LEIBNIZ ALGEBRAS AND GRAPHS

ELISABETE BARREIRO, ANTONIO J. CALDERON, SAMUEL A. LOPES, AND JOSE M. SANCHEZ

ABSTRACT. We consider a Leibniz algebra £ = J @ U over an arbitrary base field F,
being J the ideal generated by the products [z, z],z € £. This ideal has a fundamental
role in the study presented in our paper. A basis B = {v; };¢ 1 of £ is called multiplicative
if for any ¢, j € I we have that [v;,v;] € Foy, for some k € I. We associate an adequate
graph I'(£, B) to £ relative to B. By arguing on this graph we show that £ decomposes as
a direct sum of ideals, each one being associated to one connected component of I'(£, B).
Also the minimality of £ and the division property of £ are characterized in terms of the
weak symmetry of the defined subgraphs I'(£, By) and I'(£, Bys).
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1. INTRODUCTION

Leibniz algebras were presented by Bloh [5], who called them the D-algebras. After
two decades, Loday introduced them in [[L8]] with the name of Leibniz algebras because it
was Gottfried W. Leibniz who discovered the Leibniz rule for differentiation of functions.
Recently, the structure of the Leibniz algebras has been considered in the frameworks of
low dimensional algebras, nilpotence and related problems [[1,12}3,16}/10,/16417]. The inner
structure of Leibniz algebras admitting a multiplicative basis 53 has been recently studied
in [[7]], it is focussed the characterization of the B-semisimplicity and of the B-simplicity
of the algebra.

An interesting problem in graph theory and in abstract algebra consists in characterizing
the structure of an algebraic object by the properties satisfied for some graph associated
with it (see for instance [4} [12] [13} [14]]). The paper [8] is devoted to the study of the
structure of linear spaces by associating an adequate graph.

The main goal of the present paper is to use properties of graphs to study Leibniz alge-
bras £ with multiplicative bases 3 in order to obtain results about their algebraic structure.
Given a Leibniz algebras £, the ideal J generated by the products [z, z] with € £ plays a
relevant role in our study, so we have to handle specifically the ideas of [8]. By arguing on
the associate graph we show that a Leibniz algebra decomposes as a direct sum of ideals,
each one being associated to one connected component of the referred graph. In the last
part of the work, the authors approach the minimality property of this class of algebras
by using the subgraphs I'(£, B;) and I'(£, By) related with J and the remain part of £,
respectively.
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1



2 E. BARREIRO, A.J. CALDERON, S. A. LOPES, AND J.M. SANCHEZ

The paper is organized as follows. In Section 2 we introduce the (directed) graph asso-
ciated with £ admitting a multiplicative basis B, denoted as I'(£, B). By using this graph
we prove that £ decomposes as a direct sum

sz@zk
k

of ideals with a multiplicative basis contained in B, each one being associated with one
connected component of I'(£, B). In the next section we discuss the relation among the
previous decompositions of £ given by different choices of bases of £. Finally, in Section
4 we relate the weak symmetry of two concrete subgraphs with some properties of £. The
minimality of £ and the division property of B are characterized. It is shown that £ is
minimal if and only if B is of division if and only if the two refereed graphs are weak
symmetric. All of the Leibniz algebras considered are of arbitrary dimension and over an
arbitrary base field .

Definition 1.1. A Leibniz algebra £ is a vector space over a field F endowed with a bilinear
product [-, -] satisfying the Leibniz identity
[[y7 Z]’ J}} = Hy’ .Z'L Z] + [yv [Zv .Z‘H,

forany z,y,z € £.
Clearly, Lie algebras are examples of Leibniz algebras. For any « € £, consider the adjoint
map ad, : £ — £ defined by ad,(y) = [y, z], with y € £. Observe that Leibniz identity
is equivalent to assert that ad,, is a derivation for any z € £. A subalgebra S of a Leibniz
algebra £ is a vector subspace of £ such that [S, S] C S, and an ideal I of £ is a subalgebra
such that [I, £] + [£,I] C I.

The ideal J generated by {[x,z] : € £} plays an important role in the theory since

it determines the (possible) non-Lie character of the Leibniz algebra £. From the Leibniz
identity, this ideal satisfies

(1) [£,9]=0.
Observe that we can write
L=769

where U is a linear complement of J in £ (actually, *J is isomorphic as linear space to
£/73, the so called corresponding Lie algebra of £). Hence, by taking B; and By bases of
J and U, respectively, we get

B =By U By
a basis of £.

Definition 1.2. A decomposition of a Leibniz algebra £ as the direct sum of linear sub-

spaces
e=Ps

JjeJ
is orthogonal if [£;, £;] = {0} for any two different elements j, k € J.
For an arbitrary algebra A over a base field IF, a basis B = {v; };es of A is multiplicative

if for any 4, j € I we have that v;v; € Fuy, for some k € I (see [9]]). In the particular case
of Leibniz algebras, as in [7], the relation (I}) implies the following characterization.
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Definition 1.3. A basis B = B3 U By of a Leibniz algebra £, where we denote

By == {ex}rer, By = {uj}je,
is called multiplicative if:

i. Forany k € K and j € J we have [ey, u;] € Fe; for some i € K.
ii. For any j, k € J we have either [u;, u;] € Fu; for some ! € J, or [u;, uy] € Fe;
for some i € K.

Example 1.1. (see [19]]) Consider a (non-Lie) Leibniz algebra £ over a field F with charac-
teristic different of 2 and with the multiplicative basis B = By U By, where By = {p, q}
and By = {e, h, [}, defined by the following multiplication:

[evh]:_[hve] = 2e, [haf] :_[fah} =2f, [eaf]:_[fve]:ha

[p7h} :—[q7€] =D [ mﬂ :_[q7h} =q,

where are omitted products equal to zero.

Example 1.2. The infinite-dimensional Leibniz algebra £ = J & U given in [7, Example
1.2], over a base field F with characteristic different to 2, admits a multiplicative basis
B = By U By, where

By ={e,:n e N}
is a basis of J (we denote by N the set of non-negative integers) and the set
B‘l] = {ucw Up, Uc, Ud}

is a basis of . The non-zero products respect to the elements in the basis 5 of £ are:

[ubauc} = Uq, [umub] = —Uq,
ud, uq| = eo, [eo,ual = e1,

[

[ ]

[en, up] = €pt1, forn > 2
[ ]

Example 1.3. Let £ be the model filiform Leibniz algebra with multiplicative basis B =
By U By, where By = {ea, ..., e, } and By = {e1} with non-zero products given as

lei,e1] =eip1, 2<i<n—1

Example 1.4. Let £ be an n-dimensional Leibniz algebra (with an odd integer n > 4)
given in Theorem 3.4 of [20] over the complex numbers such that £/3 is isomorphic to
the simple Lie algebra sly with basis B := {e, f,h,xo,21,...,Tn_4a} of £ such that the
non-zero products of B are

e, f]=~[f.e]=h, [2r €] = k(k+3—n)ap_1, 1<k<n—4,
[e,h] = —[h,e] = 2e, [, h) = (n—4—=2k)x,, 0<k<n-—4,
[hmf]:i[fvh]:Qf? [xk7f]:zk+17 nggnfs

Clearly B is a multiplicative basis. This example generalizes the Example [[.I| where in
that case we take n = 5 and denote p := xg,q = x1.
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2. LEIBNIZ ALGEBRAS ADMITTING A MULTIPLICATIVE BASIS, AND GRAPHS

In this section we relate the concept of Leibniz algebra admitting a multiplicative basis
with graphs in order to characterize their structure. We recall a (directed) graph is a pair
(V, E) where V is a set of vertices and £ C V x V a set of (directed) edges connecting
the vertices. The reader can found more usual concepts related to graphs in [8]]. From now
on, we consider directed graphs.

Definition 2.1. Let £ be a Leibniz algebra admitting a multiplicative basis 5. The directed
graph associated to £ relative to 13 can be written as I'(£, B) := (V, E), being V := B and

E = {(vj,vx) € V x V : {[vi, v5], [vj,v;]} NF* vy, # 0 for some v; € B}.

Remark 2.1. Taking into account Definition|l.3|we observe that the directed graph associ-
ated to a Leibniz algebra £ admitting a multiplicative basis B can be written more precisely
asT'(£,B) = (V, E), being V = By U By and

E ={(uj,ex) € VxV :{[e;,u ]} NF*ey, # 0 for some e; € By}
U{(es,er) € V x Vi {le,u;]} NFXey, # O for some u; € By}
U{(uj,e) € V x Vi {{uj,ug], [uk, uj]} NF*e; # 0 for some uy, € By}
U{(uj,w) € V x Vi {luj,ugl, [uk, uj]} NF*u; # 0 for some uy, € By}

The description presented above of E agrees with Definition [T.3] (first two subsets corre-
spond to item i. and next two subsets correspond to the item ii. of the referred definition).

Example 2.1. Consider the Leibniz algebra £ of the Example over a field with char-

acteristic different of 2 and with the basis B = By U By, where By = {p,q}, By =
{e,h, f}. We have that V = {e, h, f,p, q},

E ={(e,p), (h,p), (h,q), (f;9)} U {(p,p), (p;9),(¢:P),(q:9)}
U 0 U {(ee), (e h),(h, [),(f, f), (h,e), (f 1)}

and the associated graph I'(£, B) is the following:

Example 2.2. The associated graph of the Leibniz algebra presented in Example|1.2|over
a field with characteristic 0 and with the multiplicative basis B = By U By, where By =
{en : n € N} and By = {uq, up, ue, uqg} is as follows:

(P
O
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Example 2.3. For the model filiform Leibniz algebra £ with basis B := {ey, . .., e, } from
Example|1.3|the associated graph T'(£, B) is

Example 2.4. Let £ be the n-dimensional Leibniz algebra from Example over a field
with characteristic 0. The associated graph T'(£, B) is

Given two vertices v;, v; € V, an undirected path from v; to v; is an ordered family of
vertices {v;,, ..., v, } C V withv;, = v;, v;, = v;, and such that either (v;,,v;,,,) € E
or (v, ,,v;,) € E,for1 <r<n-—1.

We can introduce an equivalence relation in V' defined by v; ~ v; if and only if either
v; = v; or there exists an undirected path from v; to v;. Then it is said that v; and v;
are connected and the equivalence class of v;, denoted by [v;] € V/ ~, corresponds to a
connected component Cy,,,) of the graph I'(£, B). Then

(2) reB = J Cu.
[v;]eV/~

We can also associate to any Cy,,,] the linear subspace

3) e, = P Fu,
v; €[v;]

and assert the next result:
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Theorem 2.1. Let £ be a Leibniz algebra admitting a multiplicative basis B = {v; }ic1.
Then £ decomposes as the orthogonal direct sum

L= @ SC[%‘] ’

[vi]leV/~

where any £¢, | is an ideal of £, admitting the set [v;] C B as multiplicative basis.

]

Proof. From Equation and Equation (3)) we can assert that £ is the direct sum of the
family of linear subspaces £¢;, | with [v;] € V/ ~, admitting each one the set [v;] C B as
multiplicative basis.

Let us suppose that there exist v; € SCM and vy, v; € B such that

{[Ujavk]v [’Uk,’l)j]} NEF*y 7é 0

for some j € I. Then (vj,v;) and (vg,v;) are edges of Cf,,}, and then vy, v; € Ly,
From here we conclude that the direct sum is orthogonal and that £¢, , is an ideal of
£. O

]

Example 2.5. The Leibniz algebra of the Example[I.2]decomposes as the orthogonal direct
sum

L= ‘QC[vdJ @ L0

where
ECM] = Fog®Feg®Feq, EC[UQ] = Fv, ®Fv, ®Fv.BFesBFes®- - -PFe,, D- - -
are ideals of £ admitting the multiplicative basis in B
[va] := {va, €0, €1}, [Vq] := {va, vp, v} U {€i}ia,
respectively.

We recall a Leibniz algebra £ is simple if its product is non-zero and its only ideals are
{0}, J and £. It should be noted that this definition agrees with the definition of simple Lie
algebra, since in this framework J = {0}.

Corollary 2.1. If £ is simple, then any two vertices of I'(£, B) are connected.

Example 2.6. By Corollary[2.1|the Leibniz algebra of Example[I.2]is not simple because
its associated graph has two components as shown in Example

To identify the components of the decomposition given in Theorem we only need to
focus on the connected components of the associated graph.

3. RELATING THE GRAPHS GIVEN BY DIFFERENT CHOICES OF BASES

In general, two different multiplicative bases of £, namely B and ', have two different
associated graphs, which give rise to two different decompositions of £ as an orthogonal
direct sum of ideals (see Theorem [2.1)). For instance, consider the following example:

Example 3.1. Consider the complex Leibniz algebra £ of the Example[I.1|with the multi-
plicative basis B' .= {e + f,e — f,h,p + q,p — q}. Indeed, the non-zero product in the
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basis B’ are

e—f,e+ fl=—[e+ f,e— f] = 2h,

[e+ f.hl = —[h,e + f]=2(e - f),

[e—f.hl = —[h,e = f]=2(e+f),

P+a.hl=-lp+get+fl=lp—qe—fl=pr—q

P—ge+fl=lp—ah=-p+ge—fl=p+q
Then the associated graph T'(£,B') is

@'/@
@)
5o

which is clearly different to the one obtained with the multiplicative basis BB presented in

Example

Next we give a condition under which the graphs associated to £ and two different
multiplicative bases B and B’ are isomorphic. As a consequence, we establish a sufficient
condition under which two decompositions of £, induced by two different multiplicative
bases B and B3/, are equivalent.

We recall that an automorphism of a Leibniz algebra £ is a linear isomorphism f : £ — £

satisfying [f(z), f(y)] = f([z,y]), for any z,y € £.

Definition 3.1. Let £ be a Leibniz algebra. Two bases B = {v; }icr and B’ = {w; };c.s of
£ are equivalent if there exists an automorphism f : £ — £ satisfying f(B) = B’.

We recall that two graphs (V, E) and (V’, E’) are isomorphic if there exists a bijection
f:V — V' suchthat (v;,v;) € E if and only if (f(v;), f(v;)) € E'.

Lemma 3.1. Let £ be a Leibniz algebra and consider two multiplicative bases B and B’ of
L. If B and B' are two equivalent bases, then the associated graphs T'(£, B) and T'(£, B')
are isomorphic.

Proof. Let us suppose that B = {v; },c; and B = {w, } ¢ s are two equivalent multiplica-
tive bases of £. Then, there exists an automorphism f : £ — £ satisfying

) [f (@), ()] = f([z,9])

for any z,y € £ and such that f(B) = B’.

Let us denote by (V, E) and (V', E’) the set of vertices and edges of I'(£, B) and
I'(£, B), respectively. Taking into account that V' = B and V’ = B’, and the fact f(B) =
B’, we have that the map f defines a bijection from V to V.

Finally, for any =,y € V' we want to show that (z,y) € E if and only if (f(z), f(y)) €
E’. We prove that if (f(z), f(y)) € E’ then (z,y) € F by contrapositive. Indeed, for any

z,y € V,if (z,y) ¢ E then [z,y] = [y,x] = 0and so [f(z), f(y)] = [f(y), f(z)] =0,
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hence, (f(z), f(y)) ¢ E’. Next we show that (f(z), f(y)) € E'if (x,y) € E. By
Deﬁnition given (z,y) € E, we have

{[z, 2], [z, 2]} NF*y #0
for some z € B. Then, by Equation (@)

{lf @), FR[f (=), f@)]} NF f(y) # 0,

which means that (f(z), f(y)) € E’. We can conclude that I'(£, B) and I'(£, B) are
isomorphic by means of f. (]

The following concept is taking borrowed from the theory of graded algebras (see for
instance [[13])).

Definition 3.2. Let £ be a Leibniz algebra and let
T=2=P& ad YT =2t=@¢
i€l jeJ
be two decompositions of £ as an orthogonal direct sum of ideals. It is said that T and Y’

are equivalent if there exists an automorphism f : £ — £, and a bijection o : I — J such
that f(£;) = £, foranyi € I.

Theorem 3.1. Let £ be a Leibniz algebra and consider two multiplicative bases B :=
{vitier and B' := {v}} ;e . Consider the following assertions:

i. The bases B and B’ are equivalent.
ii. I'(&,B) and T'(L, B'), the associated graphs to B and B' respectively, are isomor-
phic.
iii. The decompositions
—a_ o
Ti=t= P Lo, wd YT=2= P Vo,
[vi]eV/~ [vilev!/~
corresponding to B and B' are equivalent.
Then it is satisfied the implication from i. to ii., and the implication from ii. to iii.
Proof. The implication from i. to ii. was proved in Lemma [3.1] Let us prove the im-
plication from ii. to iii. If f : V' — V' defines an isomorphism between the graphs
'L, B)=(V,E)and I'(L,B') = (V', E’), then v is a vertex of Cy,) if and only if f(v) is
a vertex of C[(,)), for every v € V. That means f([v]) = [f(v)] for every v € V. Hence,
taking into account this observation and Lemma (3.1} we easily get the next result. [

4. MINIMALITY AND WEAKLY SYMMETRY

Consider a graph (V, E). Given two elements v;, v; in V, an ordered family {v;,,...,v;, } C
V' is called a directed path from v; to vj if vy, = v, v, = v; and (v;.,v;,,,) € E for
every 1 < r < mn — 1. We also recall that a graph (V, E) is symmetric if (v;,v;) € E for
every (v;,v;) € E. Then, a weaker concept can be introduced as follows:

Definition 4.1. We say that the graph (V, E) is weakly symmetric if for every (v;,v;) € E
there exists a directed path from v; to v;.

In particular, we have that every symmetric graph is weakly symmetric.

Example 4.1. The following graphs are weakly symmetric:
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Definition 4.2. Given a graph (V, E), we say that two vertices v;,v; € V are strongly
connected if there exists a directed path from v; to v; and viceversa. Additionally, we say
that the graph (V, E) is strongly connected if any two vertices of V' are strongly connected.

In case of Leibniz algebras there no exist edges of type: (e;,u;), with e; € By, u; €
By. So given an graph (V) E) associated to a Leibniz algebra £ we can not apply the
notion of weakly symmetric to all graph (V, E) (see Definition . Due to this fact, we
consider two subgraphs, one related with the ideal J, and the other with the 2 isomorphic
to a Lie algebra.

Definition 4.3. Let £ be a Leibniz algebra admitting a multiplicative basis B. A pair
(V',E’) is a subgraph of the directed graph associated to £ relative to B3, denoted by
I'(£,B) := (V,E),if V'is asubset of V and E’ is a subset of E such that an edge (v;, vi)
of E belongs to E’ if v;, v, € V.

A subgraph is again a graph, so the concepts presented to graph can be considered to
subgraphs also. Let £ = J & U be a Leibniz algebra with multiplicative basis B =
By U By, being By = {e; }ier and By = {u;},c ;. In the following, we will consider the
two subgraphs I'(£, B;) and I'(£, By ) of the associated graph I'(£, B) by removing the
edges (u;, e;) with u; € By and e; € By, where in subgraph I'(£, B3) the vertices are the
elements of B; while in subgraph I'(£, By) the vertices are the elements of By.

Remark 4.1. More precisely, taking into account Definition [I.3] and Remark [2.1| we ob-
serve that the subgraph I'(£, B3) is (V’, E’) where V' = B and

E':={(e;,er) € V x V :{[e;,uj]} NF*ex # 0 for some u; € T}
and the subgraph I'(£, By ) is (V”, E”') where V"' = By and
E" = {(uj,w) € VxV : {{uj, ug], [ug, u;]} NF*u; # O for some uy, € V}.
Example 4.2. For the complex Leibniz algebra £ of the Example 2.1 we get
=0)
Oz
Oz

I

(&, By) (g, B;)

At the following, we refer to the smallest ideal of a Leibniz algebra £ that contains
v € B, denoted by Z(v), as the ideal of £ generated by v.
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Lemma 4.1. Ler £ be a Leibniz algebra with a multiplicative bases BB := {v; };c1. Given
v;,v; € Bg, we have that v; € Z(v;) if and only if there exists a directed path from v; to
v; in (L, B ), for whatever K € {J3,0}.

Proof. First we take care of the case K’ = J. Suppose e; € Z(e;) fore;, e; € B;. We have
that [[[[e;, u1],ua],...], un] = e;, for some us, ..., u, € By. From here, by writing
wy = F[[- - [[es, ur], u], - - -], ug] N By,
fork € {1,...,n—1}, we get that {e;, w1, ..., w,_1,€;} is a directed path from e; to e;.
Conversely, if {e;,e1,...,en—1,€;} is a directed path from e; to e; in the subgraph
(£, B5) then we have successively 0 # [e;, w1] € Fey, 0 # [e1,ws] € Feg,...,0 #
[en—1,wy]| € Fe; for some wy, ..., w, € By. Hence
€j = >\H o Hei7w1]a w2]7 o ],’an] € I(el)
for some \ € F*, as required.
Second, we study the case K = . For u; € Z(uy;), with for ug, u; € Bys. Thus, either
[ui, v1] # 0 and then v € By (otherwise, v; € By implies [u;, v1] = 0), or [v1, u;] # 0.
In this last case, if v; € By we get [v1,u;] € By and consequently [[v1,u;],v2] € J.

By iterating this process, we will always obtain [--- , [[v1, u;],ve], - ,vx] € J, what
contradicts the fact that u; € By. In conclusion, we have again v; € Bg. A similar
argument, shows that also vs, . .., v, € By. From here, by writing

wi =Ff( (f(f (ugv1),02), ), ) N Bag

fork € {1,...,n—1},beingany f(z,y) € {[z,y], [y, z]}, we get that {u;, w1, ..., wn_1,u;}
is a directed path from u; to u;.

Let us now prove the converse. If {u;, u1, ..., u,—1, u;} is a directed path from u; to u;
in I'(£, By) then we have successively 0 # [u;, u1] € Fuq, 0 # [ug, uz] € Fug,...,0 #
[Un—1, U] € Fu; for some u1,...,u, € By. Hence

Uj = /\[[ o [[ui’ulL uQ]? o ]’un] € I(ui)
for some \ € F*, which completes the proof. (I

Definition 4.4. Let £ = J @ U be a Leibniz algebra with a multiplicative basis B =
By U By, where By = {e }kex and By = {u;},cs. Itis said B is of weak division if

o 0 # [e;,u;] = Ney, implies e; € Z(ey).

o 0 # [u;, ug) = Auy, implies u;, ug, € Z(uyp).

Proposition 4.1. Let £ be a Leibniz algebra admitting a multiplicative basis B = By U By,
where By = {ex}rex and By = {u;};cs. In these conditions, B is of weak division if
and only if the subgraph T'(£, By ) is weakly symmetric, for K € {J,0}.

Proof. Let us suppose that the multiplicative basis B is of weak division. First we prove
that I'(£, By ) is weakly symmetric. Given an edge (u;, u;) of I'(£, By ) we have that there
exist up, € By and A; € F* such that [u;, ug] = A\ju; or [ug, u;] = Aju;. Since B is of
weak division we get u; € Z(u;), and by Lemma there exist a direct path from u; to
u;, so I'(£, By) is weakly symmetric.

Now we prove that I'(£, B5) is weakly symmetric. Let us take an edge (e;, e;) of
I'(£, B3). So there exist u,, € By such that [e;, uy] = Aje;, for certain A; € F*. Since B
is of weak division we get e; € Z(e;). As in the previous case, by Lemmawe conclude
(£, B;) is weakly symmetric.

Conversely, let us suppose that subgraph I'(£, By ) is weakly symmetric, for K €
{3,%0}. We want to show that B is of weak division. Given e;,er, € By, u; € By
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such that 0 # [e;,u;] = Aex. Then (e;,ex) is an edge of I'(L, By). Since I'(£, By) is
weak symmetry, there exist directed path from ey, to e;. Then, by Lemma [4.1] it follows
that e; € Z(ey). In a similar way, for u;, ug,u, € By such that 0 # [, ug) = Auy, we
get (u;, up) or (ug, u,) are edges of I'(£, By ). Analogously to the previous case, Lemma
let us assert that u; € Z(u,) or uy € Z(uyp). In conclusion, B is of weak division as
required. U

In order to present a simpler exposition of the work, we will introduce a definition of
connection both in subgraph I'( £, By) and subgraph I'(£, By ) inspired in the same concept
in all graph I'(£, B).

Definition 4.5. Set K € {J,0}. Given v;,v; € Bx we say v; ~k v; if either v; =
vj or there exists an undirected path from v; to v; in subgraph I'(£, Br), meaning that
{vi,ua, ... Un—2,v;}, withuy € B fork € {2,...,n—2}.

Proposition 4.2. Let £ be a Leibniz algebra admitting a multiplicative basis B. If T'(£, By)
has one connected component and is weakly symmetric, then any non-zero ideal I of £ that
admits a multiplicative basis contained in B such that I C J verifies I = 7.

Proof. It is enough to prove J C I. Since I C J, we begin taking certain e;, € By such
that e;, € I. By hypothesis, e;, ~5 e; for any e; € By, so there exists a directed path from
e;, to e; in (£, By). Applying Lemmad.1|we have e; € Z(e;,) C I, thereforeJ C I. [

Proposition 4.3. Let £ be a Leibniz algebra admitting a multiplicative basis B. If the
subgraph T'(£, By ) has one strongly connected component and is weakly symmetric, then
any non-zero ideal I of £ that admits a multiplicative basis contained in B such that I ¢ J
verifies I = £.

Proof. Letus prove £ =J @0 C I. Since I ¢ J there exists u;, € By withu;, € I. By
hypothesis, u;, ~q u; for any u; € By, so there exists a directed path from wu;, to u; in
(£, By). Therefore applying Lemma 4.1 we have u; € Z(uj,) C I, so consequently

®) Yl
Finally, since J C [J,] + [, ], by Equation (3) we get J C I, which proves I = £ as
desired. (]

Definition 4.6. A Leibniz algebra £ admitting a multiplicative basis B is minimal if its
only non-zero ideals admitting a multiplicative basis contained in 3 are J and £.

Theorem 4.1. Let £ be a Leibniz algebra with multiplicative basis B = By U By. Then
the following statements are equivalent:
i. £is minimal.
ii. I'(&, Bk) is weakly symmetric and connected, for K € {J3,9}.
ili. B is of weak division and T'(£, B) is connected, for K € {J,0}.

Proof. The equivalence between ii. and iii. is shown by Proposition .1 Now, we prove
ii. implies i. Let I be a non-zero ideal of £ admitting a multiplicative basis contained in B.
We have two possibilities, either I C J or I ¢ J. In the first case by Proposition 4.2] we
infer that I = J, and in the second case by Proposition[4.3|we have I = £, consequently
£ is minimal.

It remains to show that i. implies ii. Suppose that £ is minimal. First we take care of
the case K = J. If J # {0}, for e; € By we have that the vector subspace @, ez, Fe; is

€;~3€4
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an ideal of £. Indeed,

[@ Fe;, V] = [ @ Fe;, @ va} = @ Flej, vp).

ejEB;] ejEB:; UPEBm EjGBj
€j~v3€e; €j~V3€4 €j~V3€eq
vp €EBy

If 0 # [ej,vp] = Aeg then (e, e,) is an edge of T'(£, B;), so e, ~5 e;. Therefore
€q ~73 €;, 80 €q € Do, eB, Fe; and then D¢, Fe; is an ideal of £. Since £ is minimal

€j~I€e; €j~v3e;

we have @, e, Fe; = J and we conclude I'(£, B5) has all its vertices connected.

€;j~3€4
Let us prove that I'(£, By) is weakly symmetric. We take an edge (e;, e;) in I'(£, B3).
By minimality Z(e;) = J, so e; € Z(e;). Then by Lemma[4.1|there exists a directed path
from e; to e; in I'(£, By), so it is guaranteed the weakly symmetry.
Now we perform the case K = 2. We take v; € By and consider J & (& v, eBy, Foi)

’UkNQ}’UJ‘
is an ideal of £. By minimality J @ (© v, ey Fvr) = J @ U. Therefore I'( £, By ) has all
Ve~sygvj
its vertices connected.
Let us prove that I'(£, By ) is weakly symmetric. If (v;, v;) is an edge in T'(£, By ), by
minimality Z(v;) = £ and then v; € Z(v;). By Lemma {4.1| there exists a directed path
from v; to v;, so I'(£, By) is weakly symmetric, completing the proof. (]

Example 4.3. For the complex n-dimensional Leibniz algebra £ from Example with
basis B := {e, f,h,xo, 21, ..., Tn_4a} the subgraphs T (£, Bs) and T'(£, By) are:

@ —@—@>  res

Zo @ Tp—5 (g, B;)

g

Since the subgraphs T'(£, By) and T'(£, By ) are weakly symmetric and connected, apply-
ing TheoremH. l|we have that £ is minimal.
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