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Abstract. This paper is an exploration of the faithful transitive permutation

representations of the orientation-preserving automorphisms groups of highly
symmetric toroidal maps and hypermaps. The main theorems of this paper

give a list of all possible degrees of these specific groups. This extends prior

accomplishments of the authors, wherein their focus was confined to the study
of the automorphisms groups of toroidal regular maps and hypermaps.

In addition the authors bring out the recently developed GAP package
corefreesub that can be used to find faithful transitive permutation repre-

sentations of any group. With the aid of this powerful tool, the authors show

how Schreier coset graphs of the automorphism groups of toroidal maps and
hypermaps can be easily constructed.
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1. Introduction

A faithful permutation representation of a group refers to a specific type of group
action where each group element is represented by a unique permutation of a set X,
and no two distinct group elements result in the same permutation. In other words,
this representation captures all the distinct elements and their actions within the
group. The degree of this representation is the size of the set X. A faithful permu-
tation representation is valuable because it allows us to understand the structure
and behavior of a group by studying how its elements permute the elements of a
set. It’s called “faithful” because it faithfully captures the group’s structure without
collapsing distinct group elements into the same permutation. This representation
helps mathematicians and researchers analyze and classify groups, understand their
properties, and explore their relationships with other mathematical objects. The
study of minimal faithful degrees and permutation representations is an active area
of research in group theory. For some groups, the minimal degree is relatively easy
to compute, while for others, it remains an open question or requires sophisticated
mathematical techniques.

The automorphism groups of regular polytopes are string C-groups, smooth quo-
tients of Coxeter groups with linear diagrams. In particular, these groups are gen-
erated by an ordered set of involutions and nonconsecutive involutions of this set
commute. Faithful transitive permutation representations of string C-groups are
represented by undirected Schreier coset graphs, satisfying some additional proper-
ties due the commuting property of the generators [16]. These graphs have been an
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important tool to discover examples of abstract regular polytopes and to accom-
plish comprehensive classifications of such geometric objects [6, 9, 8, 10, 2, 7]. This
inspired the authors to investigate the different ways of representing a group by a
graph (corresponding to a faithful transitive permutation representation). Their re-
search initiated by the study of the automorphism groups of toroidal regular maps
[11, 12]. Subsequently, they delved into regular hypermaps, followed by locally
toroidal regular polytopes [13, 14]. In all these works, the authors exclusively fo-
cused their investigations on regular structures. Now they will expand their focus
considering toroidal chiral maps and hypermaps. The second author with Delgado
also constructed a package for GAP [15], named “corefreesub”, to compute faithful
transitive permutation representations of groups and their degrees, which is now
available online [17].

The automorphism groups of toroidal chiral maps and hypermaps are 2-generated
groups. The two generators are rotations of the map, typically a face-rotation
and a vertex-rotation. The orientation-preserving automorphims groups of toroidal
regular maps, which are index two subgroups of the automorphism group of these
maps will also be included in our classification. Similarly to what was done in our
previous works we list all possible degrees of the orientation-preserving groups of
automorphisms of toroidal maps.

The correspondence between faithful transitive permutation representations and
core-free subgroups, which is significant concept in group theory that relates group
actions to subgroup structure, will be central in this work. For any faithful transitive
permutation representation of a group, the stabilizer subgroup of the corresponding
action is core-free. Conversely, for every core-free subgroup H of a group G, there
exists a faithful and transitive action of G on the set of cosets ofH. Thus in our clas-
sification we give all core-free indexes of the orientation-preserving automorphism
groups, also known as rotational group, of toroidal maps and hypermaps.

2. Toroidal maps and hypermaps

In this section, we provide a concise overview of toroidal maps and hypermaps,
a topic that has been extensively explored by numerous authors[5, 1, 4, 3].

A common approach to creating a toroidal map is to use a rectangular grid that
wraps around the torus. For that reason toroidal maps, which are embeddings of
maps on the surface of a torus, are in correspondence with tesselations of the plane.
There are three types of toroidal maps corresponding to the only three regular plane
tessellations, whose basic building blocks are one of the following three regular
polygons: the square, the triangle or the hexagon. Let (0, 1) and (1, 0) be unitary
translations of the plane tesselation. Now consider a vector (s1, s2) for some non-
negative integers s1 and s2. The toroidal map that is obtained identifying opposite
sides of a parallelogram with vertices

(0, 0), (s1, s2), (s1 − s2, s1 + s2) and (−s2, s1)

for a quadrangular tesselation and

(0, 0), (s1, s2), (−s2, s1 + s2) and (s1 − s2, s1 + 2s2)

for the a triangular or a hexagonal tesselation. The resulting maps are denoted by
{4, 4}(s1,s2) if the tiles of the plane tesselation are squares, {3, 6}(s1,s2) or {6, 3}(s1,s2)
when the tiles are, respectively, triangles or hexagons (see the examples of Figure 1).
Similarly a toroidal hypermap, an embedding of a hypergraph on the torus, is
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obtained from a regular hexagonal tesselation having vertices with two colors (see
Figure 2). The toroidal hypermap associated with a vector (s1, s2) is denoted by
(3, 3, 3)(s1,s2).
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Figure 1. The maps {4, 4}(3,1) and {3, 6}(2,1).
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Figure 2. The hypermap (3, 3, 3)(3,1)

If a toroidal map or hypermap is identical to its mirror image it is regular,
otherwise it is chiral. A toroidal map or hypermap associated with the vector
(s1, s2) is regular if and only if s1s2(s1 − s2) = 0. When (s1, s2) ∈ {(1, 0), (0, 1)}
we get a degenerated regular tesselation of the torus with either one or two faces.
Moreover, with (s1, s2) = (1, 1) the action on the set of edges is never faithful. Let
us consider the cases where the faces of the tesselations of the torus have the shape
has the ones of the correspondent planar tesselation. In what follows we assume
that (s1, s2) /∈ {(1, 0), (0, 1), (1, 1)}.

Plane tesselations are infinite regular polyhedra whose automorphism group is
one of the Coxeter groups [4, 4], [3, 6] or [6, 3] [5]. The automorphim group of
a regular hexagonal tesselation, having vertices with two colors, is also a Coxeter
group having a triangular Coxeter diagram. The groups of automorphims of toroidal
maps and hypermaps are factorizations of these infinite Coxeter groups.

A flag in a map (or hypermap) is a triple of mutual incident elements (vertex,
edge, face) (or (hypervertex, hyperedge, hyperface)). Flags are adjacent if they
have exactly two elements in common. Consider a flag (x, y, z) (base flag) and their
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Map Translations |T := ⟨u, v⟩|

{4, 4}(s1,s2)
u = ab−1 ua = v−1 ub = v−1

v = a−1b va = u vb = u
s21 + s22

{3, 6}(s1,s2)
u = ab−2 ua = v−1 ub = t−1

v = a−1b2 va = t−1 vb = u
t := u−1v ta = u tb = v

s21 + s1s2 + s22

(3, 3, 3)(s1,s2)

u = ab−1 ua = v−1 ub = v−1

v = a−1b va = t−1 vb = t−1

t := u−1v ta = u tb = u
s21 + s1s2 + s22

three adjacent flags (x′, y, z), (x, y′, z) and (x, y, z′). Now let ρ0 be the reflexion of
the plane tesselation sending (x, y, z) to (x′, y, z), ρ1 the reflexion sending (x, y, z)
to (x, y′, z) and finally, ρ2 the reflection sending (x, y, z) to (x, y, z′). The group
of automorphisms of the plane tesselation is generated by these three involutions.
Consider the automorphisms a := ρ0ρ1, b := ρ1ρ2 and ab := ρ0ρ2, which are
rotations, a is a counter-clockwise rotation around a face (or hyperface); b is a
counter-clockwise rotation around a vertex (or hypervertex) and ab is a clockwise
rotation around an edge (or hyperedge). The orders of a, b and ab determines the
Cotexer group. In the case of the maps the order of ab is 2 and the orders of a
and b are in correspondence with the two parameters of the Coxeter group. For
the bipartite hexagonal tesselation of the plane the order of a, b and ab is 3. The
rotations a and b are generators of the orientation-preserving automorphism group
of the tesselation, commonly called the rotational group. Among these orientation-
preserving automorphisms we find unitary translations sending a tile to an adjacent
tile. Let u and v be unitary translations sending the origin (0, 0) to (1, 0) and (0, 1)
respectively.

The rotational group G of a toroidal map or hypermap is a factorization of the
rotational group of the corresponding tesselation by the relation us1vs2 = id (where
id denotes the identity of G). We consider the translations u and v as defined in
Table 2. As the map {6, 3}(s1,s2) is the dual of {3, 6}(s1,s2), we get the rotational
group of {6, 3}(s1,s2) interchanging the rotations a and b. Having this in mind the
results for the map {6, 3}(s1,s2) can be obtained from the corresponding results for
the map {3, 6}(s1,s2).

The subgroup T of G generated by u and v is abelian and is a normal subgroup
of G. Moreover, T acts regularly on the set V of vertices of the toroidal map, hence
|V | = |T |. In addition, G acts on the flags with two orbits, hence |G| = m|V |
where m is the order of a. The translations u and v are conjugate and have order

|V |
gcd(s1,s2)

.

When the map is regular, there exists an automorphism of G sending a to a−1

and b to b−1. In this case the group of automorphims of the map is twice bigger
then its rotational group. In the chiral case the rotational group is precisely the
group of automorphisms of the map.

In what follows G = ⟨a, b⟩ is the rotational group of a toroidal map or hypermap
and T = ⟨u, v⟩ is the group of translations defined in this section. We now assume
that G has a faithful transitive permutation representation of degree n. We will
determine, for each toroidal map and hypermap, the possible values for the degree
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n of G. Before we proceed we give some general results that work the same way
for any toroidal embedding.

3. Preliminary Results

One consequence of the definition of the translation group T is the following.

Proposition 3.1. Any element of the translation subgroup T is of the form uivj

with i ∈ {1, . . . , |u|} and j ∈ {1, . . . , gcd(s1, s2)}.

Proof. The index of ⟨u⟩ in T is equal to gcd(s1, s2), thus it is suficient to prove
that vgcd(s1,s2) ∈ ⟨u⟩. Let x, y ∈ Z be such that gcd(s1, s2) = xs1 + ys2 (given by
Bézout’s identity).

Consider first the toroidal map {4, 4}(s1,s2). Conjugating the equality us1 = v−s2

by a, we get us2 = vs1 . Hence vgcd(s1,s2) = vxs1+ys2 = u−ys1+xs2 ∈ ⟨u⟩.
For the toroidal map {3, 6}(s1,s2) and hypermap (3, 3, 3)(s1,s2), conjugating the

equality us1 = v−s2 by a, we get vs1 = u−(s1+s2). Thus vgcd(s1,s2) = u−xs1−(x+y)s2 .
Hence, vgcd(s1,s2) ∈ ⟨u⟩. □

Now as T is a normal subgroup of G, T is fixed-point-free. Hence if T is transitive
then it acts regularly on n. In that case n = |T |. In what follows we assume that
n ̸= |T |.

Lemma 3.2. If n ̸= |T | then G ≤ Sk ≀ Sm where k is the size of a T -orbit and m

is the number of T -orbits. Moreover m is a divisor of |G|
|T | and k = |T |

d , where d is

a divisor of gcd(s1, s2).

Proof. Suppose that n ̸= |T |, then T is intransitive and the T -orbits form a block
system for G. Let m be the number of block and k be the size of a block for this
block system. We have that G ≤ Sk ≀Sm. Let us now determine the size of a block.

Consider the induced action of G on the set of m blocks and its induced ho-
momorphim f : G → Sm. As T lies in the kernel of this homomorphism, and

Im(f) ∼= G/ker(f), |Im(f)| is a divisor |G|
|T | . Particularly, m is a divisor of |G|

|T | . It

remains to prove that k = |u|d, where d is a divisor of gcd(s1, s2).
Consider the actions σ and τ of u and v, respectively, on a block and let K :=

⟨σ, τ⟩. Let A := |σ|, B := |K : ⟨σ⟩| and C := |K : ⟨τ⟩|. We have that K has order
AB and acts regularly on the block, hence k = AB. As σ and τ commute, we have
the following

K/⟨σ⟩ = {⟨σ⟩, ⟨σ⟩τ, ⟨σ⟩τ2, . . . , ⟨σ⟩τB−1} and

K/⟨τ⟩ = {⟨τ⟩, ⟨τ⟩σ, ⟨τ⟩σ2, . . . , ⟨τ⟩σC−1}.
Thus B divides |τ | and C divides A. Let D := A/C. As k = AB = |τ |C we have
|τ | = DB. Now

|u| = lcm(|σ|, |τ |) = lcm(CD, BD) = D lcm(C,B)

and

k = AB = DCB = D lcm(C,B) gcd(C,B) = |u| gcd(C,B) =
|T | gcd(C,B)

gcd(s1, s2)

Let us now prove that gcd(C,B) divides gcd(s1, s2). As both us1 and us2 are
elements of ⟨v⟩, we have that σs1 and σs2 must be elements of ⟨τ⟩, hence C must
divide both s1 and s2, meaning it must divide gcd(s1, s2). Similarly τs1 and τs2
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are elements of ⟨σ⟩, and therefore B divides gcd(s1, s2). Consequently, gcd(C,B)
is a divisor of gcd(s1, s2), as wanted. □

4. Toroidal Maps of type {4, 4}

In this section let G be the rotational group of {4, 4}(s1,s2).

Proposition 4.1. Let s1 + s2 > 2. The subgroups of G, ⟨a⟩, ⟨b⟩ and ⟨ab⟩ are
core-free.

Proof. Let H = ⟨a⟩ and consider the intersection H ∩ Hb = ⟨a⟩ ∩ ⟨b−1ab⟩. If
x ∈ H ∩Hb and x is nontrivial then, for some i, j ∈ {1, 2, 3}, x = ai = b−1ajb, or
equivalently bai = ajb. This only can happen if s1 + s2 ≤ 2 which is not the case.

For H = ⟨b⟩ the intersections H ∩Ha is trivial and for H = ⟨ab⟩ the intersection
H ∩Hb is trivial. □

Proposition 4.2. Let d be a divisor of gcd(s1, s2). If s1+s2 > 2, then ⟨us1/dvs2/d⟩
and ⟨a2, us1/dvs2/d⟩ are core-free subgroups of G. Moreover these subgroups of G

have indexes
4(s21+s22)

d and
2(s21+s22)

d , respectively.

Proof. Let H = ⟨us1/dvs2/d⟩, with d being a divisor of gcd(s1, s2). Note that |H| is
d hence the index |G : H| is as in the statement of this proposition.

Consider γ ∈ H ∩ Ha. Then γ = (us1/dvs2/d)i = (v−s1/dus2/d)j , with i, j ∈
{0, . . . , d − 1}. This implies that (us1vs2)i/d(u−s2vs1)j/d = id. Geometrically this
means that the origin (0, 0) and the vertex (x, y) = i/d(s1, s2) + j/d(−s2, s1) are
identical. As i, j ∈ {0, . . . , d − 1}, this is only possible when i = j = 0. With this
we have shown that H ∩Ha = {id}.

Now consider H = ⟨a2, us1/dvs2/d⟩, with d being a divisor of gcd(s1, s2). For
s1 + s2 > 2 we have that a2 /∈ T and we have the following equalities, which prove
that ⟨us1/dvs2/d⟩ is a normal subgroup of H.

a−2ua2 = a−1v−1a = u−1

a−2va2 = a−1ua = v−1

Hence H = ⟨us1/dvs2/d⟩⋊ ⟨a2⟩.
Let γ ∈ H ∩Ha.

γ = (us1/dvs2/d)i(a2)l = (v−s1/dus2/d)j(a2)q,

with i, j ∈ {0, . . . , d − 1} and l, q ∈ {0, 1}. Suppose that (l, q) = (0, 0). Then
γ = (us1/dvs2/d)i = (v−s1/dus2/d)j , which we gives γ = id, as we have seen in
the previous case. If (l, q) ∈ {(0, 1), (1, 0)} then a2 ∈ T , a contradiction. Hence
(l, q) = (1, 1) and, consequently, (i, j) = (0, 0), giving that γ ∈ ⟨a2⟩. This proves
that H ∩Ha is a subgroup of ⟨a2⟩.

Using similar calculations we get that Hb ∩Hab ≤ ⟨a2⟩b. Hence for s1 + s2 > 2,

H ∩Ha ∩Hb ∩Hab is trivial. Finally as |H| = 2d, we have that |G : H| = 2
s21+s22

d .
□

Theorem 4.3. Let s1 and s2 be nonnegative integers and D the set of divisors of
gcd(s1, s2). Suppose that G is the rotational group of a toroidal map {4, 4}(s1,s2).
The set of all possible degrees of a faithful transitive permutation representation of
G is equal to{

s21 + s22

}
∪
{2(s21 + s22)

d
| d ∈ D

}
∪
{4(s21 + s22)

d
| d ∈ D

}
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when s1 + s2 > 2 and to {8, 16} when (s1, s2) ∈ {(0, 2), (2, 0)}.

Proof. Let s1 + s2 > 2. By Proposition 4.1 ⟨b⟩ is core-free subgroup of G. As
|G : ⟨b⟩| = s21 + s22 there is a faithful transitive permutation representation of G of
degree n = s21 + s22. If T is transitive then the degree of G is equals to the size of
T , which is s21 + s22. Then we may assume that T is intransitive. In this case, by
Proposition 3.2, the degree of G is among the values given in the statement of this
theorem. Finally, by Proposition 4.2, there exists a pair of core-free subgroups of

G which have indexes equal to
2(s21+s22)

d and
4(s21+s22)

d .
The cases (s1, s2) = (0, 2) and (s1, s2) = (2, 0) can be computed using the

“corefreesub” package [17].
□

5. Toroidal Maps {3, 6}

In this section let G be the rotational group of {3, 6}(s1,s2).

Proposition 5.1. Let s1 + s2 > 2. The subgroups of G, ⟨a⟩, ⟨b⟩ and ⟨ab⟩ are
core-free.

Proof. Let H = ⟨a⟩ and consider the intersection H ∩ Hb = ⟨a⟩ ∩ ⟨b−1ab⟩. If
γ ∈ H ∩Hb then we have that γ = ai = b−1ajb, for i, j ∈ {0, 1, 2}. Then we have
bai = ajb which is only possible when flags of adjacent faces are identified, but that
is never the case when s1 + s2 > 2. Hence γ = id.

For H = ⟨b⟩ (resp. H = ⟨ab⟩) the intersections H ∩ Ha (resp. H ∩ Hb) are
trivial. □

Proposition 5.2. Let d be a divisor of gcd(s1, s2). If s1+s2 > 2, then ⟨us1/dvs2/d⟩
and ⟨b3, us1/dvs2/d⟩ are core-free subgroups of G. Moreover these subgroups of G

have indexes
6(s21+s1s2+s22)

d and
3(s21+s1s2+s22)

d , respectively.

Proof. Let H = ⟨us1/dvs2/d⟩, with d being a divisor of gcd(s1, s2). Consider γ ∈
H ∩Ha. Then γ = (us1/dvs2/d)i = (v(−s2−s1)/dus2/d)j , with i, j ∈ {0, . . . , d − 1}.
Then u

s1i−s2j
d v

s1j+s2i−s2j
d = id. Geometrically, this implies that the origin (0, 0)

and the point with coordinates (s1, s2)i/d + (−s2, s1 + s2)j/d are vertices of the
parallelogram used in the construction of the map. As i, j ∈ {0, . . . , d−1}, we must
have i = j = 0. This proves that H ∩Ha is trivial.

Now let H = ⟨b3, us1/dvs2/d⟩, with d being a divisor of gcd(s1, s2). Let us
first prove that we can write H as a semi-direct product ⟨us1/dvs2/d⟩ ⋊ ⟨b3⟩. For
s1 + s2 > 2 we have that b3 /∈ T and the following equalities show that ⟨us1/dvs2/d⟩
is a normal subgroup of H.

b−3ub3 = b−2t−1b2 = b−1v−1b = u−1

b−3vb3 = b−2ub2 = b−1t−1b = v−1

Let us prove that H ∩Hb2 ≤ ⟨b3⟩. If γ ∈ H ∩Hb2 , then γ = (b3)l(us1/dvs2/d)i =
(b3)q(v(−s1−s2)/dus2/d)j , with i, j ∈ {0, . . . , d− 1} and l, q ∈ {0, 1}. Now if (l, q) =
(0, 0), then, as we have proven before, (i, j) = (0, 0), hence γ = id. If (l, q) ∈
{(0, 1), (1, 0) then b3 ∈ T , a contradiction. If (l, q) = (1, 1), then (i, j) = (0, 0) and

γ = b3. Consequently, H ∩Hb2 ≤ ⟨b3⟩, as claimed.

Similarly we have Ha−1 ∩Hb2a−1 ≤ ⟨ab3a−1⟩. As for s1+ s2 > 2, ⟨b3⟩∩ ⟨ab3a−1⟩
is trivial, H is a core-free subgroup of G, as wanted.
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□

Combining Lemma 3.2 and Proposition 5.1, to determine all the possibilities
for the degree n of G it remains to consider the case m = 2, that is, the case
where T has exactly two orbits. The following proposition shows that in that case
n = 2|T | = 2(s21 + s1s2 + s22).

Proposition 5.3. If m = 2 then k = |T |.

Proof. Suppose that m = 2. Let B1 and B2 be the orbits of T and, for i ∈ {1, 2}
denote by ui and vi the actions of u and v on the block Bi, respectively. As
a3 = id, a must fix the blocks, and by transitivity of G, b must swaps the blocks.
Then |u1| = |v1| and |u2| = |u1|. Hence |u1| = |u|. Let K := ⟨u1, v1⟩ and d := |K :
⟨u1⟩| = |K : ⟨v1⟩|. We have that d is a divisor of gcd(s1, s2).

Let j ∈ {0, . . . , |u| − 1} be such that ud
1 = vj1. Conjugating this equality by a, b

and ab, respectively, we get the equalities

vd1 = ud−j
1 , vd2 = ud−j

2 and ud
2 = ud−j

2 vj−d
2 .

From the last two relations we have that ud
2 = vj2. Hence, ud = vj . From the proof

of Proposition 3.1, we have that both d and j must be multiples of gcd(s1, s2).

Since d must divide gcd(s1, s2), we get that d = gcd(s1, s2). As |u| = |T |
gcd(s1,s2)

then

the size of the block is

k = |K| = |u|d =
|T |

gcd(s1, s2)
· gcd(s1, s2) = |T |.

□

Theorem 5.4. Let s1 and s2 be nonnegative integers and D the set of divisors of
gcd(s1, s2). Suppose that G is the rotational group of a toroidal map {3, 6}(s1,s2).
The set of all possible degrees of a faithful transitive permutation representation of
G is equal to{

s21 + s1s2 + s22, 2(s
2
1 + s1s2 + s22)

}
∪
{

3(s21+s1s2s
2
2)

d | d ∈ D
}
∪
{

6(s21+s1s2s
2
2)

d | d ∈ D
}

when s1 + s2 > 2 and to {6, 8, 12} when (s1, s2) ∈ {(0, 2), (2, 0)}.

Proof. Let s1 + s2 > 2. By Proposition 5.1 ⟨a⟩ and ⟨b⟩ are core-free subgroup of
G. As |G : ⟨a⟩| = 2(s21 + s1s2 + s22) and |G : ⟨b⟩| = s21 + s1s2 + s22 there is a
faithful transitive permutation representation of G on the set of cosets of these two
subgroups. If T is transitive then the degree of G is equals to the size of T , which
is s21 + s1s2 + s22. Then we may assume that T is intransitive. Hence the remaining
degrees given in this theorems are obtained from Propositions 3.2, 5.2 and 5.3.

The cases (s1, s2) = (0, 2) and (s1, s2) = (2, 0) can be computed using the
“corefreesub” package [17]. □

6. Toroidal Hypermaps (3, 3, 3)

In this section let G be the rotational group of the hypermap {3, 3, 3}(s1,s2).

Proposition 6.1. Let d be a divisor of gcd(s1, s2). If s1 + s2 > 2, then ⟨a⟩, ⟨b⟩,
⟨ab⟩ and ⟨us1/dvs2/d⟩ are core-free subgroups of G.

Proof. The proof is similar to the proof of Propositions 5.1 and 5.2. □
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Theorem 6.2. Let s1 and s2 be nonnegative integers with (s1, s2) /∈ {(1, 0), (0, 1), (1, 1)}
and D the set of divisors of gcd(s1, s2). Suppose that G is the rotational group of
a toroidal map hypermap (3, 3, 3)(s1,s2). The set of all possible degrees of a faithful
transitive permutation representation of G is equal to{

s21 + s1s2 + s22

}
∪
{

3(s21+s1s2s
2
2)

d | d ∈ D
}
.

7. Schreier coset graphs

Let G = ⟨gi | i ∈ I⟩ be a finite group. Suppose that G has a faithful transitive
permutation representation of degree n (which corresponds to a core-free subgroup
of G). A Schreier coset graph of G has n vertices and has a directed edge (x, y)
with label gi whenever xgi = y. When gi is an involution, the two directed edges
(x, y) and (y, x) are replaced by a single undirected edge {x, y} with label gi. In
this section, we give computational tools to represent Schreier coset graphs of any
group, but as example we consider automorphism groups of toroidal maps and
hypermaps.

In [11, 12] the authors gave some examples of Schreier coset graphs of toroidal
regular maps. Due to the complexity of drawing Schreier coset graph of toroidal
chiral maps and hypermaps by hand, we leveraged the funcionalities offered by the
corefreesub GAP package [15, 17]. In what follows, we present a code that can
be executed using the GAP system, provided that the corefreesub package has
been installed. As an example we obtain graphs of minimal degree for the map
{4, 4}(2,1) and the hypermap (3, 3, 3)(3,2). The Schreier coset graphs obtained are
represented in Figures 3 and 4.

gap> LoadPackage("corefreesub");;

gap> F := FreeGroup("a","b");;

gap> s1 := 2 ;; s2 := 1;;

gap> G44 := F/[F.1^4, F.2^4, (F.1*F.2)^2, (F.1*F.2^-1)^s1*(F.1^-1*F.2)^s2];;

gap> FTPRs44 := FaithfulTransitivePermutationRepresentations(G44);

[ [ a, b ] -> [ (1,2,6,3)(4,10,19,11)(5,13,16,7)(8,18,12,14)(9,15,20,17),

(1,4,12,5)(2,7,17,8)(3,9,16,10)(6,14,11,15)(13,18,20,19) ],

[ a, b ] -> [ (1,2,5,3)(4,8,10,6)(7,9), (1,4)(2,6,9,5)(3,7,10,8) ],

[ a, b ] -> [ (1,2,4,3), (2,3,5,4) ] ]

gap> DrawFTPRGraph(FTPRs44[3],rec(layout := "sfdp", gen_name := ["a","b"]));

1

2

a

4
a

3

b

b

a

a 5b

b

Figure 3. A Schreier coset graph of {4, 4}(2,1)
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gap> LoadPackage("corefreesub");; F := FreeGroup("a","b");; s1 := 3 ;; s2 := 2;;

gap> G333 := F/[F.1^3, F.2^3, (F.1*F.2)^3, (F.1*F.2^-1)^s1*(F.1^-1*F.2)^s2];;

gap> FTPRs333 := FaithfulTransitivePermutationRepresentations(G333);

[ [ a, b ] -> [ (1,2,3)(4,10,11)(5,12,13)(6,14,15)(7,16,17)(8,18,19)(9,20,21)

(22,37,38)(23,39,40)(24,41,25)(26,42,43)(27,44,45)(28,46,47)(29,48,30)

(31,49,50)(32,51,52)(33,53,54)(34,55,35)(36,56,57), (1,4,5)(2,6,7)(3,8,9)

(10,21,22)(11,23,24)(12,25,26)(13,27,14)(15,28,29)(16,30,31)(17,32,18)

(19,33,34)(20,35,36)(37,57,48)(38,47,39)(40,53,52)(41,51,50)(42,49,56)

(43,55,44)(45,54,46) ],

[ a, b ] -> [ (1,2,3)(4,7,8)(5,9,10)(6,11,12)(13,19,17)(14,16,15), (2,4,5)

(3,6,7)(8,13,14)(9,15,16)(10,17,11)(12,18,19) ] ]

gap> DrawTeXFTPRGraph(FTPRs333[2],rec(layout := "neato", gen_name := ["a","b"]));

1
2

3

4

6

7

5

8

9

10

15

11

12

1317

18

19

14

16a

a

b

a

b

a

b

b
a

b
a

a

b

b

a

b

a

a

b

a

b

a

b

a

b

b

a

b

a

b

a

a

b

b a

b

Figure 4. A Schreier coset graph of (3, 3, 3)(3,2)
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