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asymmetric coupling, with periodic forcing of one of the equations by the other.
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1. Introduction

Although the FitzHugh–Nagumo equations (FHN) were created as a simplified model for nerve impulse, they
have also been intensively studied for purely mathematical reasons. This is because they provide a very simple
example of equations that show complex and varied dynamics.

Several different formulations of the FitzHugh–Nagumo equations [8, 9, 21] occur in the literature both as
reaction-diffusion equations and as ordinary differential equations. A review can be found in Cebrián-Lacasa et
al. [3]. Here we see it as the slow-fast system of ordinary differential equations

(1)

{
εẋ = 4x− x3 − y = f(x, y)
ẏ = x− by − c = g(x, y)

b, c ∈ R 0 < ε << 1

where x is the fast variable and y is the slow one. Its dynamics was described in Gonçalves et al. [10]. In this
article we explore the consequences of coupling two identical FHN.

Synchronisation of two coupled equations of Hodgkin-Huxley type (models for nerve impulse) has been
studied by Labouriau & Rodrigues [20], but it does not cover FHN. Coupling two FHN has been addressed in
many places in the literature. For instance, the effect of having the fast variable of a periodic solution of a
FHN coupled to the fast equation of another FHN and thus forcing it has been explored numerically by several
authors. It was described as experiments in an electrical circuit by Binczack et al. [1], through self-coupling
by Desroches et al. [4] and also numerically by Hoff et al. [14]. Coupling FHN symmetrically through the fast
equations has been also addressed both numerically and analytically in Pedersen et al. [22] and Kristiansen and
Pedersen [16], numerically by Hoff et al. [14]. For both symmetric and asymmetric coupling through the fast
equations, it is studied analytically by Campbell and Waite [2], numerically by Santana et al. [24] and with a
delay in Saha and Freudel [23]. Two different coupling constants, one for the fast variables the other for the slow
ones are explored by Kawato et al. [15] and by Krupa et al. in 2014 [17]. Other authors use the slow coordinate
of a periodic solution of one FHN to force the fast coordinate of another, as in Doss-Bachelet et al. [5] and
Krupa et al. in 2012 [18], the latter in a model with three time scales. Many of these authors explored the
slow-fast structure of the equations focusing on several different aspects of the dynamics: synchrony, periodic
and chaotic mixed-mode oscillations, canards, and bursts. We will discuss their findings in more detail in the
final section of this article.

Here we couple two identical FHN symmetrically through the slow equations. To the best of our knowledge
this has not been done before. The coupling may be understood as a diffusive term since it depends on the
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difference of the slow variables, that in the original formulation of FHN represents ion transport through a
membrane. It allows us to compare the different types of coupling, as discussed in Section 6 below.

Structure of the article. After describing the model in Section 2 and its critical manifold in Section 3
we discuss conditions where the solution of the two equations synchronise in Section 4. Canards, giving rise
to mixed-mode oscillations and small amplitude transients, are treated in Section 5. Finally our results are
discussed in Section 6 comparing them to the findings by the above mentioned authors, with pointers to future
work, followed by a brief excursion into the possibly chaotic mixed-mode oscillations that arise in one-directional
coupling where one FHN is used for periodically forcing the other.

We have endeavoured to make a self contained exposition bringing together all related topics. We have drawn
illustrative figures to make the paper easily readable. All figures in this article were created through numerical
simulations conducted in Matlab, using integration functions such as ode15s or ode23s, except for a figure drawn
by the authors.

2. The object of study

We study the dynamics of two FitzHugh–Nagumo equations coupled through the slow equations:

(2)


εẋ1 = −y1 + φ(x1)
εẋ2 = −y2 + φ(x2)
ẏ1 = x1 − by1 − c− k(y1 − y2)
ẏ2 = x2 − by2 − c− k(y2 − y1)

φ(x) = 4x− x3 b, c, k ∈ R k ̸= 0 0 < ε << 1 .

This is a simplified model for the study of a network of two Hodgkin-Huxley neurones, as in two identical
coupled nerve cells with dynamics given by (x1, y1) and (x2, y2). The parameter k ̸= 0 is the coupling strength.

The parameters b and c modulate the dynamics of each cell as discussed in [10] and in [3]. We think of (2)
as two coupled cells, each one with dynamics represented by (x1, y1) and (x2, y2). When k = 0, the two cells
are independent and the dynamics of (2) is characterised by the cartesian product of two FitzHugh–Nagumo
equations. As described in [10], the dynamics of a single FitzHugh–Nagumo model is characterised by the
existence of at least one and at most three equilibrium states, that may be either stable, unstable or saddles.
For some parameter values there is also a periodic solution. This implies that for k = 0 (no coupling) the
dynamics of (2) is characterised by the existence of periodic orbits (cartesian product with one of the equilibria)
and by a resonant hyperbolic torus foliated by periodic solutions of rotation number 1. Hopf bifurcations and
canard explosions have been found in the particular cases b = 0 (cf. [10, Example 6.1]) and c = 0 (cf. [10,
Example 6.2]). For k ̸= 0 the dynamics of each oscillator interferes on the other. The normally hyperbolic torus
(when it exists) persists for k > 0 small.

System (2) is formulated as a slow-fast system with two fast and two slow equations that are, respectively,
the equations for ẋi and for ẏi, i = 1, 2. There is a huge literature on this type of system, we refer the reader
to the book [19], whose treatment we follow.

Accordingly, we call X = (x1, x2) the fast variables whose dynamics is governed by the fast equations

εẊ = F (X,Y ) with Y = (y1, y2) and

F (x1, x2, y1, y2) = (−y1 + φ(x1),−y2 + φ(x2)) .

Similarly, the slow variables Y = (y1, y2) obey the slow equations Ẏ = G(X,Y ) with

G(x1, x2, y1, y2) = (x1 − by1 − c− k(y1 − y2), x2 − by2 − c− k(y2 − y1)) .

3. The critical manifold

An important concept in the dynamics of slow-fast systems is the critical manifold C0 defined as the set of
equilibria of the fast equations. In the singular case ε = 0 this is the manifold where solutions lie. In the present
case it is the surface

C0 =
{
(x1, x2, y1, y2) ∈ R4 : yi = φ(xi), i = 1, 2

}
,

that contains the fold lines where its projection into the slow variables y1, y2 is singular, i.e., where either
φ′(x1) = 0 or φ′(x2) = 0. The set of fold lines is given by

(3) Σ =
{
(x1, x2, y1, y2) ∈ C0 : x1 = ±2/

√
3 or x2 = ±2/

√
3
}
.
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Figure 1. The critical manifold C0 projected into the (x1, x2) plane as in Lemma 3.2 with
four attracting regions A1∪A2∪A3∪A4 = A (yellow), four saddle regions S1∪S2∪S3∪S4 = S
(green) one repelling region R (blue), four fold lines (black) and four double fold points (red
dots).

The degenerate points (x1, x2, φ(x1), φ(x2)) ∈ Σ with both x1 = ±x2 and x1 = ±2/
√
3 are double folds, that

correspond to the transverse crossing of two fold lines in C0.

Definition 3.1. Let v(ξ) be a smooth vector field in Rn. A smooth manifold M ⊂ Rn invariant under the flow

of ξ̇ = v(ξ) is normally hyperbolic if there is a smooth splitting TRn|M = TM ⊕N such that for all ξ ∈ M the
eigenvalues of Dv(ξ)|N have non-zero real part.

Lemma 3.2. The critical manifold C0 for (2) is normally hyperbolic with respect to the fast equations everywhere
except at the fold points in Σ. The complement C0\Σ has 9 connected components (see Figure 1) corresponding
to the different types of stability of equilibria of the fast equations:

• four regions with attracting equilibria, their union is
A =

{
(x1, x2, y1, y2) : |xi| > 2/

√
3 yi = φ(xi) i = 1, 2

}
where ∂F/∂X has two eigenvalues with negative real part;

• four regions with saddle equilibria, their union is
S =

{
(x1, x2, y1, y2) : |xi| − 2/

√
3 have opposite signs and yi = φ(xi) i = 1, 2

}
where ∂F/∂X has two eigenvalues of opposite signs;

• one region with repelling equilibria
R =

{
(x1, x2, y1, y2) : |xi| < 2/

√
3 yi = φ(xi) i = 1, 2

}
where ∂F/∂X has two eigenvalues with positive real part.

The sets A and S of the previous result may be written as the disjoint union described in the caption of
Figure 1.

Proof. The fast equations consist of a family of equations in the variables x1 and x2 parametrised by Y = (y1, y2).
In this context, for each Y the manifold C0 consists of isolated points, hence its tangent space is trivial and
normal hyperbolicity reduces to the hyperbolicity of the equilibria of the fast equation. This is determined by
the eigenvalues of the derivative of F (X,Y ) with respect to the fast variables X, i.e. by the matrix

∂F

∂X
(x1, x2, y1, y2) =

(
φ′(x1) 0

0 φ′(x2)

)
where φ′(x) = 4− 3x2 .

The result follows by inspection of the sign of φ′. □

Definition 3.3. A set S ⊂ Rn is locally flow-invariant under a vector field W defined in Rn if for every point
x0 ∈ S there is a t0 > 0 such that for every t with |t| < t0 the solution x(t) of differential equation ẋ = W (x)
with x(0) = x0 lies in S.



4 B.F.F. GONÇALVES, I.S. LABOURIAU, AND A.A. P. RODRIGUES

(A)
(B)

Figure 2. Two singular solutions of (2) attracted to the synchrony plane shown in two different
projections, parameters b = 0, c = −2 and k = 1. Conventions: trajectories with initial conditions
at the brown and gray dots, slow part in brown/gray solid lines, fast part dotted, stable equilibrium
(white dot), fold lines (red/black), double fold points (red dots), intersection with synchrony plane
white line. (A) - Projection of C0 into the subspace (x1, x2, y1) (purple). (B) - Same trajectories as in
(A) projected into the plane (x1, x2).

From Lemma 3.2 we obtain the following result:

Corollary 3.4. For every r ≥ 2 and for sufficiently small ε > 0 there is a flow-invariant slow manifold Cε of
class Cr which is O(ε) close, in the Haussdorf topology, to the normally hyperbolic part of C0 , where O stands
for the usual Landau notation. Moreover, close to the set A where C0 attracts the fast flow, the manifold Cε

is also locally attracting for the fast equations in (2) and there is a locally attracting and locally flow-invariant
manifold Aε.

Proof. Since the critical manifold C0 is normally hyperbolic everywhere except at the fold points in Σ, the result
follows by Fenichel’s Theorem [7]. □

Thus, for small ε a typical solution of (2) behaves as follows: a trajectory starting away from Cε moves
fast to the attracting part, Aε, of Cε and remains near this sheet, with the dynamics close to that of the slow
equations in C0, until it runs into the fold line Σ. At Σ it will typically jump out of Cε and move fast to another
attracting component of Cε close to C0\Σ. Therefore, solutions of (2) for small ε > 0 will be close to singular
solutions, defined as trajectories that move with the fast equation into the attracting part of C0 and move on
C0 following the slow equations.

In special situations a trajectory may cross Σ and remain in the unstable region of Cε for some time. Such
a trajectory is called a canard and will be discussed in Section 5 below.

4. Synchrony

Equations (2) have the symmetry γ(x1, x2, y1, y2) = (x2, x1, y2, y1), therefore the plane{
(x, x, y, y) ∈ R4

}
= Fix(γ)

is flow-invariant. Solutions in this plane correspond to two synchronised cells: they behave like a single
FitzHugh–Nagumo system. We refer to this plane as the synchrony plane. Equilibria in this plane satisfy
both y = φ(x) = 4x − x3 and x − bφ(x) − c = 0. Therefore in Fix(γ) there is always at least one equilibrium
and there are at most three equilibria — details in Section 3 of [10]. By the Bézout Theorem there are at most
9 equilibria of (2) so there may be up to 3 symmetry related pairs of equilibria outside the synchrony plane.

The symmetry implies that the synchrony plane Fix(γ) is invariant under the flow of (2). The next result
provides conditions for its intersection with the attracting part, A, of C0 to be attracting.

Proposition 4.1. The intersection Fix(γ) ∩ A is normally hyperbolic if and only if b + 2k ≥ 0. Moreover, in
this case it is locally attracting.

Proof. The normal hyperbolicity of the invariant plane Fix(γ) is determined by the eigenvalues of the compo-
nent N of the derivative of the vector field V (X,Y ) = (F (X,Y ), G(X,Y )) transverse to Fix(γ). We change
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(A) (B)

Figure 3. Singular solution of (2) on the synchrony plane shown in two different projections, pa-
rameters b = 0 = c and k = 1. Conventions: trajectories with initial conditions at the brown dot, slow
part in brown solid lines, fast part dotted, equilibria (white dots), fold lines (red/black) degenerate
fold points (red dots), intersection with synchrony plane (white line). (A) - Projection C0 into the
subspace (x1, x2, y1) (purple). (B) - Same trajectories as in (A) projected into the plane (x1, x2).

coordinates to z1 = x1 + x2, z2 = y1 + y2 in Fix(γ) and z3 = x1 − x2, z4 = y1 − y2 in Fix(γ)⊥, the orthogonal
complement of Fix(γ). This means that:

x1 =
z1 + z3

2
, x2 =

z1 − z3
2

, y1 =
z2 + z4

2
and y1 =

z2 − z4
2

.

Let V̂ (Z) be the expression of the vector field V (X,Y ) in the new coordinates Z = (z1, z2, z3, z4), with
associated equations given by

(4)



εż1 = −z2 + φ

(
z1 + z3

2

)
+ φ

(
z1 − z3

2

)
ż2 = z1 − bz2 − 2c

εż3 = −z4 + φ

(
z1 + z3

2

)
− φ

(
z1 − z3

2

)
ż4 = z3 − bz4 − 2kz4.

Computing DV̂ (Z) at the plane Fix(γ), given by x1 = x2 = x, y1 = y2 = y where z1 = 2x, z2 = 2y,
z3 = z4 = 0 we obtain:

(5) DV̂ (z1, z2, z3, z4)
∣∣∣
(2x,2y,0,0)

=


φ′(x) −1 0 0
1 −b 0 0
0 0 φ′(x) −1
0 0 1 −(b+ 2k)

 Nγ =

(
φ′(x) −1
1 −(b+ 2k)

)

where Nγ is the component of DV̂ (Z) in the directions perpendicular to Fix(γ), evaluated at Z = (2x, 2y, 0, 0) ∈
Fix(γ).

The synchrony plane is attracting if det(Nγ) > 0 and Tr(Nγ) < 0 where

det(Nγ) = −(b+ 2k)φ′(x) + 1 and Tr(Nγ) = φ′(x)− (b+ 2k).

As we saw in Section 3, points in the critical manifold attract the fast flow if φ′(xi) < 0 for i = 1, 2. So, if
b+ 2k ≥ 0 then Fix(γ) ∩A is normally hyperbolic and attracting, since det(Nγ) > 0 and Tr(Nγ) < 0.

Finally, to see that the condition b+ 2k ≥ 0 is necessary for Fix(γ) to be normally hyperbolic, note that in
Fix(γ)∩A the derivative φ′(x) = 4− 3x2 takes all values in the interval (−∞, 0). Therefore, if b+2k < 0 there
will be some point in Fix(γ)∩Aε where φ′(x) = 1/(b+2k), hence det(Nγ) = 0. At this point 0 is an eigenvalue
of Nγ , so normal hyperbolicity fails. Moreover, there will also be some points where either Tr(Nγ) > 0, or where
det(Nγ) < 0, so some trajectories contained in this set may be attracting, but not all of them. □

It remains to see whether the intersection of the the synchrony plane with the attracting part, Aε, of Cε is
also attracting.
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(A) (B)

Figure 4. Several singular solutions of (2) starting in region A2 shown in two different projections,
parameters b = 0.5, c = 0 and k = 1. Trajectories starting close to the fold line are attracted to the
synchrony plane; other trajectories go to Fix(δ). Conventions: trajectories with initial conditions at
the brown and gray dots, slow part in brown/gray solid lines, fast part dotted lines, equilibria white
dots, fold lines (red/black), double fold points red dots, intersection with synchrony/anti-synchrony
planes (solid/dotted lines, respectively. (A) - Projection of C0 into the subspace (x1, x2, y1) (purple)
and trajectories. (B) - Same trajectories as in (A) projected into the plane (x1, x2).

(A)
(B)

Figure 5. Two singular solutions of (2) starting in Fix(γ) ∩ A2 and in Fix(δ) ∩ A3 shown in two
different projections, parameters b = 0.1, c = 0 and k = 0.1. Two distinct stable solutions - bistability.
Conventions: trajectories with initial conditions at the brown and gray dots, slow part in brown/gray
solid lines, fast part dotted lines, equilibria g white dots, fold lines (red/black), double fold points
red dots, intersection with synchrony/anti-synchrony planes (solid/dotted lines), respectively. (A) -
Projection of C0 into the subspace (x1, x2, y1) (purple) and trajectories. (B) - Same trajectories as in
(A) projected into the plane (x1, x2).

Proposition 4.2. For small ε > 0 the intersection Fix(γ)∩Aε is locally flow-invariant under (2). It is normally
hyperbolic and locally attracting if b+ 2k ≥ 0.

Proof. Since γ is a symmetry of (2) then the synchrony plane Fix(γ) is flow-invariant. By Corollary 3.4 the
attracting part Aε of the manifold Cε is locally flow-invariant. Since both Fix(γ) and Cε are locally flow-invariant
sets, their intersection has the same property.

In the proof of Proposition 4.1 it is shown that if b+2k ≥ 0 then, at any point Z ∈ Fix(γ)∩A, the component

Nγ(Z) of DV̂ (Z) perpendicular to Fix(γ) satisfies det (Nγ) (Z) > 1 and Tr (Nγ) (Z) < 0. From Corollary 3.4

we know that Aε is O(ε) close to A. Therefore, for small enough ε, if Z̃ ∈ Fix(γ) ∩ Aε, then det (Nγ) (Z̃) > 0

and Tr (Nγ) (Z̃) < 0 and the second statement follows. □
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Proposition 4.2 is illustrated in Figures 2, 3, 4 and 5. Figures 4 and 5 illustrate the meaning of locally
attracting: the synchrony plane attracts trajectories in an open set around it, but not all trajectories. In the
example of the figures c = 0, hence (2) has additional symmetry and this is explored in the next result.

Proposition 4.3. If c = 0, then the equations (2) have the additional symmetry

δ(x1, x2, y1, y2) = (−x2,−x1,−y2,−y1).

The intersection Fix(δ) ∩A is flow-invariant and it is normally hyperbolic if and only if b ≥ 0 and in this case
it is locally attracting. Moreover, for small ε ≥ 0 the intersection Fix(δ)∩Aε is locally flow-invariant, normally
hyperbolic and locally attracting if b ≥ 0.

Proof. The plane {(x,−x, y,−y)} = Fix(δ) is flow-invariant since it is fixed by the additional symmetry δ. It
remains to check that it is normally hyperbolic and to see where it is attracting. In the coordinates zj used in
the proof of Proposition 4.1 the subspace Fix(δ) is defined by the equalities z1 = z2 = 0, z3 = 2x and z4 = 2y.

The expressions for the two matrices DV̂ (z1, z2, z3, z4)
∣∣∣
(2x,2y,0,0)

and DV̂ (z1, z2, z3, z4)
∣∣∣
(0,0,2x,2y)

are the same.

Hence, the component Nδ of DV̂ in the directions perpendicular to Fix(δ) is given by:

Nδ =

(
φ′(x) −1
1 −b

)
and then

det(Nδ) = −bφ′(x) + 1 and Tr(Nδ) = φ′(x)− b.

Using the arguments of the proof of Proposition 4.1 it follows that Fix(δ) ∩ A is normally hyperbolic if and
only if b ≥ 0 and in this case it is locally attracting. The last statement follows from the same arguments as
Proposition 4.2. □

When c = 0, solutions of (2) that lie in the invariant plane Fix(δ) satisfy (x2(t), y2(t)) = −(x1(t), y1(t)). We
say they correspond to two cells with antisynchrony.

It follows from Propositions 4.1 and 4.3 that if c = 0 and both b > 0 and b+ 2k > 0 there is bistability i.e.,
the system has two stable coexisting states. In particular if 0 < b < 1/4 and c = 0 then the uncoupled FHN
in equations (1) have an asymptotically stable periodic solution, as established in [10]. In this case, provided
b+ 2k > 0, then (2) has two stable periodic solutions each one lying in one of the fixed-point subspaces for the
two symmetries. Moreover, the bistability persists as shown in the next result.

Corollary 4.4. If b > 0 then for sufficiently small c ̸= 0 and for every r > 0 there is a Cr locally flow-invariant
locally attracting manifold for (2) close to Fix(δ) ∩ Aε. If moreover b+ 2k > 0 there is bistability in the sense
that the two locally invariant manifolds Fix(δ) ∩Aε and Fix(γ) ∩Aε are locally attracting.

Proof. The result follows from the normal hyperbolicity of Propositions 4.1 and 4.3 and Proposition 4.2 and
from the persistence of normally hyperbolic locally invariant manifolds proved by Fenichel in [6] (see also [19,
Section 2.2]). □

Similarly, from the persistence of normally hyperbolic invariant manifolds we obtain:

Corollary 4.5. Consider a perturbation of (2) where the equation for ẏ2 is replaced by

ẏ2 = x2 − b̃y2 − c̃− k̃(y2 − y1) .

Then for sufficiently small |b− b̃|, |c− c̃| and |k− k̃| if b+2k > 0 and b̃+2k̃ > 0, there is an attracting normally
hyperbolic locally invariant manifold for the perturbed system close to Fix(γ)∩Aε. In other words, the perturbed

system has stable solutions with the two cells approximately synchronised. Moreover if b > 0 and b̃ > 0 then, for
sufficiently small c and c̃, the perturbed system has an attracting normally hyperbolic locally invariant manifold
close to Fix(δ) ∩Aε, and hence it has bistability.

5. Canards and mixed-mode oscillations

As remarked in Section 3 trajectories called canards may follow the unstable part of the slow manifold for
a considerable amount of time. In geometric terms a canard solution corresponds to the intersection of an
attracting and a repelling slow manifold near a non-hyperbolic point of Σ, the set of fold lines defined in (3).
In this section, we establish some hypotheses ensuring the existence of canards for (2).
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Definition 5.1. A trajectory that, after starting O(ε) close to the attracting region of the slow manifold, remains
O(ε) close to the non-attracting region of the slow manifold for a time of order O(1) is called a canard.

Szmolyan & Wechselberger [25] and Krupa et al. [17] have established that canards appear around some
points where, after a rescaling that we will describe below, the slow equations have an equilibrium at a fold
point.

In order to find the canards we start by rewriting the slow equations in terms of the fast variables by
differentiating implicitly the condition yi = φ(xi), i ∈ {1, 2} that defines the critical manifold, to yield

(6) φ′(xi)ẋi = ẏi = xi − (b+ k)φ(xi) + kφ(xj)− c i, j ∈ {1, 2}, i ̸= j.

A point X∗ = (x∗
1, x

∗
2, y

∗
1 , y

∗
2) lies on the fold line Σ if and only if either φ′(x∗

1) = 0 or φ′(x∗
2) = 0. Without

loss of generality we take φ′(x∗
1) ̸= 0 and φ′(x∗

2) = 0, hence x∗
2 = 2σ/

√
3, σ = ±1, the case φ′(x∗

1) = 0 and
φ′(x∗

2) ̸= 0 being identical, due to the symmetry. The case φ′(x∗
1) = 0 = φ′(x∗

2) is treated separately at 5.2
below.

Since φ′(x∗
2) = 0, the equation obtained from ẏ2 in (6) yields no dynamical information at x2 = x∗

2. We
overcome this by a time rescaling of τ = t/φ′(x2), that is singular at x

∗
2, as mentioned above. Writing dxi/dτ =

x′
i the equations (6) transform into:

(7)

 x′
1 =

φ′(x2)

φ′(x1)
(x1 − (b+ k)φ(x1) + kφ(x2)− c) = H1(x1, x2)

x′
2 = x2 − (b+ k)φ(x2) + kφ(x1)− c = H2(x1, x2) .

The choice x∗
2 = 2σ/

√
3 imposes conditions on x∗

1 as shown in the next result.

Lemma 5.2. For every k ̸= 0 and for any choice of the parameters b and c there is an equilibrium (x∗
1, x

∗
2)

of (7) with x∗
2 = 2σ/

√
3, σ = ±1 and |x∗

1| >
2√
3
. Therefore the point X∗ = (x∗

1, x
∗
2, φ(x

∗
1), φ(x

∗
2)) lies at the

boundary of the attracting part A of C0.

Proof. At x∗
2 = 2σ/

√
3 we have φ′(x∗

2) = 0 so x′
1 = 0. Therefore

(
x∗
1, 2σ/

√
3
)
, σ = ±1, is an equilibrium of (7)

if and only if x′
2 = 0 i.e. when

(8) kφ(x∗
1) = c+ (b+ k)φ

(
2σ/

√
3
)
− 2σ/

√
3

and the result follows immediately since for |x| > 2√
3
the function φ(x) takes all the values in R. □

Note that an equilibrium (x∗
1, x

∗
2) of (7) may not correspond to an equilibrium X∗ = (x∗

1, x
∗
2, φ(x

∗
1), φ(x

∗
2))

of the original equations (2). Lemma 5.2 shows that there is an open set of parameters (k, b, c) of (2) such
that there is an equilibrium (x∗

1, x
∗
2) of (7) for which the point (x∗

1, x
∗
2, φ(x

∗
1), φ(x

∗
2)) lies at the boundary of the

attracting set A.
The time rescaling that we have used allows us to gain enough hyperbolicity to obtain a complete analysis by

standard methods from dynamical systems theory. We call the point (x∗
1, x

∗
2) obtained in Lemma 5.2 a folded

equilibrium of (7).

Lemma 5.3. For k ̸= 0, a folded equilibrium (x∗
1, 2σ/

√
3), with σ = ±1, of the equation (7) is either a saddle

or an unstable node or an unstable focus or a saddle-node. For an open set of the parameters (k, b, c) it is either
a saddle or an unstable node.

Proof. For H(x1, x2) = (H1(x1, x2), H2(x1, x2)) the derivative DH(x1, x2) at a folded equilibrium (x∗
1, x

∗
2),

x∗
2 = 2σ/

√
3, σ = ±1, of (7) is given by

(9) DH(x∗
1, x

∗
2) =

 0
φ′′(x∗

2)

φ′(x∗
1)

(x∗
1 − (b+ k)φ(x∗

1) + kφ(x∗
2)− c)

kφ′(x∗
1) 1

 .

Therefore (x∗
1, x

∗
2) is either a saddle or an unstable node or an unstable focus or a saddle-node for (7) since at

least one of the eigenvalues is either positive or has positive real part because TrDH(x∗
1, x

∗
2) = 1.

The point (x∗
1, x

∗
2) is either a saddle or an unstable node if and only if the eigenvalues of DH(x∗

1, x
∗
2) are real

and not zero, i.e., when 0 ̸= detDH(x∗
1, x

∗
2) ≤ 1/4. From (9), we have:

detDH(x∗
1, x

∗
2) = −kφ′′(x∗

2) (x
∗
1 − (b+ k)φ(x∗

1) + kφ(x∗
2)− c) .
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(A) (B) (C)

(D) (E) (F)

Figure 6. Canard transient on a solution of (2) near a folded node, parameters b = 0, c =
−0.519935054, k = 1 and ε = 0.5, initial condition (x1, x2, y1, y2) = (−1.5, 2, φ(−1.5), φ(2)). (A)
- Time course for y1(t) (blue) and y2(t) (orange). (B) - Projection of the trajectory (blue) on the
(x1, y1) plane, initial condition on the blue dot, red critical manifold C0. (C) Projection of the trajec-
tory (red) on the (x1, x2) plane, initial condition on the red dot, equilibria on the white dots. (D) -
Projection of the trajectory (purple) on the (x2, y1, y2) space, initial condition on the blue dot, purple
critical manifold C0. (E) - Projection of the trajectory (blue) on the (x2, y2) plane, conventions as in
(B). (F) - Time course for x1(t) (blue) and x2(t) (orange).

Replacing φ(x∗
1) by the value in (8) the previous equality implies

(10) detDH(x∗
1, x

∗
2) = −kφ′′(x∗

2) [x
∗
1 + x∗

2 − b (φ(x∗
1) + φ(x∗

2))− 2c]

which is not zero and less than 1/4 for an open set of parameters (k, b, c), since φ′′(x∗
2) = −6x∗

2 ̸= 0. □

The time rescaling we have used reverses time orientation when (x∗
1, x

∗
2, φ(x

∗
1), φ(x

∗
2)) is in the attracting

part of C0 where φ′(x∗
2) < 0, so when (x∗

1, x
∗
2) is either a saddle or an unstable node for (7) there is at least one

trajectory of (2) that goes across (x∗
1, x

∗
2, φ(x

∗
1), φ(x

∗
2)) generating a canard. This is a consequence of Lemma

2.3 of [25], where it is shown that canards correspond to, at least, one negative eigenvalue of (7). See also
Guckenheimer & Haiduc [12] and Guckenheimer [13]. Examples are shown in Figures 6, 7 and 8.

In the first of these examples, before the trajectory approaches a synchronous periodic orbit it makes some
transient small oscillations around the fold point that are visible in Figure 6 (E). In this example there is a
folded node, see Table 1.

Note that from equation (10) it follows that for any given k ̸= 0 and b ∈ R there is a value of the parameter
c ∈ R for which detDH(x∗

1, x
∗
2) = 0. This corresponds to saddle-node bifurcations. According to [17] this

gives rise to mixed-mode oscillations like those shown in Figures 7 and 8, i.e., trajectories that combine small
oscillations and large oscillations of relaxation type, both recurring in an alternating manner, cf. [17].

5.1. The case b = 0. More information on the equilibria of the equation (7) may be obtained if we make the
simplifying assumption b = 0. Indeed the expression of (1) in the particular case b = 0 has been used in the
analysis of two FHN coupled in the fast equations by Pedersen et al. [22] and with double coupling fast–to–fast
and slow–to–slow by Krupa et al. 2014 [17]. Thus this particular case is interesting for comparing the outcomes
of different types of couplings.
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From expression (8) the folded equilibrium (x∗
1, x

∗
2) of (7) with x∗

2 = 2σ/
√
3, σ = ±1, satisfies the equality

(11) k (φ(x∗
1)− φ(x∗

2)) = c− x∗
2.

Substituting into (10) we get

(12) detDH(x∗
1, x

∗
2) = −kφ′′(x∗

2) (x
∗
1 − kφ(x∗

1) + kφ(x∗
2)− c) = −kφ′′(x∗

2) [x
∗
1 + x∗

2 − 2c] .

The folded equilibria (x∗
1, 2σ/

√
3) may then be classified, in some cases under additional conditions on the sign

of φ(x∗
2)−φ(x∗

1), as shown in Table 1. To do this we divide the region A in four components A = A1∪A2∪A3∪A4,
as depicted in Figure 1, where:

A1 =
{
(x1, x2, y1, y2) : x1 > 2/

√
3, x2 > 2/

√
3, yi = φ(xi), i = 1, 2

}
A2 =

{
(x1, x2, y1, y2) : x1 < −2/

√
3, x2 > 2/

√
3, yi = φ(xi), i = 1, 2

}
A3 =

{
(x1, x2, y1, y2) : x1 < −2/

√
3, x2 < −2/

√
3, yi = φ(xi), i = 1, 2

}
A4 =

{
(x1, x2, y1, y2) : x1 > 2/

√
3, x2 < −2/

√
3, yi = φ(xi), i = 1, 2

}
.

We will use the notation A∗
i for the sets A∗

i = {(x1, x2) : (x1, x2, φ(x1), φ(x2)) ∈ Ai}, i = 1, . . . , 4.
In Table 1, we present sufficient conditions on c for the existence and classification of a folded equilibrium

of (7) with b = 0 on the components with x∗
2 = ±2/

√
3 of ∂A∗

i , i = 1, . . . , 4, the boundary of the attracting

region of the critical manifold. The analysis for folded equilibria with x∗
2 = ±2/

√
3 follows by symmetry. We

present the computations for the cases where the folded equilibrium (x∗
1, x

∗
2) lies on the boundaries of A∗

1 and
A∗

2. The computations for the other cases in Table 1 run along the same lines. For (x∗
1, x

∗
2) ∈ ∂A∗

1 and ∂A∗
3 the

classification is simpler, since φ(x∗
1)− φ(x∗

2) has constant sign.

Case ∂A∗
1. If the folded equilibrium (x∗

1, x
∗
2) =

(
x∗
1, 2/

√
3
)
lies on the boundary, ∂A∗

1, of region A∗
1 then the

following conditions hold:

φ′′(x∗
2) = −6x∗

2 < 0 x∗
1 − x∗

2 > 0 x∗
1 + x∗

2 > 4/
√
3 > 0 φ(x∗

1)− φ(x∗
2) < 0.

We start by obtaining sufficient conditions on the parameter c for the existence of a folded equilibrium, and
then proceed to classify it:

(1) If c < 2/
√
3 = x∗

2 then (11) implies that k > 0. Therefore detH(x∗
1, x

∗
2) = −kφ′′(x∗

2) [x
∗
1 + x∗

2 − 2c] > 0,
and hence (x∗

1, x
∗
2) is either a node or an unstable focus of (7).

(2) If c > 2/
√
3 = x∗

2, then (11) implies that k < 0. In this case there are the following possibilities:

(a) If c >
(
x∗
1 + 2/

√
3
)
/2 then detH(x∗

1, x
∗
2) > 0 and (x∗

1, x
∗
2) is either a node or an unstable focus of

(7).

(b) If c <
(
x∗
1 + 2/

√
3
)
/2 then detH(x∗

1, x
∗
2) > 0 and (x∗

1, x
∗
2) is a saddle.

Case ∂A∗
2. Similarly to what we did before, if the folded equilibrium (x∗

1, x
∗
2) =

(
x∗
1, 2/

√
3
)
lies on the boundary,

∂A∗
2, of region A∗

2 then we have

φ′′(x∗
2) = −6x∗

2 < 0 x∗
1 < −2/

√
3 = −x∗

2.

We divide the calculation in two main cases:

(1) If φ(x∗
1)− φ(x∗

2) > 0, then there are three sufficient conditions on the parameter c for the existence of
a folded equilibrium of (7).

(a) If c > 2/
√
3 then c − x∗

2 > 0 and x∗
1 + x∗

2 − 2c < 0. Therefore k > 0 (by 11) and hence
detDH(x∗

1, x
∗
2) < 0. Then (x∗

1, x
∗
2) is a saddle of (7).

(b) If 0 < c < 2/
√
3 then c− x∗

2 < 0 and x∗
1 + x∗

2 − 2c < 0. Therefore k < 0, detDH(x∗
1, x

∗
2) > 0 and

(x∗
1, x

∗
2) is either a node or an unstable focus of (7).

(c) If x∗
1 − c > 0 then c < 0 and x∗

1 + x∗
2 − 2c > 0. From (11) it follows that k < 0 implying

detDH(x∗
1, x

∗
2) > 0 and (x∗

1, x
∗
2) is either a node or an unstable focus of (7).

(2) If φ(x∗
1)−φ(x∗

2) < 0 then the conditions above on c are applicable, but detDH(x∗
1, x

∗
2) has the opposite

sign as discussed above.
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region x∗
1 x∗

2 c other k equilibrium
condition type

∂A∗
1 x∗

1 > 2/
√
3 +2/

√
3 c < 2/

√
3 - k > 0 node or focus

2/
√
3 < c < (x∗

1 + x∗
2) /2 - k < 0 saddle

c > (x∗
1 + x∗

2) /2 k < 0 node or focus

∂A∗
2 x∗

1 < −2/
√
3 +2/

√
3 c > 2/

√
3 φ(x∗

1) > φ(x∗
2) k > 0 saddle

0 < c < 2/
√
3 φ(x∗

1) > φ(x∗
2) k < 0 node or focus

c < x∗
1 φ(x∗

1) > φ(x∗
2) k < 0 node or focus

c > 2/
√
3 φ(x∗

1) < φ(x∗
2) k < 0 node or focus

0 < c < 2/
√
3 φ(x∗

1) < φ(x∗
2) k > 0 saddle

c < x∗
1 φ(x∗

1) < φ(x∗
2) k > 0 saddle

∂A∗
3 x∗

1 < −2/
√
3 −2/

√
3 c > −2/

√
3 - k > 0 node or focus

(x∗
1 + x∗

2) /2 < c < −2/
√
3 - k < 0 saddle

c < (x∗
1 + x∗

2) /2 k < 0 node or focus

∂A∗
4 x∗

1 > 2/
√
3 −2/

√
3 c < −2/

√
3 φ(x∗

1) > φ(x∗
2) k < 0 node or focus

−2/
√
3 < c < 0 φ(x∗

1) > φ(x∗
2) k > 0 saddle

c > x∗
1 φ(x∗

1) > φ(x∗
2) k > 0 node or focus

c < −2/
√
3 φ(x∗

1) < φ(x∗
2) k > 0 saddle

−2/
√
3 < c < 0 φ(x∗

1) < φ(x∗
2) k < 0 node or focus

c > x∗
1 φ(x∗

1) < φ(x∗
2) k < 0 saddle

Table 1. Sufficient conditions on c for the existence of a folded equilibrium of (7) with b = 0
on the components ∂A∗

i , i = 1, . . . , 4 of the boundary of the attracting region of the critical
manifold and classification of the folded equilibrium. The regions are those of Figure 1.

In the two examples shown in Figures 7 and 8, the trajectory goes near a folded node in the boundary of
region A3. The canard persists as a high frequency oscillation of small amplitude that alternates with the large
amplitude relaxation oscillation of lower frequency in a mixed-mode oscillation. The small oscillations remain
close to the synchrony plane while the large ones make alternate visits to the regions A2 and A4. The small
oscillations take place close to a double fold point, that we proceed to discuss.

5.2. Double fold points. In this section we deal with the dynamics around the double fold points X =
(x∗

1, x
∗
2) = (x∗,±x∗), x∗ = 2σ/

√
3, σ = ±1. We start with the equations (6) and introduce a time rescaling of

τ = t/φ′(x∗
1)φ

′(x∗
2), that is singular at xi = x∗

i , i = 1, 2. Then the equations (6) transform into

(13)

{
x′
1 = φ′(x2) (x1 − (b+ k)φ(x1) + kφ(x2)− c) = F1(x1, x2)

x′
2 = φ′(x1) (x2 − (b+ k)φ(x2) + kφ(x1)− c) = F2(x1, x2) .

Note that F2(x1, x2) = F1(x2, x1).
Recall that we are using the notation A∗

i for the sets A∗
i = {(x1, x2) : (x1, x2, φ(x1), φ(x2)) ∈ Ai}, i =

1, . . . , 4, we make the analogous convention for S∗
i , i = 1, . . . , 4 and R∗ (see Figure 1). For (x1, x2) ∈ A∗

i we
have φ′(xj) < 0, j = 1, 2 hence the time rescaling preserves time orientation inside the A∗

i . Since φ′(x) > 0

for −2/
√
3 < x < 2/

√
3 then the time rescaling also preserves time orientation in R∗ and reverses it in the S∗

i ,
i = 1, . . . , 4.

The main result of this section is the following:

Theorem 5.4. Let X = (x∗,±x∗), x∗ = 2σ/
√
3, σ = ±1 and let ϕ(X) = (φ(x∗),±φ(x∗)). It is possible to

have a canard for (2) near the double fold point (X,ϕ(X)) under the following conditions on the parameters of
(2):

(i) for X = (x∗, x∗) (in either ∂A∗
1 or ∂A∗

3) if σc < 2/
√
3− bφ(2/

√
3);

(ii) for X = (x∗,−x∗) (in either ∂A∗
2 or ∂A∗

4) if b+ 2k < 3/8 and |c| < 2/
√
3− (b+ 2k)φ(2/

√
3).

There are no canards in a neighbourhood of the double fold point (X,ϕ(X)) under the following conditions on
the parameters of (2):

(iii) for X = (x∗, x∗) (in either ∂A∗
1 or ∂A∗

3) if σc > 2/
√
3− bφ(2/

√
3);

(iv) for X = (x∗,−x∗) (in either ∂A∗
2 or ∂A∗

4) if b+ 2k > 3/8 and |c| < (b+ 2k)φ(2/
√
3)− 2/

√
3.



12 B.F.F. GONÇALVES, I.S. LABOURIAU, AND A.A. P. RODRIGUES

(A) (B) (C)

(D) (E) (F)

Figure 7. Mixed-mode oscillations arising from a canard on a solution of (2) near a folded node,
parameters b = 0, c = −1.150079575, k = 1 and ε = 0.5, initial condition (x1, x2, y1, y2) =
(−1.5, 2, φ(−1.5), φ(2)). (A) - Time course for x1(t) (blue) and x2(t) (orange). (B) - Projection of
the trajectory (blue) on the (x1, y1) plane, initial condition on the blue dot, red critical manifold C0.
(C) - Projection of the trajectory (red) on the (x1, x2) plane, initial condition on the blue dot.
(D) - Projection of the trajectory (blue) on the (x2, y1, y2) space, initial condition on the blue dot,
purple critical manifold C0. (E) - Projection of the trajectory (blue) on the (x2, y2) plane, conventions
as in (B), white dot folded equilibrium. (F) - Time course for y1(t) (blue) and y2(t) (orange).

The parameters for the mixed-mode oscillations in Figures 7 and 8 satisfy condition (i). Note that condition

(ii) only holds if 2/
√
3− (b+ 2k)φ(2/

√
3) > 0 and that (iv) needs that 2/

√
3− (b+ 2k)φ(2/

√
3) < 0.

Proof. Let F (x1, x2) = (F1(x1, x2), F2(x1, x2)) and let X = (x∗,±x∗), x∗ = 2σ/
√
3, σ = ±1. Since φ′(x∗) = 0,

then
∂F1

∂x1
(X) =

∂F2

∂x2
(X) = 0. Therefore, TrDF (X) = 0 and hence, unless detDF (X) = 0, the point X is

either a saddle or a centre for the linearisation of the rescaled equations (13). A canard exists if there is a
trajectory of (2) starting on the attracting part of the slow manifold Cε that crosses the fold line into the part
of Cε that is not attracting. The idea of the proof is to show that under any of the conditions (i) and (ii) the
point X is a saddle and its stable manifold intersects the corresponding A∗

i , creating the possibility of canards
near X, as in [25]. For conditions (iii) and (iv) the idea is to show that although the point X is also a saddle,
its stable manifold does not intersect the corresponding A∗

i , while its unstable manifold does. Hence canards
are not possible around that point. We treat separately the two cases X = (x∗, x∗) and X = (x∗,−x∗).

First, let X = (x∗, x∗), x∗ = 2σ/
√
3, σ = ±1 be the double folded equilibrium of (13), lying in either ∂A∗

1 or
∂A∗

3. The derivative DF (X) is given by

(14) DF (X) =

(
0 φ′′(x∗)(x∗ − bφ(x∗)− c)

φ′′(x∗)(x∗ − bφ(x∗)− c) 0

)
.

The matrix DF (X) is symmetric and hence its eigenvalues are real. Also

detDF (X) = − (φ′′(x∗))
2
(x∗ − bφ(x∗)− c)2 ≤ 0

and hence, unless c = x∗ − bφ(x∗), the point X is a saddle. The eigenvalues of the matrix DF (X) are
λ1 = φ′′(x∗)(x∗ − bφ(x∗) − c) and λ2 = −λ1 with eigenspaces V1 = {(s, s) s ∈ R} and V2 = {(s,−s) s ∈ R},
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(A) (B) (C)

(D) (E) (F)

Figure 8. Mixed mode oscillations arising from a canard on a solution of (2) near a folded node,
parameters b = 0, c = −1.1501075, k = 0.5 and ε = 0.5, initial condition (x1, x2, y1, y2) =
(−1.5, 2, φ(−1.5), φ(2)). (A) - Time course for x1(t) (blue) and x2(t) (orange). (B) - Projection of
the trajectory (blue) on the (x1, y1) plane, initial condition on the blue dot, red critical manifold C0.
(C) - Projection of the trajectory (blue) on the (x1, x2) plane, initial condition on the blue dot.
(D) - Projection of the trajectory (blue) on the (x2, y1, y2) space, initial condition on the blue dot,
purple critical manifold C0. (E) - Projection of the trajectory (blue) on the (x2, y2) plane, conventions
as in (B). (F) - Time course for y1(t) (blue) and y2(t) (orange).

respectively. Thus locally one of the trajectories of (13) that is tangent to V1 lies in A∗
1 or A∗

3, according to the
case in question and all the trajectories of (13) that are tangent to V2 lie outside A∗

1 and A∗
3.

Therefore, if λ1 < 0 the stable manifold of X intersects the corresponding A∗
j , j = 1, 3 and canards are

possible. Since for x∗ = 2σ/
√
3, σ = ±1 the sign of φ′′(x∗) is that of −σ, then λ1 < 0 if and only if

σc < 2/
√
3− bφ(2/

√
3). In this case then the trajectory tangent to V1 that lies in A∗

i , i = 1, 3 goes into X, so
a canard is possible and assertion (i) follows.

On the other hand, if λ1 > 0, then the trajectory tangent to V1 that lies in A∗
i , i = 1, 3 goes to the interior

of A∗
i in positive time. Moreover, at all points near X near the boundary ∂A∗

i the vector field associated to
(13) points into the interior of A∗

i . Since in both A∗
1 and A∗

3 the time rescaling preserves time orientation, there
cannot be a canard proving assertion (iii).

Now we address the case when the double folded equilibrium of (13) is X = (x∗,−x∗), x∗ = 2σ/
√
3, σ = ±1,

lying in either ∂A∗
2 or ∂A∗

4. The matrix of the derivative DF (X) at X = (x∗,−x∗) is not symmetric. It is given
by

(15) DF (X) =

(
0 −φ′′(x∗)(x∗ − (b+ 2k)φ(x∗)− c)

−φ′′(x∗)(x∗ − (b+ 2k)φ(x∗) + c) 0

)
hence TrDF (X) = 0, and detDF (X) = −φ′′(x∗)

2 [
(x∗ − (b+ 2k)φ(x∗))2 − c2

]
. If detDF (X) > 0 thenDF (X)

has a pair of purely imaginary eigenvalues. The point X is a centre for the linearisation of the desingularised
equations (13). This happens when |c| > |(b+ 2k)φ(x∗)− x∗|, we do not include this situation in our analysis.
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Figure 9. On the left, trajectories of (13) on the (x1, x2) plane, near the double fold point

X =
(
2/

√
3, 2/

√
3
)
∈ ∂A∗

1 for λ1 < 0, in the rescaled time τ . On the right, trajectories of (6)
near the same point, in the original time t. The rescaling inverts the time orientation in regions
Sj , j = 1, . . . , 4 and preserves it in regions R and Aj , j = 1, . . . , 4. The dynamics of (6) is not

well defined when xi = 2/
√
3, i = 1, 2.

If detDF (X) < 0 then the point X is a saddle, since the eigenvalues of DF (X) are λ± = ±
√

−detDF (X).
This happens if and only if

(16) |c| < |x∗ − (b+ 2k)φ(x∗)| =
∣∣∣2/√3− (b+ 2k)φ(2/

√
3)
∣∣∣

and in this case the two non-zero entries in DF (X) have the same sign.
Using the same arguments of the case X = (x∗, x∗), it is possible to have canards if one branch of the stable

manifold of X lies in A∗
i , i = 2, 4. Canards are not possible if the condition fails. This is determined by the

directions of the eigenspace associated to the negative eigenvalue λ−, which is the set V− = {(s(α, λ−) : s ∈ R}

where α = −φ′′(x∗)(x∗ − (b + 2k)φ(x∗) − c) =
∂F1

∂x2
(X). There are no canards if α < 0, they are possible if

α > 0.
It remains to show that the conditions α > 0 and (16) are equivalent to assertion (ii) in the statement and

that α < 0 and (16) are equivalent to the assertion (iv).

To do this, let β = 2/
√
3 − (b + 2k)φ(2/

√
3), and note that α = −φ′′(2/

√
3) (β − σc). Since φ′′(2/

√
3) =

−12/
√
3 < 0 then α has the same sign as β − σc. Also note that because σ = ±1 then condition (16) is

equivalent to |σc| < |β|.
If β > 0 then condition (16) is equivalent to −β < σc < β and this implies that α > 0. Since φ(2/

√
3) =

16/3
√
3 then β > 0 if and only if b+ 2k < 3/8.

If β < 0 then condition (16) is equivalent to β < σc < −β and this implies that α < 0. Also β < 0 if and
only if b+ 2k > 3/8.

We have established that α > 0 (implying canards are possblle) if and only if (16) holds and β > 0. The
necessary conditions are that b+ 2k < 3/8 and |c| < |β| = β, as in assertion (ii). We have also established that
α < 0 (implying canards are not posslble) if and only if (16) holds and β < 0, and the necessary conditions are
that b+ 2k > 3/8 and |c| < |β| = −β, as in assertion (iv). □

In the first part of Theorem 5.4 we only claim that canards are possible because it is not clear that trajectories
of (13) that tend to the boundary of the A∗

i correspond to trajectories of (2) that continue into C0\A. This
is because the time rescaling reverts time orientation in the Si, the components of C0 where the equilibria of
the fast equation are saddles, as shown in Figure 9. Deciding if canards exist in each case requires a detailed
analysis that is beyond the scope of this article. In the special case b = 0 the results of Subsection 5.1 may be
used to improve the result to cover the cases shown in Figures 7 and 8.
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Theorem 5.5. Let X = (x∗, x∗), x∗ = 2σ/
√
3, σ = ±1 be a double fold point. If b = 0, k > 0 and σc < 2/

√
3

then for σc close to 2/
√
3 and small ε > 0 there is a canard for (2) close to X.

Proof. In Table 1 the conditions of the statement correspond to the first rows in the regions ∂A∗
1 and ∂A∗

3,

where the point (x∗
1, x

∗
2), with x2 = x∗ and σx∗

1 > 2/
√
3 is either a node or a focus. The idea of the proof is to

show that (a) as c → 2σ/
√
3 these points accumulate on X, and that (b) for σc close to 2/

√
3 the point is a

node. Then it will follow, either by Lemma 2.3 of [25], or by the results of [12] and [13], that there are solutions
of (2) starting close to X in the attracting part of Cε that follow the repelling part of Cε for some time.

For (a) we use the fact that the restriction of the function φ(x) to σx > 2/
√
3 is a diffeomorphism. Therefore,

for any δ1 > 0 there exists a δ2 > 0 such that if σx2 > 2/
√
3 and |φ(x∗

1)− φ(x∗
2)| = δ2, then |x∗

1 − x∗
2| < δ1.

Using (11), if |c− x∗
2| < kδ2 then |φ(x∗

1)− φ(x∗
2)| < δ2 and the result follows.

For (b), we have already established in Subsection 5.1 that in this case detDH (x∗
1, x

∗
2) > 0. From the

expression (12) and assertion (a) it follows that when c tends to 2σ/
√
3 then detDH (x∗

1, x
∗
2) tends to 0.

Therefore, for c close to 2σ/
√
3 we have 0 < detDH (x∗

1, x
∗
2) < 1/4 and since TrDH (x∗

1, x
∗
2) = 1, the point

(x∗
1, x

∗
2) is a node. □

6. Discussion

This article is an analysis of the dynamics of two identical FitzHugh–Nagumo equations symmetrically coupled
through the slow equations. In this section we compare our results to findings by other authors using different
types of coupling.

We obtain persistent synchronous (i.e. symmetric) solutions for an open set of parameters. We also show
that approximate synchrony will persist if the symmetry is broken either by taking slightly different coupling
constants or by a small change in the equations governing one of the cells. Synchronised periodic solutions were
also observed analytically by Campbell and Waite [2] and numerically in passing by Hoff et al. [14] when two
FHN were coupled symmetrically and bidirectionally through the fast equations, but the latter do not report
on persistence under symmetry breaking, their focus being on chaotic solutions. Kawato et al. [15] obtain
both the synchrony and its persistence for two FHN with simultaneous slow-to-slow and fast-to-fast connection.
Pedersen et al. [22] provide bifurcation diagrams in the synchrony plane for two FHN coupled symmetrically
and bidirectionally through the fast equations, showing steady-state and Hopf bifurcations that create both
stable and unstable limit cycles.

The FitzHugh–Nagumo equations are symmetric when c = 0, this provides an additional symmetry to the
coupled equations, with a flow-invariant fixed point subspace. From this we obtain the coexistence of different
stable solutions and we show that it persists when the additional symmetry is broken for small c ̸= 0. The
additional symmetry does not hold when the equations are coupled through the fast equations, so this bistability
is a characteristic feature of the type of coupling analysed here.

Bistability has been found in the work by Kawato et al. [15] coupling together the slow variables and the fast
variables to each other in two FHN systems. They have obtained the coexistence of synchrony and antisynchrony
through Hopf bifurcation. It has also been found by Campbell and Waite [2] who considered electrical coupling
of two FHN models through the fast equation although none of these authors used the fast-slow structure. In [2]
it is shown that when the magnitude of the coupling is strengthened, periodic orbits undergo several bifurcations
(namely resonant Hopf-Hopf interactions) leading to the coexistence of a chaotic attractor with an attracting
periodic orbit.

The symmetry in the model we have analysed limits the possible dynamic outcomes, and yet it still allows a
number of interesting features. The presence of a canard induces small amplitude symmetry breaking oscillations
before a solution converges to a synchronised periodic solution of large amplitude, shown in Figure 6. Santana
et al. [24] report “transient chaos”, a complicated and long transient, in their numerical description of two FHN
with different parameter values coupled through the fast equations. Canard-induced small amplitude transients
were also found by Krisitiansen & Pedersen [16] in two identical FHN coupled through the fast equations. In
their case the attracting periodic solution does not lie in the synchrony plane. The small amplitude transients
arise from a canard at a cusp point in the critical manifold, in our case this manifold does not have cusps, so
the origin of the transient oscillations is not the same, here they arise at a folded node.

Sustained mixed-mode oscillations arising from canards, like those in Figures 7 and 8, are ubiquitous in
coupled FHN. They appear in asymmetric coupling of the fast equation to the slow one in Doss-Bachelet et al.
[5] and in Krupa et al. [18] where three different time scales are considered. Desroches et al. [4] find them
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in self-coupled FHN analogous to unidirectional coupling through the fast equation. Krupa et al. [17] find
them with both the slow equations and the fast equations coupled together, when the two FHN have different
parameter values. To the best of our knowledge this is the first time it appears in symmetric coupling of identical
equations. The mixed-mode oscillations arise close to the point where the two fold lines cross transversely. The
general analysis of the dynamics in the neighbourhood of such a point is one of the task we intend to pursue in
the near future.

Because our results are based on normal hyperbolicity, they will persist under small symmetry breaking
perturbations, as pointed out in Corollaries 4.4 and 4.5. However, asymmetric coupling, where one FHN is
forcing the other, as in

(17)


εẋ1 = −y1 + φ(x1)
εẋ2 = −y2 + φ(x2)
ẏ1 = x1 − by1 − c+ ky2
ẏ2 = x2 − by2 − c

φ(x) = 4x− x3 b, c, k ∈ R k ̸= 0

is not part of this scenario. Numerical evaluation of the Lyapunov spectrum of (17), presented in [14] for unidi-
rectional coupling of two FHN through the fast equation, finds regions in the parameter space with frequency-
locked solutions and other regions with chaotic behaviour. In Figure 10 we show a numerical solution of (17)
that looks like a chaotic mixed-mode oscillation. This is a research direction we intend to pursue, but it is
beyond the scope of the present article.

After the present study, we hope this work improves the research about theoretical and experimental appli-
cations of coupled FHN models. Possible directions should consider the importance of transient dynamics and
the possibility of finding multiple attractors coexisting for the same parameter combinations. Additionally, one
potential natural extension of this work is the investigation of the persistence of transient chaotic dynamics and
multistability when several identical FHN models are coupled through different schemes.
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