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Abstract. In this article, we study the FitzHugh-Nagumo (1, 1)–
fast-slow system where the vector fields associated to the slow/fast
equations come from the reduction of the Hodgin-Huxley model
for the nerve impulse. After deriving dynamical properties of the
singular and regular cases, we perform a bifurcation analysis and
we investigate how the parameters (of the affine slow equation)
impact the dynamics of the system. The study of codimension
one bifurcations and the numerical locus of canards concludes this
case-study. All theoretical results are numerically illustrated.
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1. Introduction

Many animals have cells in their various physiological systems, such
as the nervous, muscular, and cardiac systems, that are sensitive to
certain electrical stimuli. These cells remain at rest most of the time,
react to electrical stimulation at a given moment, and then return
to a resting state until they are stimulated again. This oscillatory
and excitability dynamics is present in neuronal activity and cardiac
rhythm – see for instance Keener & Sneyd [12].

In 1952, Hodgkin & Huxley [11] developed a mathematical model
that described the propagation of electrical signals along a squid’s gi-
ant axon, known as the Hodgkin-Huxley (HH) model. The authors
related the excitability of squid nerve cells and the resulting electrical
impulse to the potential difference between the inside and outside of
the squid’s axon membrane arising from the movement of sodium and
potassium ions across the membrane. Using experimental data, they
established the propagation of electrical signals along the squid’s giant
axon through a nonlinear system of four differential equations [11].

In 1960–1961 Richard FitzHugh [4, 5] created a simplified version of
the Hodgkin-Huxley model, considering only two variables. His goal was
to simplify the HH model in order to make the dynamics of excitability
more perceptible. The system developed by FitzHugh in 1961 has the
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following form:

(1)

dx

dt
= a

(
x− x3

3
− y + I

)
dy

dt
=

1

a
(x− by − c) ,

where a ∈ R\{0}, b, c ∈ R are constants and I may be seen as the

intensity of a stimulus applied to the axon membrane. Variables x
and y match with the pairs of variables (v,m) and (h, n) from the HH
model, respectively.

During the 1960s, Jin-Ichi Nagumo constructed an electrical circuit
that recreated FitzHugh’s system [18]. Nowadays, due to the contribu-
tions of both researchers, this model is known as the FitzHugh-Nagumo
(FH-N) model. This model has been extensively studied see, for in-
stance, [1] and references therein.

By changing the time scale of system (1), considering τ = t/a and
ε = 1/a2, we obtain an equivalent version of the FH-N model as follows:

(2)
ε
dx

dτ
= x− x3

3
− y + I

dy

dτ
= x− by − c.

For 0 < ε ≪ 1, or equivalently, a ≫ 1, system (2) is what we call a
fast-slow system.

A fast-slow system is a system of differential equations in which some
variables have their derivatives with larger magnitude than others. This
leads to a system with multiple time scales. The general approach to
this type of systems starts by grouping the variables in two disjoint
sets: fast variables and slow variables. This separation is introduced
in system (2) by the parameter ε.
In Doss-Bachelet et al. [2] the authors notice that the FH-N model

presents two distinct dynamics near a Hopf bifurcation: an attracting
focus where all trajectories converge to it if the parameter is less than
the bifurcation value; and an attracting relaxation-oscillation periodic
solution (limit cycle) if the parameter is greater than the bifurcation
point. The work of [2] proceeds with the analysis of the dynamics
and applies it to generate bursting oscillations from two coupled FH-N
systems, thus leaving the FH-N model little explored.

Our goal with the present article is to exhibit the various dynam-
ics in the multiple time scale model and motivate their existence in
the light of methods from geometric singular perturbation theory and
bifurcation theory.

This article is organised as follows. In Section 3 we introduce gen-
eral concepts of fast-slow systems and geometric singular perturbation
theory and apply them to the analysis of the singular case of the FH-N
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system. A relaxation-oscillation periodic solution is studied with an es-
timate of its period in Section 3.2. In Section 4 we describe Fenichel’s
theorem and link singular to regular dynamics and the way the latter
converges to the former as ε→ 0 applying it to FH-N. In Section 5 we
perform a bifurcation analysis of FH-N and investigate the influence of
parameters in the qualitatively different dynamics of the model. The
study of singularities and the emergence of canard trajectories in Sec-
tion 6 concludes this tutorial. Section 7 discusses the results presented
and states the natural continuation of the present work.

We have endeavoured to make a self contained exposition bringing
together all topics related to the proofs. We have drawn illustrative
figures to make the paper easily readable. All figures in this article
were created through numerical simulations conducted in Matlab, using
integration functions such as ode15s or ode23s, and, in more sensitive
examples, the MatCont toolbox developed by Willy Govaerts, Yuri A.
Kuznetsov and Hil G.E. Meijer [7].

2. Multiple Time Scale Theory and the FitzHugh-Nagumo
System

In this section, general concepts of two time scale systems are in-
troduced and illustrated with the FitzHugh-Nagumo system. Further
results on fast-slow systems may be found in [16]. We start by intro-
ducing some necessary definitions.

Definition 2.1. For m,n ∈ N, a (m,n)–fast-slow system is a system
of m+ n ordinary differential equations of the form:

(3)
ε
dx

dτ
= εẋ = f(x, y, ε),

dy

dτ
= ẏ = g(x, y, ε),

where f : Rm × Rn × R → Rm, g : Rm × Rn × R → Rn are C2 and
0 < ε ≪ 1. We denote the fast variable(s) by x ∈ Rm and y ∈ Rn

is called the slow variable(s). Considering t = τ/ε, system (3) is
equivalent to:

(4)

dx

dt
= x′ = f(x, y, ε),

dy

dt
= y′ = ε g(x, y, ε).

The fast time scale is represented by t while τ refers to the slow
time scale. In order to better understand the concepts and the ter-
minology associated with these systems, the following definitions and
results are illustrated by the FitzHugh-Nagumo (1,1)–fast-slow system.
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Example 2.1. As described in [2], consider the FitzHugh-Nagumo
(1,1)–fast-slow system:

(5)

Slow time scale (τ) Fast time scale
(
t = τ/ε

)
ε
dx

dτ
= εẋ = f(x, y, ε)

dx

dt
= x′ = f(x, y, ε)

dy

dτ
= ẏ = g(x, y, ε)

dy

dt
= y′ = ε g(x, y, ε),

where f, g : R3 −→ R are given by

f(x, y, ε) = −y + 4x− x3, g(x, y, ε) = x− by − c

with parameters b, c ∈ R and 0 < ε≪ 1. ⋄

Both cubic and affine functions of Example 2.1, f and g, come natu-
rally from the reduction of the Hodgkin-Huxley model [12]. Note that
in FH-N the functions f and g do not depend on ε. System (5) will be
referred to as the FitzHugh-Nagumo system in two variables.

3. The Singular Case (ε = 0)

When analysing a fast-slow system, it is useful to consider the sin-
gular case ε = 0.

Definition 3.1. For ε = 0, system (3) in the slow time scale becomes
a system of differential-algebraic equations:

(6)
0 = f(x, y, ε),

ẏ = g(x, y, ε).

System (6) is called slow subsystem, its equations are referred to
as the reduced equations and its flow the slow/reduced flow.

Definition 3.2. For ε = 0, system (4) in fast time is called fast sub-
system:

(7)
x′ = f(x, y, ε),

y′ = 0.

The set of equations in system (7) is referred to as the layer equations
and its flow as the fast flow.

Systems (6) and (7) allow the understanding of the dynamics of (3)
and (4) for small ε, 0 < ε≪ 1, since the flow may be seen as either the
fast or the slow flow, depending on the region in the phase space. Near
the set defined by f (x, y, 0) = 0, one expects the flow to be C2–close
to the slow flow as we will see later in Section 4.

Definition 3.3. For m,n ∈ N, given a (m,n)–fast-slow system as in
(2.1), the critical manifold is the set

(8) C0 =
{
(x, y) ∈ Rm × Rn : f(x, y, 0) = 0

}
.
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(a) (b)

Figure 1. (a) - Critical manifold of the system (5): At-
tracting (solid red) and repelling (dashed red) regions; Fold
points (black dots). (b) - Geometrical argument for the ex-
istence of at least one and at most three equilibrium points
in the system (5).

Example 3.1. The critical manifold for the FitzHugh-Nagumo system
(5) is

C0 =
{
(x, y) ∈ R2 : f(x, y, 0) = 0

}
=
{
(x, y) ∈ R2 : y = 4x− x3

}
,

a cubic shaped curve, parametrised by

(9) x 7→ (x, 4x− x3) = (x, y),

as depicted in Figure (1a). The map φ(x) = 4x−x3 is odd
(
∀x ∈ R,−φ (x) = φ (−x)

)
.

⋄

All points in C0 are equilibria of the fast subsystem. ThroughHartman-
Grobman’s Theorem [10], we may define the (normal) hyperbolicity and
stability of the points in C0 with respect to the fast variables, in the
following way:

Definition 3.4. For m,n ∈ N, given a (m,n)–fast-slow system with
critical manifold C0:

• The subset S ⊂ C0 is said to be normally hyperbolic if for all
p ∈ S, we have

(Dxf) (p, 0) has no eigenvalues with zero real part,

where (Dxf) denotes the Jacobian matrix of f with respect to x.

• A normally hyperbolic set S is said to be attracting/repelling
if, for all p ∈ S, all eigenvalues of (Dxf) (p, 0) have negative/positive
real part, respectively. It is of saddle type if (Dxf) (p, 0) has
eigenvalues with both positive and negative real part.
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When considering a (1,1)–fast-slow system, since there is only one

fast variable, we have Dxf =
∂f

∂x
. For convenience, we use the notation

φσ when referring to the partial derivative of a real map φ in order to
its variable σ.

Definition 3.5. Given a (1,1)–fast-slow system with critical manifold
C0, the point p ∈ C0 is said to be a fold point if:

fx (p, 0) = 0 , fxx (p, 0) ̸= 0 and fy (p, 0) ̸= 0.

If g (p, 0) ̸= 0, the fold point is called regular.

Example 3.2. With respect to (5), we have f (x, y, 0) = −y+4x− x3

and, for p ∈ C0, one has:

fx (p, 0) = 4− 3x2 ̸= 0 if x ̸= ± 2√
3
.

Therefore, the equilibria P+ =
(
2/
√
3, 16/3

√
3
)

and the set P− =(
−2/

√
3, −16/3

√
3
)
are fold points and S0 = C0\

{(
x, φ (x)

)
: x = ± 2√

3

}
is normally hyperbolic. We may split S0 into three distinct open sub-
sets:

C0L = C0 ∩
{
(x, y) ∈ R2 : x <

−2√
3

}
,

C0M = C0 ∩
{
(x, y) ∈ R2 :

−2√
3
< x <

2√
3

}
and

C0R = C0 ∩
{
(x, y) ∈ R2 : x >

2√
3

}
.

Therefore, we get

S0 = C0L ∪ C0M ∪ C0R,

where C0L and C0R are attracting subsets and C0M is repelling. This
means that in the fast flow, trajectories of (5) move towards either C0L
or C0R. ⋄

Since the critical manifold C0 is parametrised by the fast variable x
(cf. Eq.(9)), it is possible to explicitly define the slow flow through the
fast variable x. This allows the stability analysis of the fast and slow
flows expressed in terms of the fast variable.

In system (5), by differentiating f(x, y, 0) = −y + 4x− x3 = 0 with
respect to τ we have:

∂f

∂x
ẋ+

∂f

∂y
ẏ = (4− 3x2)ẋ− ẏ = 0.
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Since ẏ = x− by − c, then

ẋ =
x− by − c

(4− 3x2)
.

Taking into account that y = 4x− x3, we may conclude that

(10) ẋ =
bx3 + (1− 4b)x+ c

4− 3x2
=: ψ (x, b, c) .

As expected, this explicit form of the slow subsystem is not defined

at the fold points x = ± 2√
3
.

If the fold points are regular (cf. Def. 3.5), then all equilibria
(x∗, y∗) ∈ C0 of the system (5) belong necessarily to S0. Their sta-
bility in the slow direction may be determined in the following way:

∂ψ

∂x
= ψx (x, b, c) =

1− b
(
4− 3x2

)
+ 6xψ (x, b, c)

(4− 3x2)
.

Since ψ (x∗, b, c) = 0, then

ψx (x
∗, b, c) =

1− b
(
4− 3x∗2

)
4− 3x∗2

.

For b > 0, if |x∗| > 2√
3
, the equilibrium attracts the slow flow.

Otherwise, if |x∗| < 2√
3

the equilibrium may either attract or repel

the slow flow depending on the value of 1− b
(
4− 3x∗2

)
being negative

or positive, respectively. Thus, the equilibrium point (x∗, y∗) of (5) is
stable if (x∗, y∗) ∈ C0L ∪ C0R and unstable if (x∗, y∗) ∈ C0M.
For b < 0, the stability in the slow direction is the opposite of the pre-

vious one. Hence, the equilibrium point (x∗, y∗) is unstable if (x∗, y∗) ∈
C0M and either stable or unstable of saddle type if (x∗, y∗) ∈ C0L ∪ C0R.
In Example 3.2, we have disregarded the case where a fold point

is also an equilibrium of the system, i.e., x∗ = ± 2√
3
. This particular

situation requires special attention and will be analysed later in Section
6. For the remainder of this section, we describe the dynamics in the
cases where all equilibria lie in S0.

3.1. Dynamics. Depending on the values of b and c, there exists at
least one and at most three equilibria, as result of the intersection of
the cubic curve, f (x, y, 0) = 0, with the line, ẏ = 0 (cf. Figure 1b).
Moreover, when the system has three equilibria only the following sce-
narios may occur: either all three equilibria belong to C0M or else they
are each one in a distinct region, C0L, C0M and C0R.

Fix A = (xa, ya) ∈ R2 \ C0. Consider the half trajectory γA for t ≥ 0
that starts at A. Since y′ = 0, the fast flow runs horizontally towards
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C0L or C0R. Without loss of generality, suppose that γA moves towards
C0L and let B = (xb, ya) ∈ C0L be the intersection point of γA with C0.
Here, five different scenarios may occur (cf. Figure 2):

(i) The point B is an equilibrium;
(ii) The point B is not an equilibrium, but there exists a stable

equilibrium C = (xc, yc) ∈ C0L \B;
(iii) The point B is not an equilibrium, but there exists an unstable

equilibrium C = (xc, yc) ∈ C0L \B;
(iv) There is no equilibrium in C0L, but it exists in C0R;
(v) All equilibria lie in C0M.

Scenario (i) is trivial. If B = (xb, ya) is an equilibrium of (5), then
by definition (ẋ, ẏ) = 0, and therefore, the trajectory initiated at A
accumulates at B.

Scenario (ii) is not much different. Upon reaching the point B, the
trajectory γA moves through the slow flow of the system defined by
ẏ = x− by − c. Since the equilibrium point C is attracting, and since
both points B and C are in C0L, the trajectory γA moves from B to C
along the branch C0L of the critical manifold, where it accumulates.

Scenario (iii): First note that
∂g

∂y
(x, y, 0) = −b > 0 is constant for

all (x, y) ∈ C0. Since C0L and C0R attract the slow flow we have that
any equilibrium point in either C0L or C0R is a saddle. In particular,
the equilibrium point C is a saddle.

Since C0L attracts the fast flow, we know that γA follows C0L away
from C. Thus, if ya > yc, then γA remains in C0L and the second
coordinate of γA (τ) tends to +∞ as in Figure 2c.

However, if ya < yc, the trajectory follows the slow flow to the fold

point P− =
(
−2/

√
3, −16/3

√
3
)
. Here, since the slow flow is not

defined at the fold points (cf. (10)), the trajectory γA moves through

the fast flow, horizontally, to the point D =
(
4/
√
3, −16/3

√
3
)
∈ C0R

as in Figure 2d. In this case there are two possibilities.
The first possibility is that there is an equilibrium pointE = (xe, ye) ∈

C0R and that both yc and ye lie outside the interval
(
−16/3

√
3, 16/3

√
3
)

delimited by the second coordinates of the two fold points. Then γA

follows the slow flow up to the other fold point P+ =
(
2/
√
3, 16/3

√
3
)
,

where it jumps back to C0L and continues cycling around between the
two branches. The trajectory γA presents dynamics similar to case (v).
In any other case, i.e., if either there is no equilibrium in C0R or if one

of the equilibria has its second coordinate in the interval
(
−16/3

√
3, 16/3

√
3
)
,

then the second coordinate of γA (τ) tends to ±∞ as τ tends to +∞.
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(a) Case (i). (b) Case (ii).

(c) Case (iii) - ya > yc.

(d) Case (iii) - ya < yc. (e) Case (iv) - E stable.

(f) Case (iv) - E unsta-
ble.

Figure 2. Examples of Cases (i)–(iv). Critical manifold
in red - attracting regions in solid line and repelling re-
gion in dashed line. Line ẏ = 0 in blue. Fast trajectories
in yellow and slow trajectories in green. Points of inter-
est/equilibrium/fold in black. Initial point, A, outlined in
black.

This is because, if E = (xe, ye) ∈ C0R with ye < −16/3
√
3 then the

trajectory follows C0R up to the fold point P+, jumps to C0L and fol-
lows it up, away from C and with its second coordinate going to +∞.
If either there is no equilibrium in C0R or if E = (xe, ye) ∈ C0R with
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ye > −16/3
√
3, then γA follows C0R down with its second coordinate

going to −∞ as in Figure 2d.

Scenario (iv): let E = (xe, ye) be an equilibrium point in C0R. Ge-
ometrically, the point E is the intersection of the cubic curve x′ = 0
with the line ẏ = 0. Since there are no more equilibria in C0L, we may
observe that, if E is unstable, then ya > ye. The proof is simple: if E is
unstable, then ψx < 0 where ψ was defined in (10). Since fx (E, 0) > 0,
it follows that b < 0 and therefore the line has a negative slope. Now,
assume by contradiction that yb < ye. The line ẏ = 0 necessarily inter-
sects the cubic surface in C0L and hence, there exists an equilibrium in
C0L giving our contradiction. Thus, at B, we have ẏ > 0 and therefore,
the trajectory γA remains in C0L, with the first coordinate of γA (τ)
going to −∞ as τ → ∞ while the second coordinate of γA (τ) goes to
∞. If the point E is stable, γA travels along C0L from B to P−, jumps
in fast time to point D in the branch C0R, ending at E.

Scenario (v): by using the symmetry of f (f is odd), one may check
easily that the parameter b is positive and that there are either three
equilibria or only one in C0M. In both cases, since the points belong
to the unstable region of C0, the dynamics of γA does depend on the
number of equilibria in the system. Therefore, we can observe that any
point in the region C0L satisfies ẏ < 0, so the trajectory γA moves along
C0L from point B to the fold point P−, and then jumps, in fast time,
to point D. Similarly, γA continues to P+ and then jumps to point
F . Thus, γA goes through points F, P−, D and P+ periodically and,
therefore, γA is a periodic solution. The trajectory neither diverges nor
converges to an equilibrium point (cf. Figure 3a).

Any trajectory starting at any point in R2 \ C0 moves in fast time
to a point in one of the stable regions of the critical manifold C0. In
the previous scenarios, we have assumed that this point belongs to the
branch C0L, but the dynamics for the case where the point is located
on the branch C0R is analogous to the former.

3.2. Period of the limit cycle. In Scenario (iii) when the equilibria
of C0L ∪ C0R satisfy |y| > 16

3
√
3
and in Scenario (v), we have observed

the emergence of a periodic solution alternating between the slow and
the fast flows. Now, in order to estimate its period, we are going to
determine the points responsible for linking slow and fast flows.

The transition from the slow flow to the fast one occurs at the fold
points P± = ±

(
2/
√
3, 16/3

√
3
)
. Similarly, the transition from the fast

flow to the slow one happens at the points F =
(
−4/

√
3, 16/3

√
3
)
and

D =
(
4/
√
3, −16/3

√
3
)
.
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(a) Case (v) - limit cycle. (b) x as function of τ .

Figure 3. Example of case (v) with parameters b = 0.2
and c = 0. Periodic solution γ0 composed of two slow trajec-
tories (green) and two fast trajectories (yellow) with a period
Tγ0 ≈ 3.61 time units (τ).

Let γ0 be the periodic trajectory of system (5) with initial condition
at D (cf. Figure 3). As we have seen, γ0 follows periodically the cycle:
(11)

γ0 : D
slow flow−→ P+

fast flow−→ F
slow flow−→ P−

fast flow−→ D
slow flow−→ (...) .

We intend to compute the period Tγ0 of this cycle. Since ε = 0,
then the fast flow of the system is traversed almost instantaneously.
Therefore, Tγ0 is determined by the durations T C0L

γ0
and T C0R

γ0
of γ0

along the branches C0L and C0R, respectively. Since f is odd, we have
T C0L
γ0

= T C0R
γ0

. Thus,

(12) Tγ0 ≈ T C0L
γ0

+ T C0R
γ0

= 2 T C0R
γ0

.

Hence, the time spent by the trajectory in C0R is given by:

T C0R
γ0

≡
∫ T C0R

γ0

0

dτ.

Using (10) we determine TC0R with respect to the fast variable:

(13) Tγ0 ≈ 2 T C0R
γ0

= 2

∫ 2√
3

4√
3

4− 3x2

bx3 + (1− 4b)x+ c
dx,

that may be evaluated for any suitable value of b and c. For instance,
for b = c = 0 we are in case (v) and

Tγ0 = 2

∫ 2√
3

4√
3

4− 3x2

x
dx = 12− 8 log (2) ≈ 6.45 .

In this section we have described the dynamics of (5) in the singular
case ε = 0, in the various cases according to the number and stability
of its equilibria, as shown in Figures 2 and 3. We have also obtained
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conditions under which (5) with ε = 0 has a periodic solution that
alternates between the fast and the slow flows and we have determined
its period. In the next section we look at the dynamics of (3) in the

nonsingular case ε
>∼ 0.

4. The Regular Case (0 < ε≪ 1)

The independence of the time scales when ε = 0 makes the system
simpler to understand. By allowing the dynamics to be separated into
two distinct phases, slow and fast, we can study each one independently
and understand its underlying dynamics.

As we will see in Fenichel’s theorem (Theorem 1 stated below) when
0 < ε ≪ 1, the dynamics of the perturbed system is similar to that of
the singular system, with a deviation of O (ε), where O stands for the
usual Landau notation. That is, the smaller the ε, the more similar
the system trajectories are to those described in the singular system.
Fenichel’s theorem guarantees that for 0 < ε≪ 1, there exists a set Sε

very close to S0 that exhibits the same behaviour as S0.

Theorem 1 (Fenichel, 1979 [3] ). Suppose S0 is a compact normally
hyperbolic submanifold of the critical manifold C0 of (3) and that f, g ∈
Cr (2 ≤ r <∞). Then for ε > 0, sufficiently small, the following hold:

(H1) There exists a locally invariant manifold Sε diffeomorphic to
S0.

(H2) The set Sε has Hausdorff1 distance O (ε), as ε→ 0, from S0.
(H3) The flow in Sε converges to the slow flow, as ε→ 0.
(H4) The set Sε is Cr–smooth.
(H5) The set Sε is normally hyperbolic and has the same stability

properties with respect to the fast variables as S0.
(H6) The set Sε is usually not unique. In regions that remain at

a fixed distance from the topological boundary ∂Sε of Sε, all
manifolds satisfying (H1)–(H5) lie at a Hausdorff distance

O
(
e−K/ε

)
from each other for some K > 0, where K =

O (1).

The proof of this theorem is extensive and covers topics in pertur-
bation theory that are beyond the scope of this work. The reader may
find it in [16] or in its original version in [3].

Definition 4.1. The set Sε mentioned in Theorem 1 is referred to as
the slow manifold of (3).

1The Hausdorff distance between two nonempty sets V,W ⊂ Rm+n is defined by

dH (V,W ) := max

{
sup
v∈V

inf
w∈W

||v − w||, sup
w∈W

inf
v∈V

||v − w||

}
.
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Discussion of fenichel’s theorem. Theorem 1 is central to the study
of systems with multiple time scales. Let us examine the role of each
statement separately.

Statement (H6) is useful to simplify the language. In fact, there is not
just one slow manifold Sε. However, since all possible slow manifolds

Sj
ε , j ∈ N, are at a distance O

(
e−K/ε

)
ε→0−→ 0 from each other, we can

simplify the discussion and consider only one slow manifold Sε.
The existence of a one-to-one correspondence between Sε and S0 ⊂

C0, (H1), is important for the other statements in the theorem. The
set Sε, being locally invariant, means that trajectories do not leave
the slow manifold except at its boundary. Statement (H2) guarantees
that the smaller ε is, the closer Sε is to S0. Thus, since Sε is locally
invariant, the trajectories on Sε approach S0 by (H3). Finally, the fact
that Sε is continuously differentiable to the same order as S0, (H4), and
is diffeomorphic to S0, (H1), allows us to assert that the two sets S0

and Sε share the same stability. The set Sε being normally hyperbolic,
(H5), ensures that the fast variables have the same stability properties
of S0.

4.1. The manifold Sε. In this section, we give a precise way to de-
scribe Sε. Consider the (1,1)-fast–slow system in the slow time scale:

(14)
ε
dx

dτ
= εẋ = f(x, y, ε),

dy

dτ
= ẏ = g(x, y, ε),

with 0 < ε≪ 1.
Let S0 be a compact, normally attracting subset of C0 without equi-

libria (g (x, y, ε) ̸= 0). By the implicit function theorem, there exists a
function x = x0 (y), for y ∈ ]a, b[, such that we define S0 as:

(15)
S0 =

{
(x, y) ∈ R2 : f (x, y, 0) = 0 ∧ y ∈ ]a, b[

}
=
{
(x, y) ∈ R2 : x = x0 (y) ∧ y ∈ ]a, b[

}
.

Theorem 2 (Fenichel, 1979 [3]. See also Theorem 11.1.1 in Kuehn,
2015 [16].). Let S0 be a compact normally hyperbolic submanifold of C0.
Then there exists a slow manifold Sε that is O (ε)-close to S0 for ε > 0
sufficiently small. Locally, Sε is represented as a graph of a smooth
function h(y, ε):

Sε =
{
(x, y) ∈ R2 : x = h(y, ε)

}
,

where the map y 7→ h(y, ε) : R → R has the asymptotic expansion

h(y, ε) = h0 (y) + h1 (y) ε+ h2 (y) ε
2 +O(ε3).
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From the previous result, we may conclude that h0(y) = x0(y). The
curve h0 (y) defines locally the set S0 of the critical manifold C0.

In what follows, our aim is to show how to compute the term h1(y)
in the expansion. Taking into account that g (x, y, ε) ̸= 0, write (14)
as

(16) ε
dx

dy
=
f (x, y, ε)

g (x, y, ε)
.

By invariance, the set x ≡ h(y, ε) satisfies (16) and hence

(17) ε
dh0
dy

(y) + ε2
dh1
dy

(y) +O(ε3) =
f
(
h(y, ε), y, ε

)
g
(
h(y, ε), y, ε

) .
We want to estimate the first terms in (17). For the first one, if(
x (τ) , y (τ)

)
is a solution of (14) for ε = 0 with initial condition in S0,

hence f
(
x(τ), y(τ), 0

)
≡ 0, then

fx (x, y, 0)
dx

dτ
+ fy (x, y, 0)

dy

dτ
= 0 ⇒ dx

dy
= −fy (x, y, 0)

fx (x, y, 0)

which implies (because x ≡ h(y, ε))

(18)
∂h

∂y
(y, 0) =

dh0
dy

(y) = −
fy
(
h0(y), y, 0

)
fx
(
h0(y), y, 0

) .
Now we compute h1(y). To do this, let H(x, y, ε) :=

f(x, y, ε)

g(x, y, ε)
, so

the right hand side of (17) is

(19)

H
(
h(y, ε), y, ε

)
= ε

(
∂H

∂x

(
h(y, 0), y, 0

)
h1(y) +

∂H

∂ε

(
h(y, 0), y, 0

))
+O(ε2),

since H
(
h(y, 0), y, 0

)
= 0 and

∂h

∂ε
(y, 0) = h1(y).

Next, we use again f(h(y, 0), y, 0) = 0 to compute the derivatives of
H appearing in (19):

∂H

∂x

(
h(y, 0), y, 0

)
=
fx
(
h(y, 0), y, 0

)
g
(
h(y, 0), y, 0

) , ∂H

∂ε

(
h(y, 0), y, 0

)
=
fε
(
h(y, 0), y, 0

)
g
(
h(y, 0), y, 0

)
and (19) becomes
(20)

H
(
h(y, ε), y, ε

)
= ε

(
fx
(
h0(y), y, 0

)
g
(
h0(y), y, 0

) h1(y) + fε
(
h0(y), y, 0

)
g
(
h0(y), y, 0

) )+O(ε2).
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Substituting (18) and (20) into (17) yields

−ε
fy
(
h0(y), y, 0

)
fx
(
h0(y), y, 0

)+O(ε2) = ε

(
fx
(
h0(y), y, 0

)
g
(
h0(y), y, 0

) h1(y) + fε
(
h0(y), y, 0

)
g
(
h0(y), y, 0

) )+O(ε2)

hence

(21) h1(y) = −
fy
(
h0(y), y, 0

)
g(h0(y), y, 0)(

fx
(
h0(y), y, 0

))2 −
fε
(
h0(y), y, 0

)
fx
(
h0(y), y, 0

) .
Example 4.1. Consider the system FH-N (5). If we take S0 ⊂ C0L,
we get that S0 is defined as

h0 (y) = −
4

(
2

3

)1/3

(
9y +

√
3 (27y2 − 256)

)1/3 −

(
9y +

√
3 (27y2 − 256)

)1/3
181/3

.

Additionally, using (21), we get

h1 (y) =
h0 (y)− by − c(
4− h20 (y)

)2
and Sε is approximated by the graph of

hε (y) = h0 (y) +
h0 (y)− by − c(
4− h20 (y)

)2 ε. ⋄

Since we defined the slow manifold Sε as an asymptotic expansion
starting at the critical manifold C0, we can apply the same reasoning to
determine the period of a periodic solution, Tγε , of a fast-slow system,
with 0 < ε≪ 1. In particular, using the same argument used to prove
(12) we have:

Tγε = Tγ0 +O (ε) .

5. Bifurcations

To understand the effect of the parameters b and c, we analyse two
cases of (5), where the first has b = 0 and c ∈ R, and the second has
b ∈ R \ {0} and c = 0.

(i) For c ∈ R and b = 0, system (5) may be recast into the form:

(22)

dx

dt
= x′ = −y + 4x− x3

dy

dt
= y′ = ε(x− c),

with 0 < ε ≪ 1. It has only one equilibrium E =
(
c, φ(c)

)
for

φ(x) := 4x− x3, which results from the intersection of the cubic curve
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(a) (b)

(c)

Figure 4. (a) - Trajectory of the system (5) with pa-
rameters b = 0 = c, started at A ≈ (−2.8, 1.64) and with
ε ∈ {0, 0.1, 0.5, 1} (violet, blue, green, yellow). Critical man-
ifold (red) and unstable equilibrium point (blue). (b) - Dy-
namics of the trajectories of (a) in the coordinate plane (τ, x).
(c) - Dynamics of the trajectories of (a) in the coordinate
plane (τ, y).

y = φ(x) and the line x = c.

In order to evaluate the stability of E, we compute the jacobian
matrix JE of the vector field associated to (22) at E and find its eigen-
values, say λ±E (c, ε). Thus, we get

JE =

[
4− 3c2 −1

ε 0

]
and λ±E (c, ε) =

(
4− 3c2

)
±
√

(4− 3c2)2 − 4ε

2
.

It is straightforward to conclude that:

(1) The equilibrium E is an unstable node/focus if |c| < 2√
3
and

(2) E is a stable node/focus if |c| > 2√
3
.

When c = cH := ± 2√
3
and 0 < ε ≪ 1, we get λ±E

(
cH, ε

)
= ±i

√
ε.

For ε > 0, as shown in Figure 5, the stability of the equilibrium point
in the neighbourhood of cH changes from a stable focus to an unstable
focus as c decreases.
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(a) Re
[
λ±
ε (c)

]
(b) Im

[
λ±
ε (c)

]
Figure 5. Variation of the real and imaginary parts of the
eigenvalues of the Jacobian matrix of system (22), evaluated
at the equilibrium point E, as a function of the parameter
c (λ+

ε with solid line and λ−
ε with dashed line) for different

values of ε, ε = 1 (yellow), ε = 0.1 (violet) e ε = 0 (blue).
Hopf bifurcation (black).

For c = 1.15 < cH and ε = 1, the equilibrium point E is an unstable
focus, and thus it is expected that trajectories starting close to the fold
point P+ diverge, for t > 0. Numerically, we found a periodic solution

when c
<
≈ cH (cf. Figure 6c). This dynamics is typical of a subcritical

Hopf bifurcation, with a stable periodic solution as described in the
next result. Here subcritical means that the periodic solution exists for
c < cH. If the periodic solutions were found for c > cH, the bifurcation
would be called supercritical.

Theorem 3 (Hopf, 1942. See also Marsden & McCraken, 1976 [17]
for English translation in Section 5.). Given a one-parameter family of
differential equations in R2 with parameter c:

ẋ = f(x, y; c)

ẏ = g(x, y; c), f, g ∈ Ck (k ≥ 2),

such that there exists an equilibrium point
(
x0 (c) , y0 (c)

)
∈ R2 for all

c ∈ R and the eigenvalues of the jacobian matrix J(x0(c),y0(c)) can be

written as λ (c) = α (c)± i β (c), if for some c∗ ∈ R the following holds:

α (c∗) = 0, β (c∗) ̸= 0 and
dα

dc
(c∗) ̸= 0,

then, for c close to c∗, there exists a periodic solution (limit cycle)
around

(
x0 (c) , y0 (c)

)
.

System (22) satisfies the conditions of Theorem 3, thus confirming
the numerical finding of Figure 6c. The stability of the periodic solu-
tion will be discussed in Section 6 below.
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(a)

(b)

(c)

(d)

Figure 6. (a) - Bifurcation diagram of the parameter c
in the system (22), with ε = 0.5. Stable equilibrium (solid
line at A = 0) for |c| > 2/

√
3, unstable (dashed line) for

|c| < 2/
√
3 and Hopf bifurcation points (black dots) for |c| =

2/
√
3. Stable periodic solutions (solid line at A ̸= 0) for

|c| < 2/
√
3. (b) - Zoom of the region within the red rectangle

observed in (a). (c) - Example of a periodic solution of the
system (22) for c = 1.152 and ε = 0.5. C0 (red), vertical lines
x = c (blue) and x = 2/

√
3 (black). Approaching/leaving

trajectories from the equilibrium point (yellow/green) and
periodic solution (violet). (d) - Zoom of the region within
the magenta rectangle observed in (b).
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(ii) For b ∈ R \ {0} and c = 0, system (5) may be written as:

(23)

dx

dt
= x′ = −y + 4x− x3

dy

dt
= y′ = ε(x− by),

with 0 < ε ≪ 1. For all b ∈ R \ {0}, the origin, E0 = (0, 0), is an
equilibrium point the system (23). If either b < 0 or b > 1/4, the
system has two symmetric equilibria at x± = ±

√
4− b−1. They are:

E± =
(
x±, φ(x±)

)
, with φ(x) := 4x− x3.

For b < 0, the equilibrium E0 is an unstable node/focus and E− and
E+ are saddles. For 0 < b ≤ 1/4, there is a stable limit cycle and only
the origin is an equilibrium point of the system, but it still exhibits the
same unstable node/focus dynamics.

The equilibrium E0 becomes a saddle when b > 1/4. Moreover,
at b = 1/4 two new equilibria E− and E+ are created (cf. Figure
8a). Given the symmetry of E± in this case, the stability of both
equilibrium points is the same. Thus, we will only study the stability
of E+ by computing

JE+ =

[
3 b−1 − 8 −1

ε −ε b

]
, tr

(
JE+

)
= −ε b+ 3 b−1 − 8 and det

(
JE+

)
= 2ε (4b− 1) ,

where tr and det denote the trace and determinant operators. Note
that det

(
JE+

)
> 0, since b > 1/4. The eigenvalues of JE+ satisfy

λ±ε (b) =
tr
(
JE+

)
±
√

tr 2
(
JE+

)
− 4 det

(
JE+

)
2

.

If we take

bH
ε =

−4 +
√
16 + 3ε

ε
>

1

4
, 0 < ε≪ 1

then at b = bH
ε

tr
(
JE+

)
= 0 and

dRe
(
λ+ε
)

d b

∣∣∣∣∣
b=bHε

< 0

and therefore, by Theorem 3, there is a Hopf bifurcation. In the limit,
as ε→ 0, we have bH

ε → 3/8 (cf. Figure 7). Moreover, for b = 3/8, the
fold points are equilibria of (23).

The numerical simulations shown in Figure 8 indicate that the Hopf
bifurcation at E+ is supercritical, hence generating an unstable peri-
odic solution. This means that all trajectories starting in the regions
bounded by the periodic solutions are attracted to the equilibrium
point E− or E+, also lying in the interior of that region. On the other
hand, when trajectories start outside these regions, they converge to
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(a) Re
[
λ±
ε (b)

]
. (b) Im

[
λ±
ε (b)

]
.

Figure 7. Variation of the real and imaginary parts of the
eigenvalues of the Jacobian matrix of the system (23), eval-
uated at the equilibrium point, as function of the parameter
b (λ+

ε with solid line, λ−
ε with dashed line, and Hopf bifur-

cation point) for different values of ε, ε = 1 (green), ε = 0.5
(yellow), ε = 0.1 (blue) e ε = 0 (violet).

the global stable limit cycle which already existed when the equilibria
were unstable. As observed in the example of Figure 8, the amplitude
of the unstable periodic solutions grows very quickly for small varia-
tions in b, but reaches an unexpected maximum for b = bHom

ε . This
happens when the periodic solution captures the saddle equilibrium E0

at a homoclinic bifurcation [8, 19].

Definition 5.1. Consider a system of ordinary differential equations
dX

dt
= F (X), where F ∈ C2, X ∈ Rn for some n ∈ N. Assume that

X0 ∈ Rn is an equilibrium and γ is a non-stationary solution of the
system. The trajectory/orbit γ is said to be homoclinic to X0 if

γ (t) → X0 as t→ ±∞.

The existence of a saddle point equilibrium is not a sufficient condi-
tion for the existence of a homoclinic trajectory, as this also requires
the existence of an intersection between the stable and unstable mani-
folds of the equilibrium point.

We already knew that (23) has the saddle equilibrium E0 = (0, 0)
and we have observed numerically that, for b = bHom

ε , there is a ho-
moclinic trajectory to the origin E0. In Figures 8 and 9, which con-
sider the system (23) for ε = 0.5, the homoclinic orbit appears for
b = bHom

ε ≈ 0.36932, very close to bHε ≈ 0.3666. This bifurcation
where a periodic solution is destroyed at a homoclinic orbit is called a
homoclinic bifurcation [8, 19].



BIFURCATIONS AND CANARDS IN THE FITZHUGH-NAGUMO SYSTEM 21

(a) (b) (c)

Figure 8. (a) - Bifurcation of the equilibria of the system
(22) as a function of the parameter b, with ε = 0.5. Equilib-
rium point E0 is always unstable (dashed line). Equilibria E−
and E+ are unstable for 1/4 < b < bH0.5 ≈ 0.3666 and stable
b > bH0.5 (solid line). Bifurcation points at b = 1/4 (Pitch-
fork) and at b = bH0.5 (supercritical Hopf ). (b) Amplitude
of the periodic solution around the point E+ as a function
of b. Supercritical Hopf bifurcation (black dot) leads to an
unstable periodic solution that collides with the homoclinic
orbit generated by the saddle point E0. Homoclinic bifurca-
tion at bHom

0.5 ≈ 0.36932 (blue dot). (c) - Example of unstable
periodic solutions of the system (23) generated by the Hopf
bifurcation, for bH0.5 ≤ b ≤ bHom

0.5 and ε = 0.5. Homoclinic or-

bit (black line). C0 and E0 in red, vertical lines x = x
(
bH0.5

)
(yellow) and x = x

(
bHom
0.5

)
(black). Colour scale for the vari-

ation of the parameter b.

6. Singularities and Canards

As we have seen in case (i) of Section 5, when the system’s equilib-
rium is also a fold point, a subcritical Hopf bifurcation occurs, giving
rise to a stable periodic solution. In Sections 3 and 4.1, we found an-
other periodic solution which is not related to the Hopf bifurcation.
Thus, for different parameters, we have two stable periodic solutions
with distinct dynamical properties. In this section, the canard phe-
nomena bridges the local periodic solution from the Hopf bifurcation
to the global limit cycle.

As illustrated in Figure 6c, the existence in (22) of a periodic solution
around the equilibrium point implies that the orbit traverses a part of
its trajectory close to the repelling region of the critical manifold C0.
This behaviour seems to be contradictory since we found a solution
that is close to the unstable branch of C0.

Definition 6.1. A slow trajectory that isO (ε) away from the repelling
region of the slow manifold for a time of order O (1), is called a canard.

Canards are related to equilibria of the slow equation that occur at
fold points of the slow manifold.
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(a) (b)

Figure 9. (a) - (x, y) plane of the system (23) for ε = 0.5
and b = bHom

0.5 ≈ 0.36932. C0 and equilibrium points in red.
Homoclinic orbit (black), trajectories whose initial condi-
tion is within the region bounded by the homoclinic curve
(yellow) and trajectories whose initial condition is outside
the region bounded by the homoclinic curve (green). (b) -
(τ, x) plane of the system (23) for ε = 0.5 and b = bHom

0.5 ≈
0.36932. Trajectories initiated at (x0, y0) = (0.51, 2) (green),
at (x0, y0) = (0.53, 2) (yellow) and at the homoclinic orbit
(x0, y0) ≈ (0.5158, 1.9578).

Definition 6.2. Given a singular (1, 1)–fast–slow system parametrised
by λ ∈ R. Let p = (x, y) be a fold point. The point p is called a
singular fold if:

(24)
f (p, λ, 0) = 0, fx (p, λ, 0) = 0,

fxx (p, λ, 0) ̸= 0, fy (p, λ, 0) ̸= 0 and g (p, λ, 0) = 0.

The definition of singular fold point differs from that of a fold point
since it is required to coincide with an equilibrium point of system (3)
(i.e., g (p, λ, 0) = 0).

Definition 6.3. A singular fold p is said to be regular if:

(25) gx (p, λ, 0) ̸= 0 and gλ (p, λ, 0) ̸= 0.

The behaviour around a regular singular fold is described in the next
theorem, a concatenation of two important results, whose proof can be
found in [14, 15, 16].

Theorem 4 (Krupa & Szmolyan, 2001a and 2001b [14, 15]. See also
Theorems 8.1.3 and 8.2.1 of [16]). Consider a (1,1)–fast-slow system
where (x, y) = (0, 0) is a regular singular fold point for λ = 0, in the
following normal form:

(26)
x′ = −y l1 (x, y, λ, ε) + x2 l2 (x, y, λ, ε) + ε l3 (x, y, λ, ε)

y′ = ε
(
±x l4 (x, y, λ, ε)− λ l5 (x, y, λ, ε) + y l6 (x, y, λ, ε)

)
.

Assume that, for ε = 0, there is a slow trajectory connecting the
repelling and attracting regions of the critical manifold C0. Then, there
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exist ε0 > 0 and λ0 > 0 such that for 0 < ε < ε0 and |λ| < λ0, the
system has an equilibrium point p ∈ R2 near the origin where p → (0, 0)
as (λ, ε) → (0, 0).
Moreover, if p is stable for λ < 0, there exists a continuous function

λc : [0, ε0] → R that associates each value of ε ∈ [0, ε0] to a value λ
that gives rise to a canard in the system, asymptotically defined by:

λc (ε) = − (B + A) ε+O
(
ε3/2
)
,

and there exists a continuous function λH : [0, ε0] → R that associates
each value of ε ∈ [0, ε0] to a value λ that gives rise to a Hopf bifurcation
in the system, asymptotically defined by:

λH (ε) = −Bε+O
(
ε3/2
)
,

where

A =
−∂l1
∂x

+ 3
∂l2
∂x

− 2
∂l4
∂x

+ 2l6

8
B =

∂l3
∂x

+ l6

2
,

where the functions li, i = 1, . . . , 6 and their partial derivatives are
evaluated at the point (x, y, λ, ε) = (0, 0, 0, 0).
For A ̸= 0, the Hopf bifurcation is non-degenerate. The Hopf bifur-

cation is supercritical if A < 0, and subcritical if A > 0.

Whenever a system with a regular singular fold exists, there is a
change of coordinates that transforms the system into (26). As noted
in Section 4, the existence of canards is coupled with the existence of
a Hopf bifurcation, which in such systems is referred to as a singular
Hopf bifurcation. That is, the values of λc that give rise to canards
are at most O (ε) away from the values λH where a Hopf bifurcation
occurs,

λH − λc = Aε+O
(
ε3/2
)
.

An important consideration is the empirical difficulty in finding ca-
nards, since the smaller ε is, the narrower the interval of λ values for
which canards appear. This small interval separates the λ values at
which a limit cycle occurs from those where it either undergoes a Hopf
bifurcation or does not have any periodic solution. For this reason, the
dynamics produced in the system around this small interval is called
the canard explosion.

Example 6.1. Consider the case (i) of Section 5. Since at the Hopf

bifurcation point cH the equilibrium E =
(
cH, φ

(
cH
))

=

(
2√
3
,
16

3
√
3

)
is a regular fold singularity, to determine the stability of the periodic
solution, we need to transform the system into its normal form (see
[8, 16] for more details), which involves a translation of the equilibrium
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and of the bifurcation parameter to the origin. More specifically, we
consider the change of coordinates:

(x̄, ȳ, c̄) =

(
x− cH, y − φ

(
cH
)
, cH − c

)
,

where φ
(
cH
)
= 4cH −

(
cH
)3
. Omitting the bars x̄ and ȳ this gives rise

to the following system equivalent to (22):

(27)
x′ = −y + x2

(
−2

√
3− x

)
y′ = ε (x+ c̄) .

Since the parameters c and c̄ have opposite orientations, then the
existence of a supercritical Hopf bifurcation with periodic solutions
for c̄ > 0 implies the existence of a subcritical Hopf bifurcation with
periodic solutions for c < cH in the original system (22).

It is easy to verify that p =
(
−c̄, φ (−c̄)

) c̄→0−→ (0, 0) is an equilibrium
of the system and that p is stable for c̄ < 0. Additionally, we have

fx (p, 0) = 0, fxx (p, 0) = −4
√
3 ̸= 0 and fy (p, 0) = −1 ̸= 0,

and also,

gx (p, 0) = 1 ̸= 0 and gc̄ (p, 0) = 1 ̸= 0,

so p is a regular singular fold point for c̄ = 0. Note that the system is
defined in the normal form required by Theorem 4 and we have:

l1 = 1, l2 = −2
√
3−x, l3 = 0, l4 = 1, l5 = −1, l6 = 0 and A = −3/8 < 0.

Thus, the Hopf bifurcation is supercritical for c̄ (subcritical for c) and
occurs when

c̄H (ε) = 0 · ε+O
(
ε3/2
)

and the canards occur for

c̄c (ε) = −3

8
ε+O

(
ε3/2
)
. ⋄

Figure 10 illustrates the emergence of canards in system (22) with
ε = 0.5 and ε = 0.1. As we may see, the stable periodic solutions
emerge from the subcritical Hopf bifurcation for c = 2/

√
3 (analo-

gous for c = −2/
√
3). As mentioned above, some of these periodic

solutions remain close to the repelling region of the critical manifold,
making them canards. In Figures 10a and 10c, two types of orbits can
be distinguished: the first type, coloured in yellow, consists of slow
trajectories near C0M and C0R and one fast trajectory; the second type,
coloured in green, which surrounds the other fold point, consists of
three slow trajectories near C0L, C0M and C0R and two fast trajecto-
ries. We refer to these two types of canards as headless canard and
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(a) (b) (c) (d)

Figure 10. (a) - Flow of the system (22), for ε = 0.5.
Critical manifold in red, attracting regions (solid line) and
repelling region (dashed line), fold points (black), canards
without head (yellow), canards with head (green), and limit
cycles (blue). (b) - Bifurcation diagram of the system ob-
served in (a). (c) - System (22), with ε = 0.1. (d) - Bifurca-
tion diagram of the system observed in (c).

headed canard , respectively2.

Note that the amplitude of the canards grows almost instantaneously.
As stated in [16], this was expected, but it is still surprising. The
nearly vertical lines observed in Figures 10b and 10d show canards
with amplitudes, A (c) ∈ [2, 20] for c ≈ 1.150077 in the case ε = 0.5
and for c ≈ 1.153794 in the case ε = 0.1.

7. Discussion and Further Work

This article studies the dynamics of a fast-slow system derived from
the FitzHugh-Nagumo model according to the geometric singular per-
turbation theory and the bifurcation theory methods. In particular,
we provide an analytic proof that the fast-slow FH-N system presents
relaxation oscillation dynamics as well as periodic solutions induced
by Hopf bifurcation. We emphasise the emergence of a homoclinic or-
bit and canards connecting these two distinct dynamics. We illustrate
each result with numerical computations.

When coupling two FH-N systems through the slow equations, we
have performed numerical simulations that suggest the existence of
mixed-mode oscillations where the dynamics is characterised by the ex-
istence of orbits that alternate periodically between large and small am-
plitude oscillations [6]. Recently, Kristiansen & Pedersen [13] showed
that the coupling through the fast equations of two distinct FH-N
models produces mixed-mode oscillations induced by a cusp singularity
present in this system. We believe that a similar result may explain
our numerical findings.

2This terminology is motivated by the literal meaning of the word ”canard” in
French (canard = duck). In this system, it is a bit more complicated to understand
why, but if the reader tilts their head to the left they will see that the canard orbits
resemble the shape of a duck, with or without head.
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The prevalence of chaotic attractors in periodically perturbed fast-
slow systems is yet to be explored. The article [9] bridged the areas of
geometric singular perturbation theory and of chaotic attractors theory
and provided a general technique for proving the existence of chaotic
attractors for periodically perturbed two-dimensional vector fields with
two time scales, that are equivalent to:

(28)

ε
dx

dt
= f(x, y, θ)

dy

dt
= g(x, y, θ)

dθ

dt
= ω

where (x, y, θ) ∈ R× R× S1 and ω > 0 is the slow driving frequency.
Results in [9] connect two areas of dynamical systems: the theory

of chaotic attractors for discrete two-dimensional Hénon-like maps and
geometric singular perturbation theory. Two-dimensional Hénon-like
maps are diffeomorphisms whose singular limit is a family of non-
invertible one-dimensional maps. In [20], the authors obtained suffi-
cient conditions for the existence of chaotic attractors in these families.
Three-dimensional singularly perturbed vector fields have return maps
that are also two-dimensional diffeomorphisms with folds. To represent
fully the behaviour of system (28) in the singular limit, we must allow
jumps of trajectories from one sheet of the critical manifold to another
that follow the direction of trajectories when ε > 0. Jumps parallel
to the x-axis occur at folds, where the tangent plane to the critical
manifold includes this direction. We have chosen to leave the study of
periodically perturbed FH-N models for future work.
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