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Abstract

We study an interacting particle system of a finite number of labelled particles on the integer
lattice, in which particles have intrinsic masses and left/right jump rates. If a particle is the
minimal-label particle at its site when it tries to jump left, the jump is executed. If not,
‘momentum’ is transferred to increase the rate of jumping left of the minimal-label particle.
Similarly for jumps to the right. The collision rule is ‘elastic’ in the sense that the net rate of
flow of mass is independent of the present configuration, in contrast to the exclusion process, for
example. We show that the particle masses and jump rates determine explicitly, via a concave
majorant of a simple ‘potential’ function associated to the masses and jump rates, a unique
partition of the system into maximal stable subsystems. The internal configuration of each
stable subsystem remains tight, while the location of each stable subsystem obeys a strong law
of large numbers with an explicit speed. We indicate connections to adjacent models, including
diffusions with rank-based coefficients.

Key words: Interacting particle system, elastic collisions, lattice Atlas model, asymptotic speeds,
partial stability, invariant measures, exclusion process.

AMS Subject Classification: 60K35 (Primary), 60J27, 60K25, 90B22 (Secondary).

1 Definitions and main results

We consider dynamics of an interacting system of N ordered particles performing continuous-time
nearest-neighbour random walks on the integer lattice Z with elastic collisions. Each particle
i ∈ {1, 2, . . . , N} (labelled left to right) is endowed with intrinsic jump rates ai, bi ∈ R+ := [0,∞)
and an intrinsic mass mi ∈ (0,∞).

The dynamics of the system are as follows. If the site occupied by particle i is occupied by
no other particle, then particle i jumps to the left with rate ai and to the right with rate bi,
independently of the other particles; hence particles perform independent continuous-time random
walks as long as they avoid each other. When two or more particles occupy the same site, only the
particle with the smallest label in the stack can jump left, and only the particle with the largest
label in the stack can jump right, and the rates are modified by what we call the elastic collision
rule. Specifically, if particles k, . . . , k+ ℓ (and no other) are at a given site then particle k jumps to
the left with ratem−1

k

∑k+ℓ
j=kmjaj , while particle k+ℓ jumps to the right with ratem−1

k+ℓ

∑k+ℓ
j=kmjbj .

Denote by Xi(t) ∈ Z the position of particle i at time t ∈ R+, with initial configuration
X1(0) ≤ X2(0) ≤ · · · ≤ XN (0); observe that the collision rule preserves the weak order X1(t) ≤
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rate a1

b1

a2 + a3

b2 + b3

a4 + a5 + a6

b4 + b5 + b6

Figure 1: Schematic for the N = 6 elastic particle system with identical masses mi ≡ m ∈ (0,∞) for all i.
Pictured is the configuration X1(t) = 0, X2(t) = X3(t) = 1, X4(t) = X5(t) = X6(t) = 4 and the transition
rates from this configuration are indicated on the arrows. In the case of multiple particles occupying the
same site, we imagine that particles are stacked in increasing order of index, and it is the bottom and top
particles that are allowed to move: the transition to the left would move the particle from the base of the
stack, while the transition to the right would move the particle from the top of the stack. To contrast the
elastic dynamics with exclusion dynamics, we refer to Figure 4 below; note that in the identical-mass setting,
the total activity rate of the elastic system is

∑
i(ai + bi) independently of the current configuration.

X2(t) ≤ · · · ≤ XN (t) for all t ∈ R+. We give a slightly more formal definition shortly, and refer to
Figure 1 for a schematic.

We use the word ‘elastic’ to describe the distinguishing property of this interacting-particle
system that the total momentum is independent of the present configuration, where momentum is
the (net) rate at which mass moves to the right (see Lemma 1.7 below and surrounding discussion).
This model is equivalent to one proposed in §6.2 of [36] as a lattice particle system possessing the
elastic collision property of the continuum Atlas model, in contrast to the classical simple exclusion
process which does not have the elastic property, since the exclusion dynamics suppresses movement
of particles in some configurations (see §2 for a description of the model of [36] and its equivalence
to the one here, and for background on the exclusion process and the Atlas model).

To give a physical motivation to the elastic collision rule, note that, first, if we interpret trans-
itions rates as speeds, when it does not share occupancy with any other particle, particle i has
‘momentum to the left’ miai and ‘momentum to the right’ mibi. On the other hand, if particle i
is part of a stack of multiple particles, the momentum generated by the stack to the left and right
is obtained by summing the individual momenta of the particles in the stack. For example, if
particles k, k+ 1, . . . , k+ ℓ are the occupants of a particular site, then the elastic collision rule im-
parts to particle k a ‘momentum to the left’ of mk ·m−1

k

∑k+ℓ
j=kmjaj =

∑k+ℓ
j=kmjaj , while particles

k+1, . . . , k+ℓ have ‘momentum to the left’ of zero. Similarly to the right. In this sense, ‘momentum’
is conserved.

We introduce some more notation and describe our main results. For n ∈ N := {1, 2, 3, . . .},
define [n] := {i ∈ Z : 1 ≤ i ≤ n}. The configuration space of the system of N ∈ N particles is
XN ⊂ ZN , given by

XN =
{
(xi)i∈[N ] ∈ ZN : x1 ≤ · · · ≤ xN

}
. (1.1)

We writeX(t) ∈ XN for the state at time t ∈ R+, with coordinatesX(t) = (Xi(t))i∈[N ]. We start the
system from a deterministic (but arbitrary) initial state X(0) ∈ XN . The process X := (X(t))t∈R+

is a continuous-time Markov chain on the countable state space XN , in whichXi(t) jumps toXi(t)−1
at rate Ai(X(t)) and Xi(t) jumps to Xi(t) + 1 at rate Bi(X(t)) where, for x = (xi)i∈[N ] ∈ XN ,

Ai(x) := 1{xi−1<xi}

N∑
j=i

mjaj
mi

1{xj=xi}, Bi(x) := 1{xi+1>xi}

i∑
j=1

mjbj
mi

1{xj=xi}, (1.2)

with conventions x0 = −∞ and xN+1 = +∞. Denote the intrinsic velocities of the particles

u := (ui)i∈[N ], where ui := bi − ai, for i ∈ [N ]. (1.3)
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We then define U0 := 0, M0 := 0, and, for k ∈ [N ],

Uk := −
k∑

i=1

miui, and Mk :=
k∑

i=1

mi. (1.4)

Also, for ℓ ∈ {0, 1, . . . , k} define

Uℓ,k := Uk − Uℓ = −
k∑

i=ℓ+1

miui, and Mℓ,k :=Mk −Mℓ =
k∑

i=ℓ+1

mi. (1.5)

Remark 1.1. Because of the elastic interaction mechanism, many of the ais and bis can be set
to zero and the model still be non-trivial. For example, one can take b1 > 0, aN > 0, and all
other ai, bi = 0, and the elastic process still, with positive probability, moves all particles any finite
distance to the left or right, while, in contrast, the exclusion process with the same parameters
(see §2.4) would reach an absorbing state in finitely many steps.

Remark 1.2. The reason for the negative sign in the definition of Uk in (1.4) is to conform with
the interpretation of Uk/Mk as a sort of potential function associated with the system. Roughly
speaking, the evolution of the system will favour moving particles in directions of negative gradient
of the potential; hence the choice of sign. We elaborate on this following Definition 1.8 below.

For non-empty C ⊆ [N ] denote the span of particles labelled by C as

∆C(t) := sup
i∈C

Xi(t)− inf
i∈C

Xi(t) = XmaxC(t)−XminC(t), for t ∈ R+. (1.6)

Our first main result is a criterion for stability of the system, meaning that the system evolves
as a single cloud of particles, within which the inter-particle distances remain exponentially tight,
with a single characteristic speed. The formal statement is the following.

Theorem 1.3 (Stability criterion). Let N ∈ N, mi ∈ (0,∞) for all i ∈ [N ], and ai, bi ∈ R+ for all
i ∈ [N ]. With Uk,Mk defined at (1.4), suppose that

Uk

Mk
<

UN

MN
, for all k ∈ [N − 1]. (1.7)

Then the system is a single stable cloud in the following sense.

(a) Limiting speed. For every i ∈ [N ], there holds the strong law of large numbers

lim
t→∞

t−1Xi(t) = −
UN

MN
, a.s. (1.8)

(b) Relative stability. There exist constants C ∈ R+ and δ > 0 (depending on the ai, bi, and
mi) such that

sup
t∈R+

P
[
∆[N ](t) ≥ s

]
≤ C

[
1 + eC∆[N ](0)

]
e−δs, for all s ∈ R+,

and, moreover,

lim sup
t→∞

∆[N ](t)

log t
<∞, a.s.

Furthermore, condition (1.7) is necessary for (b) to hold.
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Remark 1.4. That condition (1.7) is sufficient for relative stability was conjectured in [36] (for a
modified but equivalent version of the process, as explained in §2.3), and is a lattice analogue of
the stability result for Atlas-type models (e.g. Theorem 8 of [39]). That condition (1.7) is necessary
for relative stability (b) is a consequence of the more general partial stability result, Theorem 1.10,
that we present below. That result also shows that (a) can hold if (1.7) is violated, in a system
with multiple stable clouds all with the same characteristic speed, a simple example being the
homogeneous-speed case in which ui ≡ u for all i ∈ [N ] (cf. Example 1.11 below).

For a configuration x = (x1, . . . , xN ) ∈ XN , define its vector of inter-particle distances

D(x) := (Di(x))i∈[N−1] ∈ ZN−1
+ , where Di(x) := xi+1 − xi for i ∈ [N − 1]. (1.9)

Then associated to process X is the process η(t) := (ηi(t))i∈[N−1], on ZN−1
+ , where

η(t) := D(X(t)), i.e., ηi(t) = Xi+1(t)−Xi(t) for i ∈ [N − 1]. (1.10)

Clearly (X1(t), η(t)) defines a Markov process on Z × ZN−1
+ that contains the same information

as the original process X. Moreover, it is not hard to see that η := (η(t))t∈R+ is itself a Markov
process, describing the configuration relative to the left-most particle. The relative stability part
of Theorem 1.3 has the following interpretation in terms of the process η.

Corollary 1.5. The Markov chain η on ZN−1
+ is positive recurrent if and only if (1.7) holds. If

positive recurrent, then η is geometrically ergodic, meaning that the stationary distribution has a
finite exponential moment.

The following example covers systems with few particles; a contrast with the exclusion process
described in §2.4 is given in Example 2.1 below.

Example 1.6 (Small systems). The case N = 1 is trivial; then (1.7) holds vacuously, U1 = m1(a1−
b1) and (1.8) reduces to the ordinary strong law for a single random walker, limt→∞ t−1X1(t) = u1,
a.s. When N = 2, the stability criterion (1.7) reduces to the simple condition u1 > u2 (regardless
of the masses), meaning that if the two particles did not interact, the leftmost would overtake the
rightmost. For N = 3, the masses of the particles enter, and the stability criterion (1.7) is

(m2 +m3)u1 > m2u2 +m3u3 and m1u1 +m2u2 > (m1 +m2)u3;

note that a consequence of the above two inequalities is that u1 > u3, and a sufficient condition for
stability is u1 > u2 > u3. △

Before moving on to the general case in which (1.7) is not satisfied, we give some intuition
behind the speed −UN/MN appearing in (1.8), and the origin of condition (1.7). Let

G := (G(t))t∈R+ , where G(t) :=
1

MN

∑
i∈[N ]

miXi(t), for t ∈ R+, (1.11)

the centre of mass process associated with the particle system. In general G is not itself a Markov
process, since the transition law of G(t) depends on the whole configuration X(t). Nevertheless, we
show below (see Theorem 3.1) that there is a well-defined local speed of G(t) which is always equal
to −UN/MN . Moreover, in the equal-mass case where mi ≡ m independently of i, it is immediate
from (1.2) to verify the following stronger fact, which says that G is Markov. This is a discrete
analogue of a similar observation for diffusion systems (e.g. Lemma 7 of [39], and §2.6 below).
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Lemma 1.7. If mi ≡ m ∈ (0,∞) for all i ∈ [N ], then G performs a continuous-time, spatially ho-
mogeneous random walk on N−1Z which jumps −m/N at rate

∑N
i=1 ai and +m/N at rate

∑N
i=1 bi.

In particular, Lemma 1.7 together with the strong law for Poisson processes shows that
limt→∞ t−1G(t) = −UN/MN in this case; we show below the same is true more generally (see The-
orem 3.1). This fact is true regardless of the stability or otherwise of the particle system, but it
does explain why, in Theorem 1.3, when the system is stable, the limiting speed of the cloud as
given by (1.8) has to be −UN/MN .

To state our general stability result, Theorem 1.10 below, we need some additional definitions.

Definition 1.8 (Concave majorant, boundary, slopes). (i) GivenM0, . . . ,MN and U0, . . . , UM , a
continuous, concave function u : [0,MN ] → R is a concave majorant if Uk ≤ u(Mk) for every
k ∈ {0, 1, . . . , N}. The (unique) least concave majorant u : [0,MN ] → R is a concave majorant
such that u(x) ≤ u(x) for all x ∈ [0,MN ] and every concave majorant u. See Figure 2 for a picture.

(ii) It is not hard to see that u is piecewise linear. Denote

V :=
{
k ∈ {0, 1, . . . , N} : Uk = u(Mk)

}
, (1.12)

the set of boundary indices for u; note that it is always the case that {0, N} ⊆ V . In other words,
V = {k0, k1, . . . , kν} (ν ∈ [N ]) is the unique set with 0 = k0 < · · · < kν = N ,

Ukj−1,kj

Mkj−1,kj

≥
Ukj ,kj+1

Mkj ,kj+1

, for all j ∈ [ν − 1], and (1.13)

Ukj ,m

Mkj ,m
<

Ukj ,kj+1

Mkj ,kj+1

for all 0 ≤ j < ν and all kj < m < kj+1, (1.14)

where the convention is U0/M0 :=∞.

(iii) Given boundary indices V = {k0, k1, . . . , kν}, denote the sequence of slopes of successive
boundary segments by

vj :=
Ukj−1,kj

Mkj−1,kj

, for j ∈ [ν]; (1.15)

then (1.13) says that vj ≥ vj+1 for all j ∈ [ν − 1].

Remark 1.9. If in (1.13), we demand strict inequality, then we obtain the set of vertices of the least
concave majorant, and the line segments between successive vertices are its faces which have strictly
ordered slopes. The set V from Definition 1.8 can also include non-vertex boundary points, in cases
where the path (Mk, Vk) touches its concave majorant at the interior of a face, corresponding to
equality in (1.13).

The next result will demonstrate a cloud decomposition, which means an ordered partition
C1 < · · · < Cν of [N ], where the clouds Ck are non-empty, pairwise disjoint, have union [N ], and
where C < C′ for C,C′ ⊆ [N ] means that i < j for every i ∈ C and j ∈ C′. Then for every i ∈ [N ]
there is a unique j ∈ [ν] such that i ∈ Cj ; we say that particle i belongs to cloud j. The next
result shows that the particles in each cloud are typically close, in the sense that all inter-particle
distances within the same cloud remain exponentially tight, but different clouds either diverge
ballistically (if their speeds differ) or are very often well-separated (if they have the same speed,
see Remark 1.12(ii)). For this last part, we will need also the following non-degeneracy condition:∑

i∈Cj

(ai + bi) > 0 for every j ∈ [ν], (1.16)
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0

U(·)

Mk1 Mk2

MN

Figure 2: Identifying the stable clouds: here, these are {1, . . . , k1}, {k1 + 1, . . . , k2}, and {k2 + 1, . . . , N}
(with the speeds being equal to minus the corresponding slopes).

which says that every cloud has some intrinsic activity. For j ∈ [ν − 1], we write

Lj(t) := min
i∈Cj+1

Xi(t)−max
i′∈Cj

Xi′(t) = XminCj+1(t)−XmaxCj (t) ∈ Z+, for t ∈ R+, (1.17)

the minimal distance between particles from clouds Cj and Cj+1 at time t.

Theorem 1.10 (Cloud decomposition). Let N ∈ N, mi ∈ (0,∞) for all i ∈ [N ], and ai, bi ∈ R+

for all i ∈ [N ]. Suppose that (1.16) holds. Suppose that V = {k0, k1, . . . , kν} is the set of boundary
indices for the least concave majorant, as in Definition 1.8. Then for the cloud decomposition
C1, . . . ,Cν given by Cj := {i ∈ [N ] : kj−1 < i ≤ kj}, the following hold.

(a) Cloud speeds. For every j ∈ [ν] and every i ∈ Cj, with vj the slope defined at (1.15),

lim
t→∞

t−1Xi(t) = −vj , a.s.

(b) Clouds are stable. Recall that ∆C is defined at (1.6). There exist constants C ∈ R+ and
δ > 0 (depending on the ai, bi, and mi) such that for every j ∈ [ν],

sup
t∈R+

P
[
∆Cj (t) ≥ s

]
≤ C

[
1 + e

C∆Cj
(0)

]
e−δs, for all s ∈ R+,

and, moreover,

lim sup
t→∞

∆Cj (t)

log t
<∞, a.s.

(c) Cloud separations. Let j ∈ [ν − 1]. If vj > vj+1, then limt→∞ t−1Lj(t) = |vj+1 − vj | > 0,
a.s. If vj = vj+1, then there exists ε ∈ (0, 1/2) such that

lim
t→∞

1

t1−ε

∫ t

0
1{Lj(s) ≤ tε}ds = 0, a.s., (1.18)

while nevertheless
lim inf
t→∞

Lj(t) = 0, a.s. (1.19)

Example 1.11 (Homogeneous speeds). Suppose that ui ≡ u ∈ R for all i ∈ [N ]. Then Uk/Mk = −u
for all k ∈ [N ], meaning that V = {1, 2, . . . , N} and the cloud decomposition consists of ν = N
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singleton “clouds” all with the same speed −vj = u. The condition (1.16) holds (and hence so does
the separation result in (c) above) unless ai = bi = 0 for all i ∈ [N ], in which case (1.18) will fail,
since the particles do not move at all. This, and similar examples, shows that the hypothesis (1.16)
cannot be removed in Theorem 1.10(c). △

Remarks 1.12. (i) Recalling Definition 1.8, we have that V = {0, N}, i.e., n = 1 and the concave
majorant u is strictly above (Mi, Ui) for every i ∈ [N − 1], if and only if (1.7) holds. Hence
Theorem 1.3 follows from Theorem 1.10, although we prove them in the other order.

(ii) Statement (1.18) says that each gap between clouds with equal speeds is all but a vanishing
proportion of the time growing at least as a small power of t, while (1.19) says that it is, on
the other hand, recurrent. A natural (but difficult) question concerns recurrence or transience
of LA(t) := (Lj(t))j∈A for A ⊆ [ν − 1] with vj = vj+1 for every j ∈ A. For N = 3 particles
in ν = 3 singleton clouds, criteria for recurrence and transience can be deduced from results for
random walks on Z2

+ [7] as described in Example 2.18 of [36] for the related model with exclusion
interaction, but we leave the general case as an open problem.

(iii) Theorem 1.10 identifies stable subsystems of a Markov chain that may not be stable as a
whole; interest in such partial stability results [2, 22, 36] has been stimulated by queueing theory
especially, and there is a queueing interpretation of the present model, as we explain in §2.5 below.

(iv) In the construction of Definition 1.8, note that if we multiply all massesmi by the same positive
constant, then the Uℓ,k, Mℓ,k are multiplied by that same constant, hence their ratios remain the
same, and so the boundary indices {k0, . . . , kν} remain unchanged, as do the vj at (1.15). Similarly,
if we multiply all rates ai, bi by the same positive constant, then the Uℓ,k are multiplied but not
the Mℓ,k, so the boundary indices {k0, . . . , kν} remain unchanged once more, but the vi are all
multiplied by the common rate factor. Moreover, in the special case where masses mi ≡ m ∈ (0,∞)
are constant, the boundary indices also remain the same if one adds the same quantity to all the
ai’s (and/or all the bi’s), corresponding to an affine transformation Uk 7→ Uk + αk which preserves
the concave majorant (cf. Figure 2).

(v) Suppose that parameters ω := (ai, bi)i∈[N ] are determined before the dynamics begins by
sampling a random environment. That is, take (a1, b1), . . . , (aN , bN ) are independent draws from
a law P, and then, given the realization of the environment ω, define the Markov chain X through
rates (1.2), under a law that we now call Pω to indicate the dependence on ω. Theorem 1.10 is
then a quenched result (for given ω) but also of interest is behaviour for typical ω. For simplicity,
suppose that mi ≡ 1 ∈ (0,∞) (constant masses). Then the cloud decomposition is determined
by the concave majorant of the N -step random walk (under P) U0, U1, . . . , UN with increments
−u1, . . . ,−uN , by (1.4). A classical result on concave majorants of random walks (see [1, 46] and
references therein) says that, assuming ui has a density under P, the expected number of slopes
of the concave majorant is asymptotically equivalent to logN , and hence the (random) number of
clouds ν in the decomposition of Theorem 1.10 has Eν ∼ logN as N →∞ as well.

We indicate two quite broad directions for potential future work, in addition to the recur-
rence/transience question raised in Remark 1.12(ii).

• We have dealt here with finite systems of particles with elastic collisions, but it is a natural
open problem to also consider semi-infinite systems, with particles enumerated by the natural
numbers. Here one expects some progress can be made by comparison with large finite
systems, but also new and rich phenomena; see e.g. [38], and references therein, for the
setting of exclusion interaction (as described in §2.4 in the finite case).
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• In contrast to the case of exclusion interaction, where explicit product-geometric invariant
distributions are known in the stable case (see [36]), the results above in the elastic case give
no explicit form for invariant measures. There are reasons to expect that, in the elastic case,
simple explicit formulas are not available generically, but only in some special cases of the
parameters, that as yet remain to be classified. We make some observations in this direction
in §5, but leave fuller study of invariant measures as an open problem.

The outline of the rest of the paper is as follows. In §2 we describe equivalent models to the
model described above (including in §2.3 the original formulation of the particle model from [36]
in which no site can be occupied by more than one particle). In §2.4 we contrast the elastic model
with the simple exclusion process, which has a non-elastic collision mechanism and is one of the
most studied models of interacting particle systems, while in §2.6 we draw parallels with a well-
studied continuum model of mutually-reflecting diffusions. In §2.5 we formulate a queueing model
equivalent to the elastic particle model. In the exclusion-process context, a similar translation
gives a Jackson network, for which partial stability results due to Goodman and Massey [22] were
a key component to developing the corresponding cloud decomposition [36]; as far as we know, no
such results are available for the class of queueing models we end up with here, and so we need a
different approach. The proofs of our main results are divided between proof of, loosely speaking,
stability (Theorem 1.3) in §3 and instability and hence the cloud decomposition (Theorem 1.10)
in §4. The arguments for stability, including the proof of Theorem 1.3 given in §3.1, use some
Lyapunov function ideas presented in §3.2. The most involved part of the proof of instability
concerns the case where there are several different clouds of the same speed, and here we make
use of some apparently novel tools from martingale defocusing that we present in a self-contained
appendix (§A). The proof of Theorem 1.10 is then given in §4.3. In §5 we present some partial
results on invariant distributions and pose some open questions in that context.

2 Discussion of equivalent and adjacent models

2.1 Random walks with rank-dependent rates

Here is an alternative construction of the model formulated in §1. Consider a system of N labelled
particles with identical massesmi ≡ m ∈ (0,∞) for all i ∈ [N ]. Let Y (t) := (Y1(t), . . . , YN (t)) ∈ ZN ,
where Yi(t) ∈ Z denotes the position of the particle labelled i at time t ∈ R+, started from
Y (0) ∈ ZN (not necessarily in label order). Let σt(i) denote the permutation on [N ] giving the
time-t rank of the particle labelled i among all the particles, using lexicographic order in case of
ties (rank 1 being leftmost, rank N rightmost):

σt(i) :=
∑
j∈[N ]

1{Yj(t) < Yi(t)}+
∑
j∈[i]

1{Yj(t) = Yi(t)}.

Then define dynamics by declaring that at time t, particle i jumps −1 at rate Aσt
i (Y (t)) and jumps

+1 at rate Bσt
i (Y (t)), independently of other particles, given the ranks, where Aσ and Bσ, for a

permutation σ with inverse σ−1, are defined similarly to (1.2): for y ∈ ZN,

Aσ
i (y) := 1{yσ−1(σ(i)−1)<yi}

N∑
j=σ(i)

aj1{yσ−1(j)=yi}, Bσ
i (y) := 1{yσ−1(σ(i)+1)>yi}

σ(i)∑
j=1

bj1{yσ−1 (j)=yi},

with conventions σ−1(0) = 0, σ−1(N + 1) = N + 1, y0 = −∞ and yN+1 = +∞. Considering
the ordered particles Xi(t) := Yσ−1

t (i)(t), we recover the identical-mass elastic particle system X(t)
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defined in §1. In words, the elastic collision mechanism can be obtained by starting with a system
of particles that perform independent random walks at rate parameters determined by their ranks,
and tracking the ordered configuration of particles. This is a discrete analogue of a construction of
Atlas-type diffusion models (see e.g. [9, 28, 32, 39] and §2.6 below).

2.2 Discrete time

Associated to the continuous-time Markov process X defined in §1 is the discrete-time jump chain,
obtained by sampling the continuous-time process at the times at which it changes configuration.
Since the jump rates of the continuous-time process are uniformly bounded above, and uniformly
bounded below if we exclude the trivial case where ai = bi ≡ 0 for all i ∈ [N ], statements about
stability, partial stability, exponential bounds, etc., from Theorems 1.3 and 1.10 apply equally well
to the discrete-time version of the process.

The relationship between the speeds is a little more involved. In the particular case when all
masses are equal, i.e., mi ≡ m ∈ (0,∞) for all i ∈ [N ], a consequence of (1.2) is that the total
activity rate of the continuous-time process is constant, regardless of the configuration:

lim
h→0

P[X(t+ h) ̸= X(t) | X(t) = x]

h
=

∑
i∈[N ]

(ai + bi), for every x ∈ X. (2.1)

Consequently, ergodic properties of the discrete-time and continuous-time chains are equivalent up
to a constant multiplicative factor in terms of the right-hand side of (2.1): this means that speeds
are all related by the same multiplicative factor, and stationary distributions coincide exactly. In
the case of general masses mi, the time-change between discrete and continuous time is less explicit,
as total activity rate depends on the ergodic behaviour internally to each stable cloud, which is not
explicitly quantified since stationary distributions are not known explicitly (see §5 below).

2.3 Expanded elastic system excluding multiple occupancy

Take the elastic process described in §1 in the case when all masses are equal, i.e., mi ≡ m ∈ (0,∞)
for all i ∈ [N ]. Define X̃i(t) := Xi(t) + i− 1 for every i ∈ [N ] and all t ∈ R+. The Markov process
X̃(t) := (X̃i(t))i∈[N ] can be described as a particle system on Z, with no more than one particle per

site, in which the particle at position X̃i attempts to jump left at rate ai and right at rate bi. If no
particle is occupying the site of an attempted jump, the jump is executed. If a particle is occupying
the target site of an attempted jump, instead that blocking particle immediately attempts to jump
to its neighbouring site in the same direction; and so on. In this way ‘momentum’ is transferred
to the outermost particles of contiguous blocks, as represented in Figure 3. For the case of non-
identical masses mi, a similar interpretation is possible.

We call X̃(t) the expanded elastic particle system, and, when contrast is needed, we refer to the
model of §1 as the contracted elastic particle system. Up to the bijection between the two sets of
configurations by the transformation (x1, . . . , xN ) 7→ (x1, x2 + 1, . . . , xN +N − 1), the two models
are equivalent. Thus Theorem 1.3 and Theorem 1.10 apply, mutatis mutandis, to the expanded
elastic model as well. The expanded elastic model was first proposed, as far as the authors are
aware, in §6.2 of [36], where the stability criterion in Theorem 1.3 was conjectured.

2.4 Simple exclusion process with particle-wise heterogeneity

The exclusion process, originating with [35, 44], is one of the most intensively studied interacting
particle models, but it differs crucially from the elastic model of §1 because collisions suppress
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Z

X1(t) X2(t) X3(t) X4(t) X5(t) X6(t)

rate a1 b1 a2 + a3 b2 + b3 a4 + a5 + a6 b4 + b5 + b6

Figure 3: Expanded elastic dynamics. Take the configuration of N = 6 equal-mass particles represented in
Figure 1, and apply the transformation X̃i(t) := Xi(t) + i− 1 for every i ∈ [N ] to obtain a configuration in
which the ‘stacks’ of multiple occupancy sites are expanded into contiguous blocks of particles. This gives an
equivalent version of the elastic particle system, in which no site can be occupied by more than one particle,
and in which ‘momentum’ of attempted jumps is transferred to the outermost particles of contiguous blocks.

activity of the system, as we will explain. The version of the exclusion process that serves as a
comparator for our model (in the case of identical masses mi ≡ m) consists of N particles, with
configurations in XN , and particle i has jump rates ai, bi to the left, right, when it is on its own,
exactly like the model of §1. The difference is that when multiple particles occupy the same site,
the minimal index particle jumps left at only its intrinsic rate, rather than the sum of all rates of
the particle stack. Similarly for jumps to the right; thus the exclusion collision rule replaces the
rates Ai, Bi from (1.2) by simply Aexc

i (x) := 1{xi−1<xi}ai and B
exc
i (x) := 1{xi+1>xi}bi. See Figure 4

for an illustration.

Z

rate a1

b1

a2

b3

a4

b6

Figure 4: Contracted exclusion dynamics. Schematic showing a configuration of N = 6 equal-mass particles
and transition rates indicated on the arrows. In the case of multiple particles occupying the same site, we
imagine that they are stacked in increasing order of index, and it is the bottom and top particles that are
allowed to move: the transition to the left would move the particle from the base of the stack, while the
transition to the right would move the particle from the top of the stack. To translate a configuration to
the more standard exclusion configuration, shift particle i to the right by i− 1 sites; this change of variables
shows equivalence of this ‘contracted’ exclusion process to the classical exclusion process in which sites are
occupied by at most one particle.

It should be noted that the exclusion process is usually described in terms of configurations
expanded using the transformation (x1, . . . , xN ) 7→ (x1, x2 + 1, . . . , xN + N − 1), but, similarly
to §2.3, there is an equivalence exactly as between the contracted and expanded elastic models
(cf. Figures 1 and 3).

Example 2.1 (Small systems, continued). To emphasize that there is no simple monotonicity
relation between the exclusion and elastic interactions, we give examples (with mi ≡ m ∈ (0,∞)
constant) using the same rate parameters where (i) the model with exclusion interaction is stable
but with elastic interaction is not, and (ii) vice versa.

For case (i), consider N = 3 particles with intrinsic rates a1 = a2 = a3 = b1 = 1, b2 = 2,
and b3 = 1/3. Example 2.10 of [36] shows that under exclusion dynamics, this system is stable,
i.e., {1, 2, 3} is a single cloud. On the other hand Theorem 1.10 above shows that, under elastic
dynamics, the stable clouds are {1} and {2, 3} with corresponding speeds −v1 = 0 and −v2 = 1/6;
in the elastic case, particle 2 can push particle 3 faster to the right.

For case (ii), consider N = 3 particles with intrinsic rates a1 = b1 = b3 = 1, a2 = 1/2, b2 = 3/2,
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and a3 = 3. Now Example 2.10 of [36] shows that under exclusion dynamics, the stable clouds are
{1} and {2, 3}, while Example 1.6 (or Theorem 1.3) shows that, under elastic dynamics, the whole
system is stable. △

There is a bijection between the N -particle exclusion process and an open Jackson network
of N − 1 queues (see §3 of [36] and references therein). In the work of Malyshev and the present
authors [36], this bijection was used to apply results of Goodman and Massey [22] on partial
stability for Jackson queueing networks to obtain the cloud decomposition of the exclusion system.
The partial stability results (Theorems 2.1 and 2.3 of [36]) are analogous to the present Theorems 1.3
and 1.10, but the algebra of cloud speeds in the exclusion/Jackson case is rather more complicated,
since the elastic property is absent. On the other hand, the exclusion/Jackson setting turns out
to be simpler from the point of view of exhibiting reversibility that allows invariant distributions
to be computed explicitly as product-geometric distributions. We discuss invariant distributions
and the generic absence of reversibility in the elastic model in §5 below. Rather than describe in
detail the queueing model that corresponds to the exclusion systems (see [36, §3] for that), in §2.5
we instead describe a similar correspondence for the elastic model. We refer to [38], and references
therein, for exclusion interaction among semi-infinite systems of particles.

2.5 Queueing networks with resource redeployment, random walks in orthants

Once more, take the elastic process described in §1 in the case when all masses are equal, i.e.,
mi ≡ m ∈ (0,∞) for all i ∈ [N ]. The Markov process η = (η(t))t∈R+ of inter-particle distances
defined by (1.10) has an interpretation as the process of queue-lengths in a network of N−1 queues
in series, with a specific form of pooling of server resource.

In this interpretation, ηi(t) ∈ Z+ counts the number of customers in queue i ∈ [N − 1] at time
t ∈ R+. Customers enter and leave the network only at the two extremal queues, 1 and N − 1.
Arrivals are according to a Poisson arrival stream with rate a1 at queue 1, and an arrival stream of
rate bN at queue N − 1. If queue i ∈ [N − 1] is non-empty, then the ith server serves the customer
at the head of queue i at rate bi+ai+1. When a customer is served, it is routed to queue i− 1 with
probability bi

bi+ai+1
or to queue i+ 1 with probability ai+1

bi+ai+1
; being routed to queue 0 or N means

that the customer leaves the system.
The above part of the dynamics is identical to the Jackson network that corresponds to the

exclusion process: the difference for the elastic model will be that when a server’s queue is empty,
the server will redeploy resource to serve the nearest occupied queues in each direction. Precisely,
if queue i ∈ [N − 1] is empty, then server i lends service rate bi to the nearest occupied queue to
the right, if there is one, or to augment the arrival stream at queue N − 1 if there are no occupied
queues to the right, and lends service rate ai+1 to the nearest occupied queue to the left, or to
the arrival stream at queue 1 if there are no occupied queues to the left. The interpretation of the
constant activity rate in (2.1) in this setting is that the total service effort in the queueing network
is independent of the current configuration, unlike in the Jackson network. (Here ‘service’ includes
the server recruiting extra arrivals to the extremal queues.)

The process η can also be viewed as a continuous-time, reflected random walk on the or-
thant ZN−1

+ , with nearest-neighbour jumps. For N ∈ {2, 3}, there are exhaustive criteria for
classifying stability of such walks (see e.g. [17, 18]1) in terms of first and second moments of incre-
ments. For N ∈ {4, 5} the generic classification requires precise knowledge of quantities which are
hard to compute, namely stationary distributions for lower-dimensional projections [17, 29]. For

1These works are written for discrete-time random walks, but they immediately apply to this case also, since the
rates normalize to probabilities with the same normalizing constant from (2.1).
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N ≥ 6, the generic case is intractable [19]. The family of random walks here, with the explicit
stability criterion in Corollary 1.5, gives an example where there is a complete stability description
for any N ; the model of [36] provides another class of examples.

2.6 Atlas model of rank-dependent interacting diffusions

Continuum (diffusion) models, in which N particles perform mutually-reflecting Brownian motions
with drifts and diffusion coefficients determined by their ranks, have been extensively studied in
recent years, and include the Atlas model and its relatives: see e.g. [8, 9, 28, 32, 39, 42, 43] and
references therein.

In one of the most general settings for finite systems, the system of N diffusing particles is
described by a system of stochastic differential equations (SDEs) with reflections. If x1(t) ≤ x2(t) ≤
· · · ≤ xN (t) denote the ordered positions on R of the N particles at time t ∈ R+, and parameters
q−j , q

+
j ∈ (0, 1) satisfy q+j+1 + q−j = 1 for all j ∈ [N − 1], consider the dynamics satisfying

dxi(t) = µidt+ σidWi(t) + q+i dL
i(t)− q−i dL

i+1(t), for every i ∈ [N ], (2.2)

where W1, . . . ,WN are independent standard Brownian motions, and Li(t) is the local time at 0
of xi − xi−1 up to time t, with the convention L1 ≡ LN+1 ≡ 0. The local-time terms in (2.2)
maintain the order of the xi, while each particle xi has its own intrinsic drift (µi) and diffusion (σi)
coefficients. The coefficients q−j , q

+
j multiplying the local time terms control the relative impact of

collisions on each of the two particles involved, and play a comparable role to the masses in the
model of §1, as we now explain; see also the discussion in §3 of [32].

We can identify ‘masses’ in the system (2.2) by defining, for k ∈ [N ],

mk :=
∏
i∈[k]

(
1− q+i
q+i

)
.

Then some algebra shows that, for k ∈ [N ].

mk−1

mk +mk−1
= q+k , and

mk+1

mk +mk+1
= 1− q+k+1 = q−k ,

where we set m0 = mN+1 ≡ 0. In other words, we can re-write (2.2) as

dxi(t) = µidt+ σidWi(t) +
mi−1

mi +mi−1
dLi(t)− mi+1

mi +mi+1
dLi+1(t), for every i ∈ [N ]. (2.3)

The continuum system (2.2) is elastic in the sense that the total flow of mass is constant. Formally,
define M :=

∑
k∈[N ]mk and the centre of mass g(t) :=M−1

∑
i∈[N ]mixi(t). By summing (2.3) and

using the conditions on the q−j , q
+
j , we deduce that g has dynamics

dg(t) = µdt+ σdW (t),

where W is standard Brownian motion, and the drift and diffusion coefficients satisfy

µ =
1

M

∑
i∈[N ]

miµi, and σ
2 =

N

M2

∑
i∈[N ]

m2
iσ

2
i .

(Compare Theorem 3.1 below for the elastic particle system.)
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The elastic continuum model just described serves as a scaling limit of a class of particle system
models, under certain near-critical parameter scaling, that includes both the elastic model of §1
and the ‘inelastic’ simple exclusion process of §2.4: see [32, §3] and [36, §6.3] for more detail. The
equivalent scaling limit when the discrete-space model is viewed as a queueing network (as in §2.5)
is a heavy traffic limit in which every queue is asymptotically critically loaded, and the scaling limit
is a reflected diffusion on an orthant; see e.g. [20, 41].

As far as the authors are aware, long-time stability of the continuum system defined by (2.2)
above has been studied only as far as classifying whether or not the whole system is stable (e.g. [28,
32, 39, 42]), rather than identifying a full cloud decomposition as we do in Theorem 1.10; in the
continuum setting there are additional complexities as one must consider the analogue of the ‘corner
trapping’ phenomenon for reflected diffusion in an orthant [47].

2.7 Further literature on elastic collisions

Physical systems of particles exhibit (approximately) elastic collisions, in which kinetic energy and
momentum are both (approximately) conserved, if there are no external forces and internal energy
states of particles can be (approximately) ignored. A number of probabilistic models for such
physical systems have been studied in the literature, including Kac’s uniformly mixing model for
kinetic theory of gases [31] (which neglects space), and the work of Jepsen, Harris and Spitzer [25,
30, 45] on elastic models of colliding particles on the line with deterministic or Brownian free-space
trajectories. To give a flavour of the sorts of phenomena observed for the spatial models, suppose
that at time 0 a system of particles with equal masses is given according to a stationary Poisson
process on R, with one much more massive tagged particle at the origin; independently of the
positions, the atoms are given i.i.d. velocities, and undergo elastic collisions when they meet. If one
observes the tagged particle in an infinite system started from a given density profile, possibly in
the presence of a hard barrier, there are results that establish convergence to a Brownian, Ornstein–
Uhlenbeck, or other Gaussian process, and also results when the tagged particle is much less massive
than the rest: see e.g. [10, 11, 14, 16, 21, 34]. An informative overview of this and other literature
is given in the introduction to [39].

3 Proofs: Stability

3.1 Global speed and local stability

In this section we state two key ingredients to our proofs. Theorem 3.1 states that the drift of the
centre of mass of the system is independent of the current configuration, which is a distinguishing
feature of the elastic collision mechanism. Proposition 3.2 gives a criterion for identifying (not
necessarily maximal) stable subsystems of particles. These two results will combine to give The-
orem 1.3 (the short deduction appears after their statement), and are also crucial in the proof of
Theorem 1.10. The proofs of both Theorem 3.1 and Proposition 3.2 are given in §3.2 below.

Recall the definition of the centre of mass process G from (1.11). The next result shows that G
travels with speed −UN/MN .

Theorem 3.1 (Centre of mass). For the process G as defined at (1.11), it holds that

E[G(t+ h)−G(t) | X(t) = x] = −hUN/MN , for all t, h ∈ R+ and all x ∈ XN . (3.1)

Moreover, limt→∞ t−1G(t) = −UN/MN , a.s.
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The next important ingredient is a local stability result, presented in Proposition 3.2 below.
This result will yield the ‘stability’ part of Theorem 1.3 directly. Moreover, the result says that
if a contiguous subset of particles in the system would, considered as an isolated system, satisfy
the stability criterion from Theorem 1.3, then that subset is stable also as a subsystem of the
full system. The intuition is that the presence of additional particles to the left or right can only
stabilize the subsystem further, by preventing the extreme particles from diverging, and/or by
contributing stabilizing inwards momentum.

For ℓ, r ∈ [N ] with ℓ ≤ r, we write [ℓ; r] := {x ∈ [N ] : ℓ ≤ x ≤ r}, a discrete interval. Note that
[1; r] = [r] in our previous notation. Recall the definition of ∆C from (1.6).

Proposition 3.2 (Local stability). Suppose that ℓ, r ∈ [N ], ℓ < r, and it holds that

Uℓ,k

Mℓ,k
<

Uℓ,r

Mℓ,r
for all k ∈ [ℓ; r − 1]. (3.2)

Then there exist constants C ∈ R+ and δ > 0 (depending on the ai, bi, and mi) such that

sup
t∈R+

P
[
∆[ℓ+1;r](t) ≥ s

]
≤ C

[
1 + eC∆[ℓ+1;r](0)

]
e−δs, for all s ∈ R+, (3.3)

and, moreover,

lim sup
t→∞

∆[ℓ+1;r](t)

log t
<∞, a.s. (3.4)

Remark 3.3. Note that condition (3.2) involving the functions Uk,Mk over values k ∈ [ℓ; r] translates
to stability of particles with labels [ℓ + 1; k] at (3.3). This is similar to the stability criterion in
Theorem 1.10, reflecting that there is no particle with label 0.

Proof of Theorem 1.3. The statement of Proposition 3.2 with ℓ = 0 and r = N shows that the
condition (1.7) is sufficient for stability, in the sense expressed in part (b) of the theorem. Moreover,
since maxi∈[N ] |Xi(t) − G(t)| ≤ ∆[N ](t) for all t ∈ R+, it follows also that lim supt→∞ t−1|Xi(t) −
G(t)| = 0, a.s., for every i ∈ [N ]. Together with Theorem 3.1, this yields part (a) of the theorem.

The final statement of the theorem, that (1.7) is necessary for part (b), is most easily deduced
from Theorem 1.10(c) (the proof of that result comes only in §4, but nowhere uses this final part
of Theorem 1.3). Indeed, if (1.7) fails then there is at least one j ∈ [ν − 1] for which vj ≥ vj+1. If
vj > vj+1, then Theorem 1.10(c) shows that lim inft→∞ t−1∆[N ](t) ≥ vj − vj+1 > 0, contradicting
part (b). If vj = vj+1, then Theorem 1.10(c) shows that, for some ε > 0, lim supt→∞ t−ε∆[N ](t) ≥ 1,
a.s., say, which also contradicts part (b).

Before moving on to the proofs of Theorem 3.1 and Proposition 3.2, we introduce some notation
that will allow us to work with increments of functionals of particle system configurations. Define

τ := inf{t ∈ R+ : X(t) ̸= X(0)}, (3.5)

the first jump time of the Markov chain. Write Px,Ex for probabilities and expectations in the case
where the initial configuration is X(0) = x ∈ XN . The key step in the proof of Proposition 3.2
is the following Lyapunov function estimate. Recall the definitions of the inter-particle distance
function D : XN → ZN−1

+ from (1.9) and η(t) = D(X(t)) defined at (1.10). Observe that τ defined
by (3.5) is also the first jump time of the Markov chain η.
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Lemma 3.4. Suppose that ℓ, r ∈ [N ], ℓ < r, and that (3.2) holds. Then there exist a function
F : ZN−1

+ → R+ and constants B,R ∈ R+ and ε > 0 such that

ExF (η(t)) <∞, for all x ∈ XN and all t ∈ R+; (3.6)

Px[|F (η(τ))− F (η(0))| ≤ B] = 1, for all x ∈ XN ; (3.7)

Ex[F (η(τ))− F (η(0))] ≤ −ε, for all x ∈ XN with ∥D(x)∥ > R. (3.8)

The function F will be a (weighted) norm describing the displacement of the particles with labels
in [ℓ+1; r] relative to their centre of mass. In §3.2 we give the formal definition of F , which requires
introducing notation for a suitable weighted norm and inner product, and then prove Lemma 3.4
and deduce Proposition 3.2. The Markov-chain computations required to establish Lemma 3.4 also
allow us to prove Theorem 3.1, so that proof is also in §3.2.

3.2 Lyapunov function computations

For x, y ∈ RN and ℓ, r ∈ [N ] with ℓ ≤ r, consider the weighted positive semi-definite form

⟨x, y⟩ℓ,r :=
∑
i∈[ℓ;r]

mixiyi

and the associated seminorm ∥x∥ℓ,r :=
√
⟨x, x⟩ℓ,r. In the special case where ℓ = 1 and r = N , we

write ⟨x, y⟩N := ⟨x, y⟩1,N and ∥x∥N := ∥x∥1,N .
Let 1 be the vector in RN with all components equal to 1. Observe that ⟨1,1⟩ℓ+1,r =Mr−Mℓ =

Mℓ,r in the notation at (1.5). In particular, ⟨1,1⟩N = ⟨1,1⟩1,N =MN , and the centre of mass of a
configuration x ∈ XN is

g(x) :=M−1
N ⟨x,1⟩N =

1

MN

∑
i∈[N ]

mixi. (3.9)

For a configuration x ∈ XN , let Rx be the total jump rate at x, i.e.,

Rx := lim
h→0

h−1 Px(X(h) ̸= x) =
∑
i∈[N ]

(
Ai(x) +Bi(x)

)
, (3.10)

where Ai, Bi are defined at (1.2). It is not hard to check (see formula (3.22) below) that

inf
x∈XN

Rx > 0 provided
∑
i∈[N ]

(ai + bi) > 0. (3.11)

We will tacitly assume that
∑

i∈[N ](ai+bi) > 0 for the rest of this section; the case
∑

i∈[N ](ai+bi) = 0
being trivial (but formally covered by the results of §1). When a jump occurs from x, the Markov
chain transitions to some x ± ek, where ek ∈ XN is the unit vector with 1 in coordinate k. The
associated transition probabilities are, for every k ∈ [N ],

Px[X(τ) = x− ek] =
Ak(x)

Rx
, and Px[X(τ) = x+ ek] =

Bk(x)

Rx
, (3.12)

where Ak, Bk are defined at (1.2) and Rx is given by (3.10). In what follows we write

e := X(τ)−X(0) (3.13)
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for the first increment, so that Px(e = e) describe the transition probabilities for the (discrete-time)
jump chain as given by (3.12). In particular, for H : XN → R+,

Ex[H(X(τ))] = ExH(x+ e), for all x ∈ XN . (3.14)

Given x ∈ XN and k ∈ [N ], we define k−, k+ ∈ [N ] by

k− := k−(x) := min{i ∈ [N ] : xi = xk}, k+ := k+(x) := max{i ∈ [N ] : xi = xk}, (3.15)

the minimal and maximal labels of particles sharing the same site as k in configuration x. We also
define an ‘off-lattice’ extension of XN defined at (1.1) by

X′
N :=

{
(xi)i∈[N ] ∈ RN : x1 ≤ x2 · · · ≤ xN

}
. (3.16)

Write a := (ai)i∈[N ] and b := (bi)i∈[N ] for the jump rates, and recall from (1.3) that u = b − a.
The following lemma enables us to work with expected functional increments; for example, the
hypotheses on x, y in the statement are satisfied whenever yk = f(xk) for all k ∈ [N ] and some
non-decreasing f : Z→ R.

Lemma 3.5. Let x ∈ XN and assume that y ∈ X′
N is such that yk = yk+1 for all k ∈ [N ] such that

xk = xk+1. Then for e as defined at (3.13), it holds that

Ex⟨y, e⟩N = R−1
x ⟨y, u⟩N . (3.17)

More generally, for ℓ, r ∈ [N ], with ℓ ≤ r and ℓ±, r± as defined in (3.15),

RxEx⟨y, e⟩ℓ,r = ⟨y, u⟩ℓ,r + 1{ℓ>ℓ−}⟨y, b⟩ℓ−,ℓ−1 + 1{ℓ>ℓ−}⟨y, a⟩ℓ−,ℓ+ − 1{r<r+}⟨y, a⟩r+1,r+

− 1{r<r+}⟨y, b⟩r−,r+ . (3.18)

In particular, if mink∈[N ] yk ≥ 0, we have the inequalities

Ex⟨y, e⟩1,r ≤ R−1
x ⟨y, u⟩1,r, (3.19)

Ex⟨y, e⟩ℓ,N ≥ R−1
x ⟨y, u⟩ℓ,N . (3.20)

To prepare for the proof, we introduce some convenient terminology for describing configura-
tions. Take s ∈ [N ] and h1, . . . , hs ∈ N such that

∑
j∈[s] hj = N . For k ∈ [s], write Hk :=

∑k
j=1 hj ,

so that H0 = 0 and Hs = N . We say that x = (x1, . . . , xN ) ∈ XN is a configuration with s stacks

of heights h := (h1, . . . , hs), and write x ∈ Xs,h
N , if

x1 < xH1+1 < · · · < xHs−1+1, and, for all j ∈ [s] and i ∈ [hj ], xHj−1+i = xHj−1+1. (3.21)

Figure 1 shows a configuration x ∈ X3,h
6 of 6 particles in s = 3 stacks of heights h = (1, 2, 3).

Proof of Lemma 3.5. Suppose that x ∈ Xs,h
N for s ∈ [N ] and h = (h1, . . . , hs), as at (3.21). First

observe, by (3.10) and (1.2), we may write

Rx =
s∑

j=1

hj∑
i=1

(
aHj−1+i

mHj−1+i

mHj−1+1
+ bHj−1+i

mHj−1+i

mHj

)
, (3.22)
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and that, by (3.12), the increment e is equal to−eHj−1+1 with probabilityR−1
x

∑hj

i=1 aHj−1+i
mHj−1+i

mHj−1+1

and to eHj with probability R−1
x

∑hj

i=1 bHj−1+i
mHj−1+i

mHj
. Therefore,

RxEx⟨y, e⟩ℓ,r = ⟨y, u⟩ℓ++1,r−−1 + ⟨y, b− a1{ℓ=ℓ−}⟩ℓ−,ℓ+ + ⟨y, b1{r=r+} − a⟩r−,r+ .

This yields (3.18). Taking ℓ = 1 (which certainly has ℓ = ℓ−) in (3.18) we get

RxEx⟨y, e⟩ℓ,r = ⟨y, u⟩ℓ,r − 1{r<r+}⟨y, b⟩r−,r+ − 1{r<r+}⟨y, a⟩r+1,r+ ≤ ⟨y, u⟩ℓ−,r+ ,

provided all yk ≥ 0, as claimed in (3.19). Similarly, taking r = r+ = N in (3.18) yields (3.20).
Taking both ℓ = 1 and r = N in (3.18), we verify (3.17).

Define τ0 := 0 and τ1 := τ as at (3.5), and then, iteratively, define

τn+1 := inf{t ≥ τn : X(t) ̸= X(τn)}, for every n ∈ Z+, (3.23)

so that 0 = τ0 < τ1 < τ2 < · · · are the (a.s. finite) jump times of X. Let Ft := σ(X(s) : 0 ≤ s ≤ t),
the σ-algebra generated by X up to time t ∈ R+. By (3.10), we have that, given Fτn , the holding
time τn+1− τn is exponentially distributed with parameter RX(τn), which by (3.10)–(3.11) satisfies
δ < Rx < δ−1 for every x ∈ XN and some constant δ ∈ (0, 1) depending only on the ai, bi, and
mi. Observe that since η = D(X) jumps if and only if X jumps, the τn given by (3.23) are also
the jump times of η, a fact that we will use in the proof of Proposition 3.2 below. First we can
complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Comparison of notation (1.11) for G and (3.9) for g reveals that G(t) =
g(X(t)). Then by (3.14) and an application of Lemma 3.5 with y = 1 shows, using the formula (3.9),

lim
h→0

h−1 E[G(t+ h)−G(t) | X(t) = x] = Rx Ex[g(X(τ))− g(x)]

= Rx

(
Ex g(x+ e)− g(x)

)
= Rx Ex⟨e,1⟩N

= − UN

MN
, for all x ∈ XN . (3.24)

Since the final expression in (3.24) is independent of x, we verify (3.1). Moreover, considering the
associated jump chain, for every k ∈ Z+,

E[g(X(τk+1))− g(X(τk)) | Fτk ] = −
UN

MNRX(τk)
, a.s. (3.25)

As argued below (3.23), the holding times τk+1 − τk are exponentially distributed with uniformly
bounded rates. A straightforward Azuma–Hoeffding bound and application of the Borel–Cantelli
lemma then shows that

lim
k→∞

1

k
[τk −Ak] = 0, a.s., (3.26)

where A0 := 0, and Ak :=
∑k−1

i=0 1/RX(τi) for k ∈ N. Since, a.s., δ < k−1Ak < δ−1 for all k ∈ N,
it follows from (3.26) that τk/Ak → 1, a.s., as k → ∞. Furthermore, there exists B ∈ R+ such
that |g(X(τk+1)) − g(X(τk))| ≤ B for all k ∈ Z+, a.s. The standard Doob construction, with
compensator given via (3.25), then shows that Mk := g(X(τk))+(UN/MN )Ak defines a martingale
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with uniformly bounded increments, so another application of the Azuma–Hoeffding inequality
yields

lim
k→∞

1

k
[g(X(τk)) + (UN/MN )Ak] = 0, a.s. (3.27)

Combining (3.26) and (3.27), we conclude that limk→∞ g(X(τk))/τk = −UN/MN , a.s. A standard
interpolation argument now shows that limt→∞ t−1G(t) = −UN/MN , a.s.

Next we turn to the proof of Lemma 3.4.

Proof of Lemma 3.4. For x ∈ XN , write x[ℓ;r] = (x
(1)
[ℓ;r], . . . , x

(N)
[ℓ;r]) ∈ XN , where

x
(k)
[ℓ;r] = xk1{k∈[ℓ;r]},

i.e., projection onto the subspace spanned by coordinates [ℓ; k]. Define ψℓ,r : XN → X′
N by

ψℓ,r(x) := x[ℓ+1;r] −M−1
ℓ,r ⟨x,1⟩ℓ+1,r1[ℓ+1;r], for x ∈ XN , (3.28)

i.e., projection of x onto coordinates [ℓ + 1; r], translated by its centre of mass. Note that ψℓ,r is
invariant under translation of x, since if yi = xi + α for all i ∈ [N ] and some α ∈ R, ⟨y,1⟩ℓ,r =
⟨x,1⟩ℓ,r + αMℓ,r.

Since ψℓ,r(x) depends only on the [ℓ+ 1; r] coordinates of x, we could view ψℓ,r as acting from
Xr−ℓ to X′

r−ℓ, but we prefer to keep the full vectors (including all zeros) since coordinate labels
correspond to specific masses. The Lyapunov function F that appears in (3.8) will be derived from

Ψ(x) := ∥ψℓ,r(x)∥ℓ+1,r, for all x ∈ XN , (3.29)

where ψℓ,r is given by (3.28) (we suppress dependence on ℓ, r in the notation Ψ). Since Ψ is invariant
under translation of x, Ψ(x) can be written as a function of D(x) as given at (1.9); indeed, define
D−1 : ZN−1

+ → XN by D−1(z1, . . . , zN−1) := (0, z1, z1 + z2, . . . , z1 + · · ·+ ZN−1), and then

F (z) := Ψ(D−1(z)) for all z ∈ ZN−1
+ (3.30)

will be the F that appears in (3.8). We also note from (3.29) and (3.28) that

Ψ(x)2 = ∥ψℓ,r(x)∥2ℓ+1,r =Mℓ,r

∑
i∈[ℓ+1;r]

mi

Mℓ,r

xi − ∑
j∈[ℓ+1;r]

mj

Mℓ,r
xj

2

, (3.31)

which exhibits Ψ2 as the variance of the mass distribution if particles ℓ + 1, . . . , r are placed at
locations xℓ+1, . . . , xr. It follows from (3.31) that

Ψ(x)2 ≤Mℓ,r

∣∣∣∣ max
i∈[ℓ+1;r]

xi − min
i∈[ℓ+1;r]

xi

∣∣∣∣2 =Mℓ,r(xr − xℓ+1)
2. (3.32)

In the other direction, since a2 + b2 ≥ (a+ b)2/2, we get from (3.31) that

Ψ(x)2 ≥ mℓ+1(x̄− xℓ+1)
2 +mr(xr − x̄)2 ≥

min(mℓ+1,mr)

2
(xr − xℓ+1)

2, (3.33)

where we wrote x̄ := M−1
ℓ,r

∑
j∈[ℓ+1;r]mjxj . One can interpret bounds (3.32)–(3.33) as quantifying

the fact that xr − xℓ+1 = maxi,j∈[ℓ+1;r] |xi − xj | is equivalent to the norm ∥ψℓ,r(x)∥ℓ+1,r.
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We need to study the increments of Ψ applied to Markov process X. Since ⟨1,1⟩ℓ+1,r = Mℓ,r,
ψℓ,r given by (3.28) satisfies the orthogonality relation

⟨ψℓ,r(x),1[ℓ+1;r]⟩ℓ+1,r = 0, for all x ∈ XN . (3.34)

Let e = ±ej be (plus or minus) one of the coordinate unit vectors. We have ψℓ,r(x + e) = ψℓ,r(x)
whenever j /∈ [ℓ+ 1; r]. So fix j ∈ [ℓ+ 1; r]. Then we compute

∥ψℓ,r(x+ e)∥2ℓ+1,r =
∥∥x+ e−M−1

ℓ,r ⟨x+ e,1⟩ℓ+1,r1[ℓ+1;r]

∥∥2
ℓ+1,r

=
∥∥ψℓ,r(x) + e−M−1

ℓ,r ⟨e,1⟩ℓ+1,r1[ℓ+1;r]

∥∥2
ℓ+1,r

= ∥ψℓ,r(x)∥2ℓ+1,r + 2⟨ψℓ,r(x), e⟩ℓ+1,r +mj −M−1
ℓ,r m

2
j ,

using the orthogonality (3.34) of ψℓ,r(x) and 1[ℓ+1;r]. With e being the random increment vector
at x ∈ XN , it follows from the above that

Ψ(x+ e)2 −Ψ(x)2 = 2⟨ψℓ,r(x), e⟩ℓ+1,r + Tℓ,r(x, e),

where |Tℓ,r(x, e)| is uniformly bounded for all x ∈ XN and all unit vectors e. Moreover, |Ψ(x+ e)−
Ψ(x)| is also uniformly bounded for all x ∈ XN and all unit vectors e. It follows that there is a
constant B <∞ such that, a.s.,

Ψ(x+ e)−Ψ(x) =
Ψ(x+ e)2 −Ψ(x)2

Ψ(x+ e) + Ψ(x)
≤
⟨ψℓ,r(x), e⟩ℓ+1,r

Ψ(x)
+

B

Ψ(x)
,

for all x ∈ XN . In particular, for all x ∈ XN ,

Ex [Ψ(x+ e)−Ψ(x)] ≤ 1

Ψ(x)
[Ex⟨ψℓ,r(x), e⟩ℓ+1,r +B] . (3.35)

The remaining part of the proof is to obtain a (sufficiently negative) upper bound for the right-hand
expectation in (3.35). To this end, define

Vk := Uℓ,k −Mℓ,k
Uℓ,r

Mℓ,r
, for k ∈ [ℓ; r]. (3.36)

Then Vℓ = Vr = 0, and the condition (3.2) implies that Vk < 0 for all k ∈ [ℓ + 1; r − 1] (and
Uℓ,r > 0). Hence, under the hypothesis (3.2),

ε := − max
k∈[ℓ+1;r−1]

Vk (3.37)

satisfies ε > 0. Moreover, since Uk − Uk−1 = mkuk, a straightforward calculation implies that

Vk−1 − Vk = mk

[
uk +

Uℓ,r

Mℓ,r

]
, for all k ∈ [ℓ+ 1; r]. (3.38)

We will next apply Lemma 3.5 with y = ψℓ,r(x). Note first that for k ∈ [ℓ−, ℓ+], we have xk =
xℓ = mini∈[ℓ+1;r] xi, from which it follows that yk ≤ 0 for all k ∈ [ℓ−; ℓ+]. Similarly, yk ≥ 0
for all k ∈ [r−, r+]. Hence we deduce from (3.18) that RxEx⟨ψℓ,r(x), e⟩ℓ+1,r ≤ ⟨y, u⟩ℓ+1,r. Since∑

k∈[ℓ+1;r] ykmk = 0, by (3.34), it follows that

RxEx⟨ψℓ,r(x), e⟩ℓ+1,r ≤
∑

k∈[ℓ+1;r]

ykmk

[
uk +

Uℓ,r

Mℓ,r

]
=

∑
k∈[ℓ+1;r]

yk [Vk−1 − Vk] ,
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by (3.38). Then, by partial summation and the fact that Vℓ = Vr = 0,

RxEx⟨ψℓ,r(x), e⟩ℓ+1,r ≤
∑

k∈[ℓ+1;r−1]

Vk(yk+1 − yk) ≤ −ε
∑

k∈[ℓ+1;r−1]

(yk+1 − yk),

using (3.37) and the fact that yk+1 − yk = xk+1 − xk ≥ 0 for k ∈ [ℓ+ 1; r − 1]. Hence

RxEx⟨ψℓ,r(x), e⟩ℓ+1,r ≤ −ε(yr − yℓ+1) = −ε(xr − xℓ+1).

Using the inequality (3.32) we conclude that there exists ε > 0 such that

Ex⟨ψℓ,r(x), e⟩[ℓ+1;r] ≤ −εΨ(x), for all x ∈ XN . (3.39)

Combining (3.35) and (3.39), we see that, for some R ∈ R+,

Ex(Ψ(X(τ))−Ψ(X(0))) ≤ −ε, for all x ∈ XN with ∥D(x)∥ > R.

Since Ψ is translation invariant, from here and (3.30) we deduce (3.8).

To prove Proposition 3.2, we will show that the Lyapunov function F from Lemma 3.4 satisfies
a version of a geometric drift condition (see e.g. Definition 14.1.5 of [15]). The theory of geomet-
ric ergodicity for Markov chains (c.f. Theorem 15.1.5 of [15]) does not apply directly for us, as
through F we are working with a projection of a Markov process, considering the relative stability
of some (typically, not all) coordinates. Nevertheless, we need less than the full power of geometric
ergodicity; the Lyapunov function technique relies on martingale rather than Markov structure,
and we can obtain what we need from robust results for adapted processes from Hajek [24]. Since
those results are formulated in discrete time, it is convenient to work with the jump chain.

Proof of Proposition 3.2. Consider the discrete-time jump chain associated with the Markov chain η
on ZN−1

+ , i.e., the process η(τk) where τk is defined at (3.23). As explained below (3.23), the holding
times τk+1 − τk are exponentially distributed with uniformly bounded rates, and so discrete-time
results will be easily transferred to the continuous-time process.

Define V : ZN−1
+ → (0,∞) by V (z) := exp(δF (z)), where F is defined by (3.30). Then

V (η(τ)) = V (η(0)) · exp(δ(F (η(τ))− F (η(0)))).

Given B ∈ R+ and ε > 0, we can find δ ∈ (0,∞) small enough such that

eδy ≤ 1 + δ
(
y +

ε

2

)
, for all y ∈ [−B,B].

Hence from (3.7) and (3.8), we have, for all x ∈ XN ,

ExV (η(τ)) ≤ V (D(x))
[
1 + δ

(
Ex[F (η(τ))− F (D(x))] +

ε

2

)]
≤ V (D(x))

(
1− δε

2

)
, for all ∥D(x)∥ > B.

Now Theorem 2.3 of [24] shows that there exist constants C ∈ R+ and δ > 0 such that

Px[F (η(τk)) ≥ r] ≤
[
C + eδ(F (D(x))−k)

]
e−δr, for all r ∈ R+ and all k ∈ Z+. (3.40)
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Consequently, for r ∈ R+,

sup
t∈R+

Px[F (η(t)) ≥ r] ≤ sup
t∈R+

Px

 ⋃
k∈Z+

{t ∈ [τk, τk+1)} ∩ {F (η(τk)) ≥ r}


≤

∑
k∈Z+

Px[F (η(τk)) ≥ r]

≤ C
[
1 + eδF (D(x))

]
e−δr, for all r ∈ R+,

by (3.40). A consequence of the inequalities (3.32)–(3.33), and the fact that ∆[ℓ+1;r](t) = Xr(t)−
Xℓ+1(t) from (1.6), and F (η(t)) = Ψ(X(t)) by (3.30), is that there exists a > 0 such that, a.s.,
aF (η(t)) ≤ ∆[ℓ+1;r](t) ≤ a−1F (η(t)) for all t ∈ R+, and hence we obtain (3.3).

Finally, we deduce (3.4). Let Nt denote the number of times that Markov chain η jumps during
time interval [t, t+1]. Since the jump rate is uniformly bounded, P[Nt ≥ z] ≤ e−δz for some δ > 0.
Combined with (3.3) and the fact that |∆(τ)−∆(0)| ≤ B, a.s., for some B ∈ R+, this shows that,
for a given ∆(0), we can find A ∈ R+ large enough so that

P

[
sup

s∈[t,t+1]
∆(s) ≥ 2A log t

]
≤ P[Nt ≥ (A/B) log t] + P[∆(t) ≥ A log t] = O(t−2),

say. The Borel–Cantelli lemma then shows that a.s., supt≤s≤t+1∆(s) ≤ 2A log t for all but finitely
many t ∈ Z+, which implies (3.4).

4 Proofs: Instability and cloud decomposition

4.1 Overview

The proof of the cloud decomposition, Theorem 1.10, is divided into several parts. In the putative
cloud decomposition C1, . . . ,Cν , each cloud Cj is locally stable (by Proposition 3.2) and would, were
it to be an isolated system with none of the other clouds present, possess the intrinsic speed −vj ,
with the order v1 ≥ v2 ≥ · · · ≥ vν as at (1.15). The proof of Theorem 1.10 requires us to establish
(i) that these intrinsic cloud speeds are indeed replicated in the full system, and (ii) that clouds
are typically well-separated. The structure of the argument to do this is as follows.

• We first establish the result for the system in which v1 = v2 = · · · = vν . This is the
most substantial part of the proof, and requires several steps in itself. In §4.2 we show
that the centres of mass of the leftmost and rightmost clouds separate at least diffusively
(Proposition 4.1), using a submartingale defocusing result from §A.

• Then in §4.3 we use a sort of induction to show all adjacent clouds typically separate, in a
quantified sense. Roughly speaking, if there are ν ≥ 3 clouds, then since the two extreme
clouds spend most of their time far apart, and clouds are tight, there must be another pair of
clouds that also spends much time far apart, and so all but a vanishing fraction of the time
the system evolves as two independent subsystems, both strictly smaller than the original.
Iterating a formal version of this argument gives the result that all clouds typically separate
in a quantified sense (Proposition 4.6).

• Having established separation of adjacent clouds, it is not hard to show that no cloud’s speed
can be significantly perturbed from its intrinsic speed, and hence (Lemma 4.7) all clouds do
indeed travel at the same speed.
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• Having settled the case of systems where all clouds have the same speed, the general case
follows relatively easily by decomposing the system into subsystems consisting of same-speed
clouds. Subsystems then have strictly ordered intrinsic speeds which they would maintain
as isolated systems (by Lemma 4.7) and a coupling argument finishes the proof of the cloud
decomposition, particle speeds, and diffusive separation.

• The recurrence of adjacent same-speed clouds in (1.19) is established by a separate super-
martingale argument via Lemma 4.4.

4.2 Same-speed clouds: Centre-of-mass dynamics

We start the scheme outlined in §4.1. For ν ≥ 2 and n ∈ Z+, define

L(n) := min
i∈Cν

Xi(τn)−max
i′∈C1

Xi′(τn) = XminCν (τn)−XmaxC1(τn), (4.1)

the distance between the leftmost particle in the rightmost cloud and the rightmost particle in
the leftmost cloud at time τn defined at (3.23). The first result of this section states that, in the
case where v1 = · · · = vν , L(n) grows at least diffusively, meaning that the two extreme clouds
are well-separated for all but a vanishing proportion of time (the case of two particles of the same
intrinsic speeds shows that this result can be essentially sharp).

Proposition 4.1. Suppose that (1.16) holds, that ν ≥ 2, and that v1 = · · · = vν . Then for every
γ ∈ (0, 1/2), there exists ε0 := ε0(γ) > 0 such that, for all ε ∈ (0, ε0) and all n sufficiently large,

P

[
n∑

i=0

1{L(i) ≤ nγ} > n
1
2
+γ+5ε

]
≤ e−nε

.

The basic element in the proof of Proposition 4.1 is to show that the distance between the
extreme clouds (precisely, their centres of mass) is a submartingale. This result, Lemma 4.2 below,
does not need to assume v1 = vν . The intuition for this result is that the two extreme clouds
have their own intrinsic speeds, v1 (for the leftmost) and vν (for the rightmost), and, as isolated
systems, these intrinsic speeds would be exactly the speeds of the centres of mass of the clouds
(cf. Theorem 3.1). In the full system, the presence of other particles in between these two clouds
should make it harder for them to move towards each other.

To state the result, let C = [ℓ; r] for 1 ≤ ℓ < r ≤ N . Then for x ∈ XN , define

gC(x) := ⟨1, x⟩ℓ,r/⟨1,1⟩ℓ,r, and, for t ∈ R+, Gj(t) := gCj (X(t)). (4.2)

Also set
Γ(n) := Gν(τn)−G1(τn) = g[kν−1+1;kν ](X(τn))− g[1;k1](X(τn)). (4.3)

Lemma 4.2. Suppose that ν ≥ 2, and recall from (1.15) that v1 ≥ vν . Then, for every n ∈ Z+,

E[Γ(n+ 1)− Γ(n) | Fτn ] ≥ (v1 − vν)/RX(τn), a.s. (4.4)

Suppose, additionally, that (1.16) holds. Then there exists δ > 0 such that

E[(Γ(n+ 1)− Γ(n))2 | Fτn ] ≥ δ, a.s. (4.5)
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Remark 4.3 (Non-monotonicity). It does not appear straightforward to use the intuition for
Lemma 4.2 expressed above directly, via a stochastic monotonicity argument, for example. The
exception is in the case where all mi ≡ m ∈ (0,∞) are equal, in which case the natural coupling
shows that the presence of an additional particle to the right (say) of a system cannot increase the
speed of the centre of mass of the system. For systems with different masses, the non-constant
total activity rate (i.e. violation of (2.1)) means the natural coupling does not work.

Proof of Lemma 4.2. Recall from Definition 1.8 and (1.12) that that C1 = {k0+1, . . . , k1} and Cν =
{kν−1 + 1, . . . , kν}, with k0 = 0 and kν = N , are the leftmost and rightmost clouds, respectively.
By the definition of Gℓ,r from (4.2) and Lemma 3.5, with e as defined at (3.13),

E[Gν(τn+1)−Gν(τn) | Fτn ] =M−1
kν−1,N

EX(τn)⟨1, e⟩kν−1+1,N ≥ −
Ukν−1,N

Mkν−1,NRX(τn)
, a.s.

Similarly,

E[G1(τn+1)−G1(τn) | Fτn ] =M−1
0,k1

EX(τn)⟨1, e⟩1,k1 ≤ −
U0,k1

M0,k1RX(τn)
, a.s.

It follows from (4.3) that (recall that k0 = 0 and kν = N)

E[Γ(n+ 1)− Γ(n) | Fτn ] ≥
1

RX(τn)

(
Uk0,k1

Mk0,k1

−
Ukν−1,kν

Mkν−1,kν

)
=
v1 − vν
RX(τn)

, a.s.,

by (1.15), verifying (4.4). Since k1 < kν−1 + 1, at most one of Gν(τn+1)−Gν(τn) and G1(τn+1)−
G1(τn) can be non-zero. Hence

E[(Γ(n+ 1)− Γ(n))2 | Fτn ] = E[(G1(τn+1)−G1(τn))
2 | Fτn ]

+ E[(Gν(τn+1)−Gν(X(τn)))
2 | Fτn ].

The quantity G1(τn+1)−G1(τn) is non-zero if and only if one of the particles with labels in C1 =
[1; k1] jumps, and then, by (3.12),

E[(G1(τn+1)−G1(τn))
2 | Fτn ] =M−1

0,k1
EX(τn)[⟨1, e⟩

2
1,k1 ]

≥ R−1
X(τn)

M−1
0,k1

∑
i∈C1

(ai + bi),

which, under hypothesis (1.16), is uniformly positive. This implies (4.5).

Recall from (4.2) that Gj(t) is the centre of mass of cloud Cj at time t ∈ R+. Define

Γj(n) := Gj+1(τn)−Gj(τn), for j ∈ [ν − 1] and n ∈ Z+, (4.6)

the distance between the centres of mass of clouds j and j + 1 at time τn.

Lemma 4.4. Suppose that ν ≥ 2, and that j ∈ [ν − 1] is such that vj = vj+1, with the notation
from (1.15). Then, for every n ∈ Z+,

E[Γj(n+ 1)− Γj(n) | Fτn ] ≤ 0, on {Γj(n) > 0}. (4.7)
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Proof. Suppose that j ∈ [ν − 1] is such that vj = vj+1. Then Gj , Gj+1 are the centres of mass
processes for clouds Cj = {kj−1 + 1, . . . , kj} and Cj+1 = {kj + 1, kj+1}, respectively. From (4.2),

E[Gj(X(τn+1))−Gj(X(τn)) | Fn] =M−1
kj−1,kj

EX(τn)⟨1, e⟩kj−1+1,kj

On the event {Γj(n) > 0}, recalling the definitions of k± = k±(X(τn)) from (3.15), we have
(kj+1)− = kj+1 and (kj)+ = kj . Hence, from (3.18) in Lemma 3.5, we have that, on {Γj(n) > 0},

RX(τn) EX(τn)⟨1, e⟩kj+1,kj+1
≤ Ukj ,kj+1

, and RX(τn) EX(τn)⟨1, e⟩kj−1+1,kj ≥ Ukj−1,kj ,

by (1.5). It follows from (4.6) that, on {Γj(n) > 0},

E[Γj(n+ 1)− Γj(n) | Fτn ] = R−1
X(τn)

(
M−1

kj ,kj+1
⟨1, e⟩kj+1,kj+1

−M−1
kj−1,kj

⟨1, e⟩kj−1+1,kj

)
≤ R−1

X(τn)

(
Ukj ,kj+1

Mkj ,kj+1

−
Ukj−1,kj

Mkj−1,kj

)
= 0,

by (1.15) and the assumption that vj = vj+1. This proves (4.7).

Recall the definition of ∆C(t) from (1.6). The following straightforward consequence of Propos-
ition 3.2 will be useful in showing that to control dynamics of clouds it suffices, on large scales, to
control dynamics of their centres of mass.

Lemma 4.5. Suppose that ν ∈ N and cloud decomposition C1, . . . ,Cν has speeds v1 = · · · = vν ∈ R.
Then, for every ε > 0, for all n sufficiently large,

P
[
max
j∈[ν]

max
0≤i≤n

∆Cj (τi) ≥ n
2ε

]
≤ e−nε

.

Proof. The proof of Proposition 3.2 up to (3.40) shows that, for every ε > 0,

max
j∈[ν]

sup
i∈Z+

P[∆Cj (τi) ≥ n
2ε] ≤ e−nε

,

for all n sufficiently large. The claimed result follows from a union bound.

Proof of Proposition 4.1. We apply Lemma A.1 with Xn = Γ(n) as defined at (4.3). Then the
bounded-increments hypothesis (A.2) is satisfied, and Lemma 4.2 shows that the submartingale
hypothesis (A.3) and uniform lower bound on second moments (A.4) both hold (here we use hypo-
thesis (1.16)). Then Lemma A.1 shows that, for any γ ∈ (0, 1/2) and ε ∈ (0, 1−2γ

4 ),

P

[
n∑

i=0

1{Γ(i) ≤ nγ} > n
1
2
+γ+4ε

]
≤ e−nε

. (4.8)

Since L(n) defined at (4.1) satisfies |L(n) − Γ(n)| ≤ ∆C1(τn) + ∆Cν (τn), we combine Lemma 4.5
with (4.8) to get

P

[
n∑

i=0

1
{
L(i) ≤ nγ − 2n2ε

}
> n

1
2
+γ+4ε

]
≤ P

[
n∑

i=0

1{Γ(i) ≤ nγ} > n
1
2
+γ+4ε

]

+ P
[
max
0≤i≤n

(∆C1(τi) + ∆Cν (τi)) ≥ 2n2ε
]
≤ 2e−nε

,

which yields the result, provided ε < γ/2.
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4.3 Same-speed clouds: Quantified separation

As outlined in §4.1, the key result in the proof of Theorem 1.10 is the following quantitative
separation result on systems of multiple clouds all of the same intrinsic speed, which shows that
not only do the two extreme clouds stay well separated most of the time, but all adjacent pairs of
clouds do. Recall from (1.17) that for j ∈ [ν − 1], Lj(t) ∈ Z+ denotes the separation of clouds Cj

and Cj+1 at time t.

Proposition 4.6. Suppose that (1.16) holds, that ν ≥ 2, and that v1 = · · · = vν . Then there exists
ε > 0 such that, for all n sufficiently large,

P

[
n∑

i=0

1

{
min

1≤j≤ν−1
Lj(τi) ≤ nε

}
> n1−ε

]
≤ e−nε

.

Proof. Suppose ν ≥ 2. For γ ∈ (0, 1/2), take ε ∈ (0, 1−2γ
12 ) and, for k ∈ N, define

γk := γk, αk := 1− 21−kγk(k−1)/2

(
1

2
− γ − 6ε

)
, and εk := 21−kε. (4.9)

For k ∈ {1, 2, . . . , ν − 1}, say time i ∈ Z+ is k-good if #{j ∈ [ν − 1] : Lj(i) ≥ 2−knγk} ≥ k (the
definition of k-good also depends on n, but we assume n is fixed and sufficiently large, as determined
in the subsequent argument, and keep the n-dependence tacit). Let Gk(i) denote the event that i
is k-good, and note that Gk+1(i) ⊆ Gk(i) ∈ Fi for 1 ≤ k ≤ ν − 2. Define, for k ∈ [ν − 1],

Bk(A) :=
∑
i∈A

1Gc
k(i)

,

the number of i ∈ A ⊆ [n] that are not k-good. If ν = 2, note that L1(τn) = L(n) as defined
at (4.1), and we have from Proposition 4.1 that, for ε > 0 as given, for all n large enough,

P[B1([n]) ≥ n
1
2
+γ1+5ε] ≤ e−nε

,

which completes the proof if ν = 2. The general case is a finite induction, for which we suppose
ν > 2 and consider the inductive hypothesis

P[Bk([n]) ≥ nαk ] ≤ e−nεk , where k ∈ [ν − 1], (4.10)

which we have verified for k = 1 with α1 =
1
2 + γ1 + 6ε1 and ε1 = ε from above, as in (4.9).

The heart of the induction is to show that, with very high probability, most k-good times can
be upgraded to (k + 1)-good times, as follows. If a time t ∈ [n] is k-good, then the next nk times
will have k gaps that remain large (where nk is chosen appropriately of order nγk), since particles
only move to their nearest neighbours, meaning gaps cannot shrink too fast. Over that relatively
long time, the k+1 subsystems (separated by the gaps that made the original time k-good) evolve
independently. As long as k < ν − 1, at least one of those subsystems contains at least two clouds,
and so we can apply Proposition 4.1 to conclude that the extreme clouds of that subsystem separate
for most times in the interval [t, t + nk]. Since clouds are tight by the cloud concentration result
in Lemma 4.5, this means that there is at least one (additional) large gap between clouds at most
of those times. This additional separation allows us to upgrade most k-good times to (k + 1)-
good times, with high probability. Iterating this shows that, with high probability, most times are
(ν−1)-good, which means all clouds are well separated. We give the details, starting by explaining
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how a particular k-good time leads to many (k+1)-good times, and then using a blocking argument
prove (4.10) for each 1 ≤ k ≤ ν − 1.

First we show that, for every k ∈ [ν − 2], for all t ∈ [n] and all n large enough,

P
[
Bk+1

(
[t, t+ nk]

)
≥ nα1γk

∣∣∣ Ft

]
≤ e−nε1

, on Gk(t), (4.11)

where nk := ⌊2−k−1nγk⌋. Fix any k-good time t ∈ [n]. By definition of the k-good property, that
means there exists Jt ⊂ [ν] with size #Jt = k for which Lj(t) ≥ 2−knγk for every j ∈ Jt. (For
definiteness, in case of a choice, choose the Jt that has the smallest possible maximal element.)
Since |Lj(n+ 1)− Lj(n)| ≤ 1 for all n ∈ Z+, it follows that

Lj(i) ≥ 2−k−1nγk for all i ∈ [t, t+ nk] and all j ∈ Jt. (4.12)

Suppose that t is k-good. List Jt in order as Jt = {j1, j2, . . . , jk} and define a corresponding
ordered partition of [ν], denoted B1, . . . ,Bk+1, by

B1 :=

j1⋃
j=1

Cj , B2 :=

j2⋃
j=j1+1

Cj , . . . ,Bk+1 :=
ν⋃

j=jk+1

Cj .

Each Bi is a union of one or more clouds Cj . Since k + 1 ≤ ν − 1, there is at least one Bℓ =

∪jℓj=jℓ−1+1Cj (with convention j0 = 0 and jk+1 = ν) that is the union of at least two clouds; choose

and fix such 1 ≤ ℓ ≤ k + 1 (the Bi and ℓ depend on t but we omit that from the notation). Recall
the property (4.12), which states that the collections of clouds B1, . . . ,Bk+1 stay well-separated
over time interval [t, t + nk]. The same is true if we ran a system with the same configuration at
time t and independent evolution of subsystems B1, . . . ,Bk+1. Hence there is a natural coupling
over time [t, t+ nk] of the original system to a collection of independent subsystems B1, . . . ,Bk+1

(which do not interact). In particular, over time [t, t+nk], the part of the full system corresponding
to Bℓ, when it jumps, has the same law as an isolated system containing only the particles in Bℓ.

Consider an isolated system containing only the particles corresponding to Bℓ, started (at time
0) from the configuration inherited from the full system at time t. Denote by τ ℓ0 , τ

ℓ
1 , . . . the jump

times of this isolated system, analogously to (3.23). We retain the original labels for the particles
and clusters, and set

Lℓ(n) := min
i∈Cjℓ

Xi(τ
ℓ
n)− max

i′∈Cjℓ−1

Xi′(τ
ℓ
n),

the separation of the two extreme clouds of the isolated system, according to its internal jump
clock. Proposition 4.1 applied to this isolated system yields, for ε > 0 small enough,

P

[
n∑

i=0

1

{
Lℓ(i) ≤ nγ

}
> n

1
2
+γ+5ε

]
≤ e−nε

.

In addition, write

∆ℓ(n) :=

jℓ−1∑
j=jℓ−1+2

∆Cj (τ
ℓ
n),

for the total span of all clouds other than the two extreme clouds. An application of Lemma 4.5
shows that P[max0≤i≤n∆

ℓ(i) ≥ n2ε] ≤ e−nε
. In n steps of the full system, the subsystem corres-

ponding to Bℓ takes at most n steps. On the other hand, a binomial concentration bound shows
that, with probability at least 1− e−nε

, the subsystem corresponding to Bℓ takes at least δn steps,
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where δ > 0 is a positive constant depending only on the ai, bi, whose existence is guaranteed
by (1.16). Hence, since γ ∈ (0, 1/2) was arbitrary, by the coupling described above, we deduce for
the full system that, for any γ ∈ (0, 1/2), there exists ε > 0 so that, for all n large enough,

P

[
t+n∑
i=t

1

{
max

jℓ−1+1≤j≤jℓ−1
Lj(i) ≤ nγ

}
> nα1

∣∣∣∣ Ft

]
≤ e−nε

, on Gk(t),

where α1 =
1
2 + γ + 6ε as at (4.9). Combined with (4.12), this verifies (4.11).

Now we can complete the induction. Suppose that (4.10) is true for some k with 1 ≤ k ≤ ν− 2,
γk ∈ (0, 1/2) and αk ∈ (1/2, 1) given by (4.9), and some εk > 0. Define sj := jnk, so that
0 = s0 < s1 < · · · < swk

≤ n, where wk := ⌊n/nk⌋ has wk ∼ 2k+1n1−γk as n → ∞. Consider
time intervals ip := [sp−1, sp − 1] for p ∈ [wk] and iwk+1 := [swk

, n]. On the event Bk([n]) < nαk ,
there can be no more than nαk(1−γk) intervals ip (p ∈ [wk + 1]) for which Bk(ip) > nαkγk . Write
P := {p ∈ [wk + 1] : Bk(ip) ≤ nαkγk}. Then, since each ip has size nk < nγk ,

Bk+1([n]) ≤ nαk(1−γk)nγk +
∑
p∈P

Bk+1([ip]), on {Bk([n]) < nαk}. (4.13)

Consider any p ∈ P. Then there is some k-good time tp (for definiteness, choose the earliest) with
sp−1 ≤ tp < sp and tp ≤ sp−1 + nαkγk . Hence, by (4.11) and the fact that #P = wk + 1 ≤ 2νn1−γk ,

P
[∑
p∈P

Bk+1([ip]) ≥ 21+νn1−γk(1−αk)
]
≤ 2νn1−γk sup

1≤p≤wk+1
P[Bk+1([ip]) ≥ 2nαkγk ]

≤ 2νn1−γk sup
1≤p≤wk+1

P[Bk+1([ip]) ≥ nαkγk + nα1γk ] ≤ e−nε1
,

using also that αk ≥ α1 by (4.9). It follows from the induction hypothesis (4.10) and the fact that
γk < 1/2 and εk ≤ ε1 that

P[Bk+1([n]) ≥ 22+νn1−γk(1−αk)]

≤ P[Bk+1([n]) ≥ 21+νn1−γk(1−αk) + nαk+γk(1−αk), Bk(n) < nαk ] + P[Bk([n]) ≥ nαk ]

≤ P
[∑
p∈P

Bk+1([ip]) ≥ 2n1−γk(1−αk)
]
+ e−nεk ≤ 2e−nεk ,

using (4.13). Using the fact that αk+1 > 1− γk(1− αk) by (4.9) we verify P[Bk+1([n]) ≥ nαk+1 ] ≤
e−nεk+1

, for εk+1 = εk/2 and all n sufficiently large, which completes the inductive step.

Lemma 4.7. Suppose that (1.16) holds, that ν ≥ 2, and that v1 = · · · = vν = v ∈ R. Then, for
every i ∈ [N ], limt→∞ t−1Xi(t) = −v, a.s.

Proof. If ν = 1 then the result is contained in Theorem 1.3, so it suffices to suppose ν ≥ 2. We couple
the original particle system to a system in which each cloud behaves completely independently
of the others. The two systems can be coupled to have the identical initial configurations, and
that whenever (n ∈ Z+) event En := {min1≤j≤ν−1 Lj(τn) > 0} occurs, i.e., no particles from
different clouds are together in the original system, they take precisely the same holding times
and increments. Write X̃ = (X̃(t))t∈R+ for the system with independent clouds, maintaining the

labelling of the original system, so that (X̃i(t))i∈Cj behave as independent elastic systems for each
j, and weak order is maintained within each Cj , but particles from different ‘clouds’ can swap places
due to the independence.
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Consider Gj(t) the centre of mass of cloud Cj in the original system and G̃j(t) the centre of

mass of cloud Cj in the independent system. For fixed j, the subsystem (X̃i(t))i∈Cj (with suitable
mapping of notations) satisfies the hypotheses of Theorem 3.1, and so, in particular,

lim
t→∞

t−1G̃j(t) = −vj , a.s. (4.14)

Fix j ∈ [ν] and define τj,0 := 0 and, for n ∈ Z+,

τj,n+1 := inf{t ≥ τj,n : Gj(t) ̸= Gj(τj,n)},

the jump times of Gj (a subsequence of τ0, τ1, . . . defined at (3.23)). Define τ̃j,0, τ̃j,1, . . . analogously

for G̃j . Also define Nj,t := sup{n ∈ Z+ : τj,n ≤ t} and Ñj,t := sup{n ∈ Z+ : τ̃j,n ≤ t}, the numbers

of jumps, up to time t, of Gj and G̃j , respectively. The process G̃j can jump several times between
the jumps of Gj , but the coupling guarantees that if Ei occurs in the coupled system at time τj,i,

then Gj(τj,i)−Gj(τj,i+1) = G̃j(τj,i+1)− G̃j(τj,i). It follows that, for a constant C <∞,

∣∣Gj(t)− G̃j(t)
∣∣ ≤ Nj,t−1∑

i=0

(
Gj(τj,i+1)−Gj(τj,i)

)
1Ec

i
+

Nj,t−1∑
i=0

(
G̃j(τj,i+1)− G̃j(τj,i)

)
1Ec

i

≤ C
max(Nj,t,Ñj,t)−1∑

i=0

1Ec
i
,

since Gj(0) = G̃j(0) and both Gj and G̃j have bounded increments. Since jump rates are uniformly
bounded away from 0 and ∞, there is a constant B < ∞ such that, a.s., for all t large enough,
both Nj,t ≤ Bt and t−1Ñj,t ≤ Bt. Hence limt→∞ t−1|Gj(t) − G̃j(t)| = 0, a.s., by Proposition 4.6.
Also by Lemma 4.5, for every i ∈ Cj , n

−1|Xi(τn)−Gj(n)| → 0, a.s.

Finally, we can complete the proof of the cloud decomposition, Theorem 1.10.

Proof of Theorem 1.10. The cloud stability result, part (b), is a consequence of Proposition 3.2.
For the remaining parts, we use another coupling. Split the system into subsystems of constant-
speed clouds, so for example, B1 = C1 ∪ · · · ∪ Ci1 is the leftmost subsystem, where i1 = max{j ∈
[ν] : vj = v1}. This gives subsystems B1, . . . ,BK , say (K ∈ [ν]). Consider a system that starts
from the same initial configuration as the original system, but in which the subsystems Bj evolve
independently of each other. In the independent system, each Bj evolves as a system with same-
speed clouds, and so satisfies the strong law from Lemma 4.7 and the cloud separation result from
Proposition 4.6. We couple the independent system and the original system such that whenever
the original system is in a configuration in which no two subsystems have particles at the same
site, we use the same holding times and jumps as the independent system. By the strict ordering
of the speeds, in particular, the strong law shows that there is an a.s.-finite time τ for which, for
all t ≥ τ , the two systems evolve with exactly the same increments. It follows that the maximum
displacement between the particles in the original system and their partners in the independent
system remains bounded by a finite random variable. This verifies the speeds for the original system
as stated in part (a) of the theorem, and also means that the separation result from Proposition 4.6
remains valid for the original system, completing the proof of part (c) of the theorem.
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5 Comments on invariant distributions

5.1 Irreversibility of dynamics

A continuous-time Markov chain on a countable state space X, with transition rates qi,j , i, j ∈ X,
is reversible with respect to an invariant measure π = (πi)i∈X if the detailed balance relation
πiqi,j = πjqj,i holds for all i, j ∈ X. For any cycle of states i1, i2, . . . , in, in+1 with i1 = in+1 and no
other pair of states equal, taking a product of the detailed balance relations πikqik,ik+1

= πik+1
qik+1,i

over k ∈ {1, . . . , n} implies that
n∏

k=1

qik,ik+1
=

n∏
k=1

qik+1,ik , (5.1)

i.e., the product of the transition rates along the forward cycle is the same as the product of the
transition rates along the backward cycle. In fact, a criterion of Kolmogorov says that the Markov
chain is reversible if and only if (5.1) holds for every cycle [33, p. 23].

It is well known that the simple exclusion process, as described in §2.4, is reversible, and this is
key to the explicit computation of invariant measures. For the elastic model studied in the present
paper, the generic situation, provided N ≥ 3, is that reversibility fails: see Figure 5 for an example.
Thus it seems that, generically, it may be difficult to obtain an explicit expression for the invariant
measure in the stable case.

Remark 5.1 (Discrete vs. continuous time). Consider the elastic particle system with mi ≡ m ∈
(0,∞) for all i ∈ [N ]. As mentioned in §2.2, since the total activity rate (2.1) of the elastic model
with constant masses is independent of the current configuration, the discrete-time jump chain
associated with the continuous-time Markov chain is stable precisely when the continuous-time
chain is stable, and the stationary measures coincide. The Kolmogorov cycle criterion has a direct
discrete-time analogue, where in (5.1) one replaces the transition rates by transition probabilities.
Since the total activity rate is constant, the same example in Figure 5 also shows that reversibility
fails in the discrete-time setting, as it must. By contrast, the exclusion process does not have
constant total activity rate, but nevertheless it turns out that the jump-chain of the exclusion
process is also reversible (with a different invariant measure from the continuous-time version).

5.2 Exact computations

Suppose that the elastic particle system is stable, i.e., satisfies the criterion (1.7) from Theorem 1.3.
Then the Markov process of inter-particle separations η(t) := (η1(t), . . . , ηN−1(t)) has an invariant
distribution π(N−1)(x), x ∈ ZN−1

+ (cf. Corollary 1.5). Reversibility often enables one to explicitly
compute the corresponding invariant measure; for example, the exclusion process (§2.4) is reversible
and stationary measures are product-geometric (see e.g. [36]). For non-reversible systems exact
computation of stationary distributions is typically much harder. Generically, as in Figure 5, there
is no reversibility for the elastic particle system for N ≥ 3, and exact computation of stationary
distributions remains an open problem (we comment on this in §5.3 below). However, the case
N = 2 is reversible (since it reduces to a birth-death random walk on Z+). In this section we
record this special case, and we finish with some open problems in §5.3, including to identify
exceptional parameter values for the general N ≥ 3 case where reversibility holds.

Case N = 2. For two particles (see Theorem 1.3 and Example 1.6) the system is stable if and
only if u1 > u2, where ui is as defined at (1.3) (note that this implies b1+a2 > 0). The inter-particle
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Figure 5: An example of an N = 3 particle system showing that the dynamics for the elastic process is
not reversible. Take jump rates (ai, bi) for particles in free space given by (1, 2), (1, 1), (2, 1) (top picture).
Pictured are the transition rates for the cycle (1, 1) ↔ (0, 2) ↔ (0, 1) ↔ (1, 1) in the elastic model (bottom
left) as opposed to the exclusion process (bottom right). In the exclusion process the rates for sequence
(1, 1) → (0, 2) → (0, 1) → (1, 1) and its reversal (1, 1) ← (0, 2) ← (0, 1) ← (1, 1) have the same product:
1 · 2 · 1 = 2 · 1 · 1. In the elastic process, the rates for sequence (1, 1)→ (0, 2)→ (0, 1)→ (1, 1) have product
1 · 2 · 2 = 4 while its reversal (1, 1)← (0, 2)← (0, 1)← (1, 1) has product 2 · 1 · 3 = 6.

distance is a birth-death random walk on Z+ and, in the positive-recurrent case, the stationary
distribution π : Z+ → [0, 1] can be computed explicitly by solving

(a1 + a2 + b1 + b2)π0 = (b1 + a2)π1,

(a1 + a2 + b1 + b2)π1 = (b1 + a2)π2 + (a1 + a2 + b1 + b2)π0

(a1 + a2 + b1 + b2)πk = (b1 + a2)πk+1 + (a1 + b2)πk−1, k ≥ 2.

The solution obtained (cf. e.g. [5, pp. 197–8]) is a zero-modified geometric distribution

π0 =
u1 − u2

2(b1 + a2)
, and πk =

(u1 − u2)(a1 + a2 + b1 + b2)(a1 + b2)
k−1

2(b1 + a2)k+1
, k ≥ 1.

An alternative argument uses speeds and ‘ergodic’ considerations. By stability, the long-run average
speed of any particle must be the same as that of the centre of mass of the system, which, by
Theorem 3.1, is always −U2/M2 = (u1 + u2)/2. The leftmost particle travels at its intrinsic speed
u1 unless η1(t) = 0, in which case it cannot jump to the right but its speed of jumping left is
increased. It is not hard to show then that

u1 + u2
2

= u1 − (b1 + a2) lim
t→∞

1

t

∫ t

0
1{η1(s) = 0}ds = u1 − (b1 + a2)π0,

recovering the formula for π0; considering the rightmost particle gives the same conclusion.

Case N ≥ 3. Without reversibility, it appears challenging to proceed in general. Even using the
‘ergodic’ property and speeds, as in the last example, to compute stationary probabilities of one
or more coordinates being zero does not seem straightforward: considering the speeds gives N + 1
equations and there are 2N−1 unknowns (each coordinate can be zero or non-zero), but, as in the
above example, the N + 1 equations are not linearly independent, so even for N = 3 the system is
undetermined.
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5.3 Open problems

It is known in the setting of Atlas models (see §2.6 and [39]) that the skew symmetry condition of
Harrison & Williams [26, 27, 48], transferred from the theory of reflected diffusions in the orthant,
yields a necessary and sufficient condition on parameters of the model in order for it to have
a product-exponential invariant distribution, and possess a relative of the reversibility property
known as strong duality. We suspect that there should be a related picture in our setting, given the
strong parallels with the Atlas model, but it is not clear what condition is needed to play the role
of skew symmetry: the Atlas model is a certain heavy-traffic scaling limit of the particle system
(see [32] and [36, §6.3]) but there are many potential conditions on the ai, bi that can lead to the
limiting parameters satisfying the skew symmetry condition, and no candidate that we tried was
adequate to guarantee reversibility.

Problem 5.2. For N ≥ 3, formulate a necessary and sufficient condition on the ai, bi (and mi)
under which the elastic particle system is reversible and has a product-geometric invariant measure.

In the case N = 3 the problem is equivalent (see §2.5) to that of a nearest-neighbour random
walk on Z2

+ with boundary reflections. It remains a challenging problem to obtain (necessary
and/or sufficient) conditions under which a random walk on Z2

+ has a stationary measure that can
be expressed explicitly, with particular interest on expressions as a product of geometric terms, or
a finite or countable sum of such products: see e.g. [3, 4, 12, 13] and references therein. The scope
of the compensation approach as described in [3] appears to cover the N = 3 case of the elastic
model, but successful application of that approach to this setting remains an open problem, as far
as we are aware. There are some classes of walks that have been solved, for example in [4, 12,
13], but the forms of boundary reflections assumed in [4, 12, 13] exclude application to any stable
regime for the present model.

Problem 5.3. More generally, compute explicitly the invariant measure of the elastic particle
system when N ≥ 3.

A Submartingale occupation and defocusing

For X := (Xn)n∈Z+ , a stochastic process taking values in R+, we define

LXn (x) :=
n∑

i=0

1{Xi ≤ x}, for x ∈ R+, (A.1)

the occupation time of interval [0, x] up to time n ∈ Z+.

Lemma A.1. Let X = (Xn)n∈Z+ be an R+-valued process, adapted to a filtration (Fn)n∈Z+.
Suppose that there exist B ∈ R+ and v ∈ (0,∞) such that, for all n ∈ Z+,

P[Xn+1 −Xn ≤ B] = 1; (A.2)

E[Xn+1 −Xn | Fn] ≥ 0, a.s.; (A.3)

E[(Xn+1 −Xn)
2 | Fn] ≥ v, a.s. (A.4)

Then, for any γ ∈ (0, 1/2) and any ε ∈ (0, 1−2γ
4 ), for all n sufficiently large,

P
[
LXn (nγ) ≥ n

1
2
+γ+4ε

]
≤ e−nε

, and ELXn (nγ) ≤ n
1
2
+γ+4ε.
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Remarks A.2. (i) A consequence of Lemma A.1 (taking γ ≈ 0 and then γ ≈ 1/2) and the Borel–
Cantelli lemma is that, for every ε > 0 and every B ∈ R+,

lim
n→∞

n−1LXn
(
n(1/2)−ε

)
= lim

n→∞
n−(1/2)−εLXn (B) = 0, a.s., (A.5)

which says, roughly speaking, that X is (i) for all but a vanishing proportion of time growing
almost diffusively, and (ii) only of constant size for a roughly diffusively growing cumulative time.
This ‘diffusive’ behaviour is (to within log factors) sharp in the case of one-dimensional symmetric
simple random walk, and so no significantly stronger conclusion is valid in general.

(ii) If M0,M1, . . . is a martingale with uniformly bounded increments and E[(Mn+1 − Mn)
2 |

Fn] ≥ v, a.s., then the hypotheses (A.2)–(A.4) are satisfied by the submartingale Xn = |Mn|. Thus
Lemma A.1 can be viewed in relation to results on “martingale defocusing” [6, 23, 40]. In that
context it is known [23] that, for example, one can construct martingales of this type for which
P[|Mn| ≤ B] ≥ n−β for β ∈ (0, 1/2) that can be arbitrarily small, for very specific times n (indeed,
the construction of the martingale in [23] depends on the specific choice of n). Our result, however,
shows that in an averaged sense the majority of times conform with the intuition that such a
martingale should be ‘diffusive’, since Lemma A.1 implies that

∑n
i=0 P[|Mi| ≤ B] = O(n(1/2)+ε).

Proof of Lemma A.1. Let x ∈ (0,∞). Define λx0 := 0 and then, successively, for k ∈ N,

ρxk := inf{m ≥ λxk−1 : Xm ≥ 2x}, and λxk := inf{m ≥ ρxk : Xm ≤ x},

where inf ∅ := ∞, as usual. To lighten the notation, we drop the superscript x from now on, and
write simply λk, ρk. Then 0 = λ0 ≤ ρ1 ≤ λ1 ≤ · · · are (possibly infinite) stopping times that
partition the path of the process into high-level excursions over time intervals [ρk, λk) and low-level
excursions over time intervals [λk, ρk+1). Any visits by the process to [0, x] must occur during
low-level excursions.

We show that low-level excursions are, cumulatively, much shorter in duration than high-level
excursions. First note that, by hypotheses (A.3)–(A.4),

E[X2
n+1 −X2

n | Fn] = E[(Xn+1 −Xn)
2 | Fn] + 2Xn E[Xn+1 −Xn | Fn] ≥ v, a.s.

Consequently, Theorem 2.4.12 of [37, p. 45] shows that, for every ℓ ∈ Z+, on {λk <∞},

P
[

max
λk+ℓn≤m≤λk+(ℓ+1)n

Xm ≤ 2x
∣∣∣ Fλk+ℓn

]
≤ (2x+B)2

vn
,

by hypothesis (A.2). Hence there is a constant r > 0 (depending only on B and v) for which

P[ρk+1 − λk ≥ (ℓ+ 1)⌊rx2⌋ | Fλk+ℓ⌊rx2⌋] ≤
1

e
1
{
ρk+1 − λk ≥ ℓ⌊rx2⌋

}
,

from which we deduce that, on {λk <∞},

P[ρk+1 − λk ≥ ℓrx2 | Fλk
] ≤ e−ℓ. (A.6)

From (A.6) there exists C <∞ (depending only on v and B) such that, for any ε > 0,

P

[
n−1∑
k=0

(ρk+1 − λk)1{λk <∞} > Cn1+2εx2

]
≤ P

[
n−1⋃
k=0

{
(ρk+1 − λk)1{λk <∞} > Cn2εx2

}]
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≤ ne−n2ε
. (A.7)

It follows from (A.6) that {λk < ∞} ⊆ {ρk+1 < ∞}, up to sets of probability zero. Considering
high-level excursions, Lemma 2.7.7 of [37, p. 76] shows that, for k ∈ N, on {λk−1 <∞},

P
[
λk − ρk ≥ 4vy2

∣∣ Fρk

]
≥ 1

2
P
[

max
ρk≤m≤λk

Xm ≥ 2(x+ y)
∣∣∣ Fρk

]
. (A.8)

For y > B, let τk(y) := inf{m ≥ ρk : Xm ≥ 2(x + y)}; by the same argument as (A.6), one has
{λk−1 <∞} ⊆ {τk(y) <∞}. Using hypothesis (A.3), the submartingale optional stopping theorem
(e.g. Theorem 2.3.7 of [37, p. 33]) implies that, on {λk−1 <∞},

2x ≤ Xρk ≤ E[Xλk∧τk(y) | Fρk ]

≤ xP[λk < τk(y) | Fρk ] + (2(x+ y) +B)P[λk > τk(y) | Fρk ],

since, by (A.2), Xτk(y) ≤ 2(x+ y) +B whenever τk(y) <∞. It follows that, on {λk−1 <∞},

P
[

max
ρk≤m≤λk

Xm ≥ 2(x+ y)
∣∣∣ Fρk

]
= P[τk(y) < λk | Fρk ] ≥

x

x+ 2y +B
. (A.9)

Combining (A.8)–(A.9), we obtain

P
[
λk − ρk ≥ 4vy2

∣∣ Fρk

]
≥ x

2x+ 4y + 2B
, on {λk−1 <∞}. (A.10)

Then, denoting Mn := max1≤k≤n(λk − ρk),

P
[
Mn < 4vy2

]
≤ E

[
P[Mn < 4vy2 | Fρn ]1{λn−1 <∞}

]
= E

[
P[λn − ρn < 4vy2 | Fρn ]1{λn−1 <∞}1

{
Mn−1 < 4vy2

}]
≤

(
1− x

2x+ 4y + 2B

)
P
[
Mn−1 < 4vy2

]
,

using (A.10) in the final step. This recursion leads to the bound

P

[
n∑

k=1

(λk − ρk) ≥ 4vy2

]
≥ P

[
Mn ≥ 4vy2

]
≥ 1−

(
1− x

2x+ 4y + 2B

)n

. (A.11)

Fix γ ∈ (0, 1/2), ε ∈ (0, 1−2γ
4 ), and α = 1

1−2γ+4ε . Choose x = n2αγ and y = nα/(2
√
v). Then (A.7)

and (A.11) combine to show that, for some c > 0 and all n ∈ N sufficiently large,

P

[
n−1∑
k=0

(ρk+1 − λk) ≤ Cn1+3αε+4αγ ,
n∑

k=1

(λk − ρk) ≥ n2α
]
≥ 1−ne−n3αε − e−cn1−α(1−2γ) ≥ 1− e−n2αε

,

since 1− α(1− 2γ) > 3αε. But the latter event implies that LX⌊n2α⌋(n
2αγ) ≤ Cn1+3αε+4αγ . After a

change of variables, this means that, for all n large enough,

P
[
LXn (nγ) ≤ Cn2γ+

1
2α

+ 3ε
2

]
= P

[
LXn (nγ) ≤ Cn

1
2
+γ+ 7ε

2

]
≥ 1− e−nε

,

which yields the claimed result.
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