix JW ) are crucial.
They determine which conscious patterns Workspace can store and recognize.
By disregarding these weights, Workspace becomes a simple sum of the mod-
ules’ activations, losing the capacity for associative memory and modeling of
complex patterns.

To define JW , Hebb’s rule is used, as in local modules, with specific patterns
that represent stored memories induced by sensory inputs (section 8).

Patterns capable of accessing the Workspace (i.e., becoming conscious) are
encoded in the memories of the Workspace Hopfield network, becoming avail-
able for global propagation (”broadcast”). ”Conscious access” to the Workspace
can be seen as the activation of one of these ”global patterns.”

2. Lateral Competition Between Modules. Lateral competition is a mech-
anism in the GNW model that simulates competition between different brain ar-
eas (represented by Hopfield modulesMm) for access to the global WorkspaceṪhe
idea is that only a subset of brain areas can be ”conscious,” or have access to
the Workspace at a given time.

In the previous formulas (see (5) and (6)), lateral competition is implemented
by calculating the average activation of each module, Am(t), and subtracting a
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fraction (α) from the sum of all the activations of the other modules. This
means that if the sum of the activations of the other modules n (n ̸= m) is high,
the competition for module m will be lower (more negative), inhibiting its ability
to access Workspace; that is, modules with relatively high activation inhibit
modules with lower activation.

A high value for α means stronger competition, while a low value means
weaker competition.

In essence, this formulation implements a form of lateral inhibition, where
more active modules tend to suppress less active modules, simulating compe-
tition for cognitive resources.

3. Module Connections to the Workspace. In the model we implemented,
modules are indirectly linked to the Workspace through the inputs Iu(t) =∑M

m=1CumLm(t), defined in 7. The competition between modules influences the
amount of activation each module can ”send” to the Workspace.

aW(t+∆t) =
1

NW

N∑
u=1

Wyu(t+∆t) =
1

NW

N∑
u=1

Wσ

(
JW
uv yv(t) +

M∑
m=1

CumLm(t))

)

This means that the activation of each module, adjusted for lateral competition,
contributes to the total activation of Workspace.

Furthermore, in the model, there is feedback from Workspace to the mod-
ules, which is implemented in the Hopfield module update:

x(m)(t+∆t) = σ
(
J(m)x(m)(t) + β F(m)y(t) + ξ(m)(t)

)
Here, the term β F(m)y(t) represents the feedback from Workspace to the

module Mm. The parameter β controls the strength of this feedback. When
Workspace is active (aW high), it influences the local fields of the modules,
which, in turn, affect the activation of the modules in the next iteration.

4. Ignition and Feedback. In the proposed architecture, ignition can be seen
as the transition of Workspace to an active state that can trigger changes in
local modules, and, in particular, alter the memories (patterns) stored in the
Hopfield networks of these modules.

Indeed, workspace ignition is not limited to being a passive event; it triggers
a feedback signal that is sent to the local modules. This feedback modulates
the activity of the neurons in the modules, influencing their states and, con-
sequently, their ability to influence Workspace in future iterations.

More specifically, feedback from Workspace alters the local fields of neurons
in the local modules. The local field h

(m)
i of a neuron i in module m is the

weighted sum of the inputs it receives from other neurons in that module, and
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also from any external input or feedback:

h
(m)
i =

Nm∑
j=1

J
(m)
ij xj + β

NW∑
u=1

F
(m)
iu yWu

The feedback, therefore, adds an additional term to this local field, which could
cause the state of neuron i to change.

If the feedback strength (β) is high enough, module attractors can be signif-
icantly altered or even eliminated, allowing the network to explore different lo-
cal states (memories), which can be seen as a form of ”attention” or ”cognitive
reconfiguration”, where Workspace directs the activity of modules to explore
new areas of the Hopfield network’s state space.

The most interesting effect is how workspace feedback interacts with synap-
tic plasticity (the ability of connection weights to change over time. See the 7
section). By applying Hebb’s rule (2), feedback can cause connection weights
to adjust to stabilize or amplify the resulting state. In other words, feedback
can ”imprint” a new state in the network’s memory.

The incorporation of stochastic dynamics (which allows the exploration of
different states) with feedback from Workspace and synaptic plasticity allows
the system to learn and adapt to the environment in a flexible and robust man-
ner.

5. Ignition can be viewed as a nonlinear phase transition. A ”local pattern”
refers to a specific activation state, x(m) ∈ {−1,+1}Nm, of a sensory module,Mm,
of the GNWnetwork. This pattern can be triggered by a sensory stimulus (e.g.,
the presentation of an image, a sound, or a tactile sensation). If this sensory
stimulus is strong enough, the corresponding pattern in the sensory module
will become more relevant, competing with the activity of other modules to
access Workspace.

Lateral competition ensures that only the most relevant and informative pat-
terns can influence Workspace. This is represented by the average activation,
Am(t), of the moduleMm, and by the lateral competition Lm(t), defined, respec-
tively, by equations (5) and (6). A high value of Lm(t) indicates that module m is
”winning” the competition, as explained earlier.

The propagation of a local pattern to Workspacedepends on the strength of
the connections between the local module and Workspace, represented by the
connection matrix C = (Cum)u=1,··· ,NW ;m=1,··· ,M (see Figure 3).

If the weights Cum : u = 1, · · · , NW , corresponding to a given module m, are
high, then the activity of that module will have a greater impact on Workspace.
This is represented by the input to the workspace (see equation (7)):

Iu(t) =
M∑

m=1

CumLm(t)
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For a local pattern to be ”aware” or integrated into Workspace, it needs to
match a memory pattern ηq, already stored in Workspace. This match can
be measured by the ”distance” between the input to the workspace I(t) and the
Hopfield network attractors in the workspace. If the distance is small, the Hop-
field network in the workspace will converge to a nearby attractor, representing
the ”awareness” or integration of the pattern.

Workspace ignition is modeled as an abrupt (”all-or-none”) transition to an
attractor in the global state space. This occurs when the average workspace
activation aW exceeds a threshold θ:

If aW > θ, then the pattern becomes ”conscious.”

This behavior represents a nonlinear phase transition, where below the
threshold θ the pattern remains ”latent” (not conscious) and above the thresh-
old, it spreads throughout the network through long-range connectivity.

The critical temperature can be related to the difficulty with which this
transition occurs. Intuitively, lateral competition selects the most relevant in-
put pattern, the connection matrix amplifies this signal to the workspace, and
if this signal is strong enough, the work is ignited.

Conclusion. The GNW can be formalized as an extended Hopfield network,
with local modules, a work, and specialized connectivities. The activation of
the modules, influenced by lateral competition, contributes to the activation of
the work. ”Consciousness” emerges as the synchronized activation (”ignition”)
of a global pattern/attractor of the work – a phase transition in the state space.
The work sends feedback to the modules, influencing their local fields and,
consequently, their activations.

7 Plasticity in the GNWBase Model

In the context of the GNWbase model, from the 5 section, plasticity refers to the
ability of connections and model parameters to adapt and change over time in
response to experience or learning. In biological terms, synaptic plasticity is
the basis of learning and memory.

Incorporating plasticity is an important improvement to the GNWmodel,
which can make it more adaptive, robust, and capable of modeling complex
cognitive processes. Plasticity can be incorporated at several levels:

Synaptic Plasticity in Hopfield Modules. Adjust the weight matrices (J(m))
of Hopfield modules to memorize new patterns or strengthen existing ones.
Adjust the weight matrix (JW) of Workspace to learn new global patterns or
refine existing ones. Use Hebbian learning rules (e.g., Oja’s rule) to update the
weights based on neuron activity.
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Plasticity in Module-Workspace Connections. Adjust the connection ma-
trices (C and F) to optimize the flow of information between modules and Workspace.
Allow connections to strengthen or weaken based on the relevance of the infor-
mation.

Plasticity in Self-Attention Modules (if used). Adjust the parameters of the
self-attention modules to improve feature extraction and information weighting.
To be covered in a later article.

We will now describe how to incorporate synaptic plasticity into the base
GNW model, allowing the network to learn and adapt dynamically.

The parameters, dynamic variables, connectivities, and initialization are the
same as those in the base model in the 5 section. Let’s move on to the dynamics
of the model with synaptic plasticity. For each t, we update the state of module
m:

x
(m)
i (t+∆t) = σ

(∑
j

J
(m)
ij (t)x

(m)
j (t) +

∑
u

F
(m)
iu (t)yu(t)

)
and we apply synaptic plasticity to update the weight matrix J(m)(t), using
Hebb’s rule:

J(m)(t+∆t) = J(m)(t) + η
(
x(m)(t+∆t)x(m)(t+∆t)⊤ − J(m)(t)

)
(11)

The Workspace state is updated similarly.

yu(t+∆t) = σ

(
JW
uv (t)yv(t) +

M∑
m=1

Cum(t)Lm(t)

)
(12)

We then apply synaptic plasticity to update the matrix of weights JW (t) using
Hebb’s rule:

JW (t+∆t) = JW (t) + η
(
y(t+∆t)y(t+∆t)⊤ − JW (t)

)
(13)

Here, η is the learning rate.
To apply plasticity to Module Connections⇄Workspace, we update the ma-

trices C and F using a rule based on the correlation between module and
Workspaceactivity:

Cum(t+∆t) = Cum(t) + ηw (yu(t+∆t) · Am(t)− Cum(t)) (14)

F
(m)
iu (t+∆t) = F

(m)
iu (t) + ηf

(
x
(m)
i (t+∆t) · yu(t)− F

(m)
iu (t)

)
(15)

where ηw and ηf are the learning rates for the connections. Lateral Competition
between Modules and Workspace Ignition are calculated as before.
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Important note. The reason for using y(t + ∆t) instead of y(t) in the right-
hand side of the Hebb update rule equation, equation (16), is to ensure that
the weight update is based on the resulting system activity after applying the
input and network dynamics. For the other plasticity updates, the argument
is the same.

Hebb’s basic rule states that ”neurons that fire together, they wire.” This
means that if two neurons i and j are active simultaneously, the strength of
the connection between them (Jij) should be increased. Synaptic plasticity
refers to the ability of synapses (connections between neurons) to change their
strength over time, in response to neuronal activity. This is fundamental for
learning and memory.

The update equations implement Hebb’s rule with synaptic plasticity. To be
more concrete, let’s take as an example:

∆JW (t) = η
(
y(t+∆t)y(t+∆t)⊤ − JW (t)

)
(16)

where ∆JW (t) is the change in the weight matrix JW at time t; y(t+∆t)y(t+∆t)⊤

is the correlation between the neurons at time t+dt, representing the resulting
network activity; JW (t) is the weight matrix at the current time t (subtracting
JW (t) implements a ”forgetting” or ”regularization” mechanism); η is the learn-
ing rate).

The main reason for using y(t+∆t) is to capture the activity caused by the
input and the network dynamics. Hebb’s rule adjusts the network’s memory
(JW (t)) so that it better remembers this new state (y(t+∆t)). If we used y(t), we
would be adjusting the network’s memory based on its previous state, which
would not be as effective for learning.

In this way, the network learns to associate the inputs with the states re-
sulting from the network dynamics. The ”forgetting” term helps stabilize the
network, and the equation models the adaptability of the connections over time.
In conclusion, the use of y(t + ∆t) in Hebb’s rule with synaptic plasticity en-
sures that weight updates are based on the resulting network activity, leading
to more effective and stable learning.

8 Sensory Inputs and Feedforward Networks in the
GNW Model with Hopfield Networks

The local Hopfield modules, Mm, are sensory: one for vision, one for hearing,
one for touch, etc. For these modules, in the GNWmodel, to work effectively with
sensory inputs (images, sounds, sensations, etc.), adequate preprocessing is
required to extract relevant features from these inputs and encode them in a
format compatible with Hopfield networks.

In fact, Hopfield modules alone are not designed to handle raw sensory data
directly. They work best with binary representations, (−1 and +1), that encode
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specific patterns or features. Therefore, it is crucial to have (multilayer) feed-
forward networks, or other preprocessing mechanisms that extract meaningful
features from sensory inputs and transform them into suitable representations
for Hopfield networks.

It is also convenient to use convolutional networks (CNNs) and generative
networks (GANs and VAEs) in the preprocessing of sensory inputs. CNNs are
especially effective in extracting features from data such as images or sounds.
They use convolutional filters (whose weights are calculated by progressive
learning), which detect local and hierarchical patterns. If the inputs are visual
(e.g., images), CNNs can be used to identify edges, textures, objects, and other
relevant visual features. For auditory inputs (e.g., sounds), CNNs can learn to
extract spectral features, such as frequencies and time-frequency patterns.

Generative networks, such as GANs or VAEs (”Variational Autoencoders”),
can learn latent representations of sensory inputs. These ”latent representa-
tions” capture the essential features of the data in a lower-dimensional space.

Generative networks can be used to generate new examples of data that are
similar to the original inputs. This can be useful for augmenting the training
dataset or exploring different variations of the inputs. Generative networks
can be used to simulate ”imagination”, generating internal representations of
possible sensory inputs that the model has not yet experienced.

It is easy to extend the base GNWmodel, from the 5 section, by incorporating
feedforward networks (multilayer), with convolutional layers, and even gener-
ative networks in the local Hopfield modules of the GNWmodel (Global Neuronal
Workspace), allowing the model to process and interpret sensory data in a more
advanced way.

The subsequent steps (updating the Hopfield Modules, Lateral Competition,
Workspace, and Feedback) follow the same dynamics described in the previous
sections, with the Hopfield modules receiving the inputs processed by CNNs and
generative networks. CNNs and generative networks can be trained separately
(pre-training) or together with Hopfield networks, using labeled or unlabeled
training data.

Página 21



J N Tavares Global Neural Workspace

9 Role of Reinforcement Learning (RL) in the GNWModel

Figure 4: Reinforcement Learning

In the base GNWmodel, from the 5 section, Reinforcement Learning (RL) [Sutton 2018]
acts as a mechanism to optimize system behavior in a given environment or
task. Instead of manually fixing the model’s connections and parameters, the
RL agent is allowed to learn to adjust them to maximize total reward.

The Reinforcement Learning Components in the GNW Model are as follows:
Agent. The agent is an algorithm that interacts with the environment (the

GNW model) and learns to make decisions to maximize reward. In this case,
the agent can be a neural network (e.g., a deep Q-learning model) that receives
the state of the environment (the GNW state) as input and produces an action
as output. The agent’s goal is to learn a policy (a function that associates an
action with each state) that maximizes the expected reward over time.

Environment (World). The environment is the GNW model itself: GNW =
∪Mm=1Mm∪W. It consists of the local Hopfield modules, the Workspace Hopfield,
and the connections between them. The environment receives actions from the
agent and evolves according to the dynamic equations of the GNWmodel.

World States. The world state is a representation of the current state of the
environment. In the GNWmodel, the state of the world can be defined as the
combination of the states of the M local Hopfield and Workspace Hopfield mod-
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ules:
s(t) =

(
x(1)(t),x(2)(t), · · · ,x(M)(t),yW (t)

)
(17)

This state can be represented as a concatenated vector of the states of all nodes
(neurons) in the Hopfield networks.

Actions Available to the Agent. Actions are the decisions the agent can take
to influence the environment. In the GNWmodel, actions can include: (i). Ad-
justing the Strength of Lateral Competition (α). The agent can increase or
decrease the strength of lateral competition between modules; (ii). Modifying
Connections Modules⇄Workspace (C,F). The agent can adjust the connec-
tion matrices that control the flow of information between local modules and
Workspace; (iii). Controlling the Activation Threshold (θ). The agent can ad-
just the activation threshold that determines when Workspace”ignites,” when
a given piece of information becomes conscious.

Actions can be discrete (e.g., increase, decrease, maintain) or continuous
(e.g., a numerical value between 0 and 1).

Rewards. The immediate reward is a signal, r(s, a), that evaluates the qual-
ity of the world transition when, in state s, it receives an action a from the
agent. The reward is defined based on the goal we intend the GNW model to
achieve. Examples of rewards in the GNWmodel are: (i). Workspace Activa-
tion. Positive reward if Workspace is active (e.g., average activation exceeds a
certain threshold); (ii). Pattern Recognition. Positive reward if the model rec-
ognizes a specific pattern (e.g., a pattern memorized in one of the modules or
in Workspace); (iii). Classification. Positive reward if the model correctly clas-
sifies an input; (iv). Stability. Negative reward if the system becomes unstable
(e.g., the module states oscillate too rapidly).

By using RL, the GNW model can learn to: (i). Allocating Cognitive Re-
sources. Adjust lateral competition to prioritize relevant modules and sup-
press irrelevant modules; (ii). Integrating Information. Adjust the Modules⇄Workspace
connections, to optimize information flow and integration in Workspace; (iii).
Controlling Awareness. Adjust the activation threshold to control when Workspace
becomes aware of a given information; (iv). Adapting to Dynamic Environ-
ments. Adjust your parameters in real-time to adapt to changes in the envi-
ronment or task.

We will now describe pseudocode for a Q-Learning episode, applied to the
base GNWmodel, to optimize a policy.

In addition to those already defined in the ?? section, we have the following
new additional hyperparameters: ϵ = exploration probability (exploration rate)
and Nepisodes = number of training episodes. We also have the function Q, defined
on the set {states}×{actions}, whose value Q(s, a) estimates the expected reward
for performing action a in state s.
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After randomly initializing the parameters and dynamic variables: x(m)(0),yW (0), J(m), JW(0),C(0),F(m)(0),
we randomly initialize the function Q(s, a), for all possible states and actions.

The Training Loop (Q-Learning) is as follows. For each episode e from 1 to
Nepisodes:

• ”Reset” the environment (module states and Workspace)
• Initialize the environment state s(0).
• For each time step t, from 1 to T :

with probability ϵ, select a random action a(t) (farm);
with probability 1− ϵ, select the action that maximizes the function Q:
a(t) = argmaxaQ(s(t), a)

GNWDynamics:
• Adjusting the strength of lateral competition α based on the action a(t).
• Updating Hopfield Modules. For each module m:

x(m)(t+∆t) = σ
(
J(m)x(m)(t) + β F(m)y(t) + ξ(m)(t)

)
(18)

• Entry to Workspace:

Iu(t) =
∑
m

Cum

[
Am(t)− α

∑
n ̸=m

An(t)
]

(19)

• Workspace Update:

y(t+∆t) = σ(JWy(t) + I(t)) (20)

• Workspace Ignition:

Ignition(t) =

{
1 if aW (t) > θ

0 otherwise
(21)

where aW (t) = 1
NW

∑NW

u=1 y
W
u (t) is the average workspace activation.

Reward and Next Status:
• Calculate the reward r(t) based on the Workspace state (e.g., average

activation).
• Observe the next state s(t+∆t), based on x(m)(t+∆t) and y(t+∆t).

Update QFunction:
• Update the Qfunction using the Bellman equation:

Q(s(t), a(t))← Q(s(t), a(t)) + η
[
r(t) + γmax

a
Q(s(t+ dt), a)−Q(s(t), a(t))

]
(22)

where η is the learning rate.
• Output: Optimized Q function Q(s, a).

In summary: For each episode, the environment is ”reset,” and for each time
step within the episode:
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• The agent selects an action using a ϵ-greedy policy.

• The GNW dynamics are updated using the model equations.

• The reward is calculated, and the next state is observed.

• The Q function is updated using the Bellman equation.

10 Conclusion

In this work, we present a hybrid model of the Global Neuronal Workspace
(GNW) that combines Hopfield networks with synaptic plasticity mechanisms
to simulate complex cognitive processes. The proposed model seeks to integrate
information from various brain areas (represented by local Hopfield modules)
into a global workspace (global Workspace), enabling conscious decision-
making and adaptation to different environments and tasks.

The simulations demonstrated that:

• The dynamics of the Hopfield network in local modules allows the recog-
nition of sensory patterns and the retrieval of associative memories.

• Synaptic plasticity, implemented through Hebb’s rule, allows the model
to learn and adapt to new inputs and tasks. Feedforward networks and
CNNs allow the preprocessing of complex sensory inputs, extracting fea-
tures relevant for recognition and classification. Generative networks
(VAEs) offer the ability to learn latent representations of data, allowing
the generation of new inputs (imagination) and a better understanding of
the data structure. Reinforcement Learning (RL) allows you to optimize
model behavior by adjusting parameters and connections to maximize re-
ward in specific tasks.

This model offers an interesting perspective on the architecture and dy-
namics of the GNW, suggesting that the combination of associative memory
mechanisms (Hopfield networks) with global integration processes and synap-
tic plasticity, hierarchical processing of sensory inputs (feedforward networks
and CNNs), latent representation and data generation (generative networks),
and behavior optimization through RL, may be fundamental for the emergence
of consciousness and other higher cognitive functions.

While this model captures some important aspects of the GNW, it also has
limitations. In particular, the simulation of natural language is still simpli-
fied and the model does not take into account the complexity of interactions
between different brain areas.

In future work, we intend to expand the model to include:

• More detailed modeling of natural language using natural language pro-
cessing techniques.
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• Integration of multimodal information (vision, audition, touch, etc.).

• Incorporation of more sophisticated control and attention mechanisms.

• Validation of the model with experimental data from neuroimaging and
cognitive psychology.

In conclusion, this hybrid GNW model represents an interesting step to-
ward a more complete understanding of the neural mechanisms of conscious-
ness and cognition. By combining different theoretical and computational ap-
proaches, we hope this work can inspire further research and lead to significant
advances in our understanding of the human brain.
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