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Abstract. We introduce a one-parameter family of polymatrix replica-
tors defined in a three-dimensional cube and study its bifurcations. For
a given interval of parameters, each element of the family can be C2–
approximated by a vector field whose flow exhibits suspended horseshoes
and persistent strange attractors. The proof relies on the numerically
observed Shilnikov homoclinic cycle to the interior equilibrium. We also
describe the phenomenological steps responsible for the transition from
regular to chaotic dynamics in the family (route to chaos).

1. Introduction

The polymatrix replicator, introduced by Alishah, Duarte, and Peixe [1, 2],
is a system of ordinary differential equations developed to study the dynam-
ics of the polymatrix game. It models the time evolution of the strategies
that individuals from a stratified population choose to interact with each
other. These systems extend the class of bimatrix replicator equations stud-
ied in [3, 4, 5] to the study of the replicator dynamics in a population divided
in a finite number of groups.

The polymatrix replicator induces a flow in a polytope defined by a finite
product of simplices. Alishah et al. [6] presented a new method to study the
asymptotic dynamics of flows defined on polytopes; polymatrix replicators
are a class examples of these flows. Such dynamical systems arise naturally
in the context of Evolutionary Game Theory (EGT) developed by Smith
and Price [7]. We address the reader to Section 8 of Skyrms [8] where a
historical overview about evolutionary game dynamics is given, including
relations with the Lotka-Volterra and the May-Leonard systems.

Smale [9] proved that strange attractors may be found in ecological sys-
tems of n ≥ 5 species in competition governed by Volterra equations. Ar-
neodo et al. [10] and Vano et al. [11], suggested that chaos may be possible
in Lotka-Volterra systems of n = 4 species in competition. Aiming a gen-
eral setting where strange attractors may be observable, Arneodo et al. [12]
suggested the occurrence of chaos for n = 3 species, not necessarily in com-
petition. This value of n corresponds to the dimension of the phase space
of the associated Lotka-Volterra system. In all these references, the exis-
tence of chaos has been achieved via a homoclinic cycle to a saddle-focus.
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In all cases, either the proof is mostly numerical or is the consequence of the
existence of a Lorenz or a Hénon attractor.

A strange attractor is an invariant set with at least one positive Lyapunov
exponent whose basin of attraction has non-empty interior. Nowadays, at
least for families of dissipative systems, chaotic dynamics is mostly under-
stood as the persistence of strange attractors (occurring within a positive
Lebesgue measure set of parameters) [13]. Persistence of dynamics is phys-
ically relevant because it means that the phenomenon is “observable” with
positive probability. The rigorous proof of the existence of a strange attrac-
tor is a great challenge.

Finding explicit examples of three-dimensional vector fields in the context
of evolutionary games, whose flows exhibit chaos is of significant interest –
at this point, it is worth to see the system developed in [14] to model social
corruption.

In the present paper, by combining numerical and theoretical techniques,
we construct a one-parameter family of polymatrix replicators containing
elements that can be C2–approximated by vector fields exhibiting persistent
strange attractors. This article is organised as follows. In Section 2 we
introduce the one-parameter family of polymatrix replicators that will be the
focus of our work. In Section 3 we define the main concepts used throughout
the article and state the main result. Then in Section 4 we concentrate our
analysis on a parameter interval where a single interior equilibrium exists.
We enumerate all equilibria that appear on the boundary of the phase space
and we study their Lyapunov stability. Moreover, we numerically find the
parameter values where the interior equilibrium undergoes local and global
bifurcations.

We present in Section 5 a numerical analysis which supports the descrip-
tion of the route to chaos as well as the proof of the existence of strange
attractors. We compute the Lyapunov exponents and characterise the max-
imal attracting set as the parameter evolves.

In Section 6, we study the dynamics of the system in the interior of the
phase space, stressing seven different topological scenarios: Cases I – VII. We
emphasize that the dynamics in the phase space’s interior is highly governed
by the dynamics of the equilibria on the faces.

We revive the arguments by Shilnikov and Ovsyannikov [15, 16] and Mora
and Viana [17] in Section 7 to prove the existence of persistent strange
attractors for a family of vector fields close to the one-parameter family,
concluding the proof of our main result.

Finally, in Section 8 we relate our main results with others in the litera-
ture, emphasising the phenomenological scenario responsible for the emer-
gence of strange attractors.

In order to facilitate the stability analysis, in Appendix A we exhibit ta-
bles with the explicit expression of the eigenvalues for the equilibria on the
boundary, as well as their signs for different values of the parameter. In
Appendices B and C, we present a set of frames collecting the main meta-
morphoses of the non-wandering set from a global attracting equilibrium to
chaos. We have endeavoured to make a self contained exposition bringing
together all topics related to the proofs.
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2. Model description

Consider a population divided in three groups where individuals of each
group have exactly two strategies to interact with other members of the
population. Based on [1, 2], the model that we will consider to study the
time evolution of the chosen strategies is the polymatrix game and may be
formalised as:

ẋαi (t) = xαi (t)

(Px(t))αi −
2∑

j=1

(xαj (t))(Px(t))αj

 , α ∈ {1, 2, 3}, i ∈ {1, 2},

(1)
where ẋαi (t) represents the time derivative of xαi (t), P ∈ M6×6(R) is the
payoff matrix,

x(t) =
(
x11(t), x

1
2(t), x

2
1(t), x

2
2(t), x

3
1(t), x

3
2(t)
)

and

x11(t) + x12(t) = x21(t) + x22(t) = x31(t) + x32(t) = 1.

For simplicity of notation will write x instead of x(t). Since we are con-
sidering a population divided in three groups, each one with two possible
strategies, the payoff matrix P can be represented as a matrix,

P =

 P 1,1 P 1,2 P 1,3

P 2,1 P 2,2 P 2,3

P 3,1 P 3,2 P 3,3

 =



p1,11,1 p1,11,2 p1,21,1 p1,21,2 p1,31,1 p1,31,2

p1,12,1 p1,12,2 p1,22,1 p1,22,2 p1,32,1 p1,32,2

p2,11,1 p2,11,2 p2,21,1 p2,21,2 p2,31,1 p2,31,2

p2,12,1 p2,12,2 p2,22,1 p2,22,2 p2,32,1 p2,32,2

p3,11,1 p3,11,2 p3,21,1 p3,21,2 p3,31,1 p3,31,2

p3,12,1 p3,12,2 p3,22,1 p3,22,2 p3,32,1 p3,32,2


,

where each block Pα,β, α, β ∈ {1, 2, 3}, represents the payoff of the individ-
uals of the group α when interacting with individuals of the group β, and

where each entry pα,βi,j represents the average payoff of an individual of the
group α using strategy i when interacting with an individual of the group β
using strategy j.

In this setting, we can interpret equation (1) in the following way: as-
suming random encounters between individuals of the population, for each
group α ∈ {1, 2, 3}, the average payoff for a strategy i ∈ {1, 2}, is given by

(Px)αi =

3∑
β=1

(
Pα,β

)α
i
xβ =

3∑
β=1

2∑
k=1

pα,βi,k xβk ,

the average payoff of all strategies in α is given by

2∑
i=1

xαi (Px)αi =

3∑
β=1

(xα)TPα,βxβ ,
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and the growth rate
ẋαi
xαi

of the frequency of each strategy i ∈ {1, 2} is equal

to the payoff difference

(Px)αi −
3∑

β=1

(xα)TPα,βxβ.

For simplicity of notation, we consider x = (x1, x2, x3, x4, x5, x6), where

x1 + x2 = x3 + x4 = x5 + x6 = 1. (2)

Then, system (1) may be written as{
ẋi = xi ((Px)i − xi(Px)i − xi+1(Px)i+1)

ẋi+1 = xi+1 ((Px)i+1 − xi(Px)i − xi+1(Px)i+1)
, i ∈ {1, 3, 5}. (3)

Lemma 1. System (3) is equivalent to
ẋ1 = x1(1− x1) ((Px)1 − (Px)2)

ẋ3 = x3(1− x3) ((Px)3 − (Px)4)

ẋ5 = x5(1− x5) ((Px)5 − (Px)6)

, (4)

where ẋ2 = −ẋ1, ẋ4 = −ẋ3, and ẋ6 = −ẋ5.

Proof. Let i ∈ {1, 3, 5}. Since xi + xi+1 = 1, from (3) we deduce that

ẋi = xi ((Px)i − xi(Px)i − xi+1(Px)i+1)

= xi ((1− xi)(Px)i − (1− xi)(Px)i+1)

= xi(1− xi) ((Px)i − (Px)i+1) ,

and
ẋi+1 = −ẋi.

□

Vertex R3 R6

v1 (0, 0, 0) (1, 0, 1, 0, 1, 0)

v2 (0, 0, 1) (1, 0, 1, 0, 0, 1)

v3 (0, 1, 0) (1, 0, 0, 1, 1, 0)

v4 (0, 1, 1) (1, 0, 0, 1, 0, 1)

v5 (1, 0, 0) (0, 1, 1, 0, 1, 0)

v6 (1, 0, 1) (0, 1, 1, 0, 0, 1)

v7 (1, 1, 0) (0, 1, 0, 1, 1, 0)

v8 (1, 1, 1) (0, 1, 0, 1, 0, 1)

Face Vertices

σ1 {v5, v6, v7, v8}

σ2 {v1, v2, v3, v5}

σ3 {v3, v4, v7, v8}

σ4 {v1, v2, v5, v6}

σ5 {v2, v4, v6, v8}

σ6 {v1, v3, v5, v7}

Table 1. Representation of the eight vertices of [0, 1]3 in R3 and
Γ(2,2,2) in R6, and the identification of the six faces according to
vertices they contain.

The phase space of system (4) is the prism Γ(2,2,2) := ∆1×∆1×∆1 ⊂ R6,
where

∆1 = {(xi, xi+1) ∈ R2 |xi + xi+1 = 1, xi, xi+1 ≥ 0}, i ∈ {1, 3, 5}.



PERSISTENT STRANGE ATTRACTORS IN 3D POLYMATRIX REPLICATORS 5

Fixing a referential on R3, by (2) we can define a bijection between
Γ(2,2,2) ⊂ R6 and [0, 1]3 ⊂ R3. We identify (1, 0, 1, 0, 1, 0) ∈ Γ(2,2,2) with

(0, 0, 0) ∈ [0, 1]3. In Table 1 (left) we identify each vertex of the cube [0, 1]3

with a vertex on the prism Γ(2,2,2).
Given the polymatrix replicator (1), by [2, Proposition 1], we may obtain

an equivalent game (in the sense that the corresponding vector fields are the
same) with a payoff matrix whose second row of each group has 0’s in all of
its entries. From now on, we will analyse system (4) with payoff matrix

Pµ =


µ 14 −10 10 −2 2
0 0 0 0 0 0
10 −10 2 −2 −2 2
0 0 0 0 0 0

−25 29 0 −11 −2 2
0 0 0 0 0 0

 .

This defines a polynomial vector field fµ on the compact set Γ(2,2,2) ≡ [0, 1]3

whose flow is denoted by ϕt
P , for µ ∈ R.

Remark. The finding of an explicit expression for Pµ has been motivated by
the work of Arneodo et al. [12], and its finding has been possible due to the
numerical experience of the first author in previous works [2, 18, 19].

Lemma 2. The prism Γ(2,2,2) is flow-invariant for system (4).

Proof. Concerning system (4), notice that, for each i ∈ {1, 3, 5}, if xi ∈ {0, 1}
then ẋi = 0 (i.e. initial conditions starting at the faces, stay there for all
t ∈ R). □

By compactness of Γ(2,2,2), the flow associated to system (4) is complete,
i.e. all solutions are defined for all t ∈ R. From now on, let ((2, 2, 2), Pµ) be
the polymatrix game associated to (4). For Pµ, system (4) becomes

ẋ1 = x1(1− x1)(Pµ x)1

ẋ3 = x3(1− x3)(Pµ x)3

ẋ5 = x5(1− x5)(Pµ x)5

. (5)

Using (2) and considering x = x2, y = x4, z = x6, the equation (5) is
equivalent to

ẋ = x(1− x) (12− µ+ (µ− 14)x− 20y − 4z)

ẏ = y(1− y) (−10 + 20x+ 4y − 4z)

ż = z(1− z) (27− 54x+ 11y − 4z)

. (6)

The one-parameter polynomial vector field associated to (6) will be de-
noted by fµ. Let us denote by X the set of C2–vector fields on R3 that
leave the cube [0, 1]3 invariant. A similar model has been used by Accinelli
et al. [14] to study the power of voting and corruption cycles in democratic
societies.

Remark. In the transition from (5) to (6), we have identified the point
(1, 0, 1, 0, 1, 0) ∈ Γ(2,2,2) with (0, 0, 0) ∈ R3.
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3. Terminology and main result

In this section we define the main concepts used throughout the article
and we state the main result. For I ⊂ R and n ∈ N, we consider a smooth
one-parameter family of vector fields (fµ)µ∈I on Rn, with flow given by the
unique solution u(t) = ϕt(u0) of

u̇ = fµ(u), ϕ0(u0) = u0, (7)

where u0 ∈ Rn, t ∈ R, and µ ∈ I. If A ⊆ Rn, we denote by int (A) and A
the topological interior and the closure of A, respectively.

For a solution of (7) passing through u0 ∈ Rn, the set of its accumulation
points as t goes to +∞ is the ω-limit set of u0 and will be denoted by ω(u0).
More formally,

ω(u0) =
+∞⋂
T=0

(⋃
t>T

ϕt(u0)

)
.

It is well known that ω(u0) is closed and flow-invariant, and if the ϕ-
trajectory of u0 is contained in a compact set, then ω(u0) is non-empty
[20].

For the sake of completeness, we describe the main features of the local
codimension-one bifurcations studied in this paper. We say that an equilib-
rium Oµ of (7) undergoes:

(1) a transcritical bifurcation if Dfµ(Oµ) has an eigenvalue whose real
part passes through zero and interchanges its stability with another
equilibrium as the parameter varies;

(2) a Belyakov transition if it changes from a node to a focus or vice-
versa, i.e. if there is at least a pair of eigenvalues of Dfµ(Oµ) chang-
ing from real to complex (conjugate), as long as the sign of the real
part is the same;

(3) a supercritical Hopf bifurcation if it changes from an attracting focus
to an unstable one and generates an attracting periodic solution.

We say that a non-trivial periodic solution of (7) undergoes a period-
doubling bifurcation when a small perturbation of the system produces a
new periodic solution, doubling the period of the original one. The linear
and nonlinear conditions which guarantee the existence of such bifurcations
may be found in [20].

For m ∈ N, given two hyperbolic saddles A and B associated to the flow
of (7), an m-dimensional heteroclinic connection from A to B, denoted by
[A → B], is a connected and flow-invariant m-dimensional manifold con-
tained in W u(A) ∩W s(B). There may be more than one connection from
A to B (see Field [21]).

Let S ={Aj : j ∈ {1, . . . , k}} be a finite ordered set of hyperbolic equilib-
ria. We say that there is a heteroclinic cycle associated to S if

∀j ∈ {1, . . . , k},W u(Aj) ∩W s(Aj+1) ̸= ∅ (mod k).

If k = 1, the cycle is called homoclinic. In other words, there is a connection
whose trajectories tend to A1 in both backward and forward times.

A Lyapunov exponent (LE) associated to a solution of (7) is an average
exponential rate of divergence or convergence of nearby trajectories in the
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phase space. Based on [22], to estimate these exponents we consider two
nearby points u0 and u0 + v in the phase space, where v is a (small) vector.
Denoting by ∥ · ∥ the euclidean norm in Rn, the number

LE(u0, v) = lim
t→+∞

1

t
log ∥Du0ϕ

t(u0).v∥,

designated as the Lyapunov exponent of u0 in the direction v, exists and is
finite for almost all points in Rn [23]. For u0 ∈ Rn, if LE(u0, v) > 0 for some
direction v, then one has exponential divergence of nearby orbits. In this
case, we say that there exists an orbit with a positive Lyapunov exponent.

Following [24], a (Hénon-type) strange attractor of a two-dimensional dis-
sipative diffeomorphism R defined in a compact and Riemannian manifold,
is a compact invariant set Λ with the following properties:

• Λ equals the topological closure of the unstable manifold of a hyper-
bolic periodic point;

• the basin of attraction of Λ contains an open set (⇒ has positive
Lebesgue measure);

• there is a dense orbit in Λ with a positive Lyapunov exponent (i.e.
there is exponential growth of the derivative along its orbit).

A vector field possesses a strange attractor if the first return map to a cross
section does.

Let Ψ be a property of a dynamical system and I ⊆ R a non degenerate
interval. We say that a one-parameter family (fµ)µ∈I exhibits persistently
the property Ψ if it is observed for fµ over a set of parameter values µ with
positive Lebesgue measure [13, §2]. Under a hypothesis that will be specified
later (Assumption H), the novelty of this article is the following result valid
in the C2–Whitney topology.

Theorem A. Under Assumption H, for the family (fµ)µ∈R, there exists
I ⊆ R such that, for all neighbourhood U ⊂ X of fµ̃, µ̃ ∈ I, there exists a
generic family (gλ)λ∈[−1,1] ∈ U exhibiting persistently strange attractors.

Remarks about Theorem A.

(1) The set I is
[
−2938

95 , 10
]
and corresponds to the interval where a

unique equilibrium exists in [0, 1]3 for the family (fµ)µ (Section 4);

(2) Assumption H will be precisely stated in Subsection 5.2 and is re-
lated with the existence of a saddle-focus homoclinic cycle for a
vector field C2–close to fµ̃, µ̃ ∈ I.

(3) The family (gλ)λ∈[−1,1] ∈ U unfolds the vector field g of Assumption

H and is described in Section 7.

In Figure 1 we provide a scheme with the main idea of Theorem A in the
space of vector fields under consideration. The core of the present work goes
further: we describe the phenomenological scenario leading to the emergence
of a strange attractor.
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X

fμ

U

g
λ

0

fμ~

g

Figure 1. Illustration of the main idea of Theorem A: for all
neighbourhood U ⊂ X of fµ̃, µ̃ ∈ I, there exists a generic family
(gλ)λ∈[−1,1] ∈ U exhibiting persistently strange attractors.

4. Bifurcation analysis

We proceed to the analysis of the one-parameter family of differential
equations (6). We describe the dynamics on the different faces, including
the emergence of different equilibria on the edges. Our analysis will be
focused on µ ∈

[
−2938

95 , 10
]
, where a unique equilibrium exists in [0, 1]3.

This equilibrium will play an important role in the emergence of the strange
attractor.

4.1. Boundary. We describe the equilibria and bifurcations on the bound-
ary of [0, 1]3 as function of µ. The equilibria of system (6) do not necessarily
belong to the cube. Throughout this article, the equilibria are those that lie
on [0, 1]3 and formal equilibria (as defined in [2, Def. 4.1]) lie outside it.

From now on, all the figures with numerical plots of the flow of (6) on
[0, 1]3 are in the same position of Figure 2 (up left) where v1 = (0, 0, 0) is
the vertex located in the lower left front corner.

We describe a list of equilibria that appear on the edges and faces of the
cube [0, 1]3, as function of the parameter µ. The cube has six faces defined
by, for i ∈ {1, 3, 5},

σi : xi+1 = 1

σi+1 : xi+1 = 0.

In Table 1 we identify the vertices that belong to each face. As suggested in
Figure 2, we set the notation Aj , j = 1, 2, 3, 4 for equilibria on the edges and
Bj , j = 1, 2, 3 for equilibria on the interior of the faces. Formally, the A’s
and B’s equilibria depend on µ but, once again, we omit their dependence
on the parameter.

Lemma 3. With respect to system (6), for µ ∈ [−2938
95 , 10], the following

assertions hold:

(1) The eight vertices and A3 =
(
12−µ
14−µ , 0, 0

)
exist for µ ∈

[
−2938

95 , 10
]
,

(2) A1 =
(
µ+12
µ−14 , 1, 1

)
exists in the cube ⇔ µ ∈

[
−2938

95 ,−12
[
,
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Figure 2. Different perspectives of the phase space and the cor-
responding equilibria of (6): the eight vertices v1, . . . , v8 (in blue),
four equilibria on edges, A1, A2, A3, A4 (in orange), three equilibria
on faces, B1, B2, B3 (in green), and the interior equilibrium Oµ (in
red), for µ = −15 (top) and µ = 4 (bottom). These equilibria lie
on a plane (se the remark after Lemma 4).

Figure 3. The values of µ for which the equilibria of system (6)
exist on [0, 1]3 (continuous line) and outside [0, 1]3 (dashed line) –
formal equilibria. The Roman numerals I, . . . ,VII represents the
cases of Table 2 and the letter T corresponds to the values of µ for
which a transcritical bifurcation occur.

(3) A4 =
(

8+µ
µ−14 , 1, 0

)
exists in the cube ⇔ µ ∈

[
−2938

95 ,−8
[
,
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(4) A2 =
(

8−µ
14−µ , 0, 1

)
exists in the cube ⇔ µ ∈

[
−2938

95 , 8
[
,

(5) B1 =
(
15+µ
40+µ , 0,

27(10−µ)
4(40+µ)

)
exists in the cube ⇔ µ ∈

]
110
31 , 10

]
,

(6) B2 =
(
62+µ
86+µ ,−

3(6+µ)
2(86+µ) , 1

)
exists in the cube ⇔ µ ∈

[
−2938

95 ,−6
[
,

(7) B3 =
(
38+µ
86+µ ,

5(10−µ)
2(86+µ) , 0

)
exists in the cube ⇔ µ ∈

]
−122

7 , 10
]
.

The proof of Lemma 3 is elementary by computing zeros of fµ and taking
into account that they should lie in [0, 1]3. The evolution (as function of µ)
of the equilibria A1, A2, A3, A4 on the edges and B1, B2, B3 on the faces is
depicted in the scheme of Figure 3. The eigenvalues and eigendirections are
summarised in Tables 3 and 4. Using the sign of the eigenvalues, as well
as their evolution, we are able to locate transcritical bifurcations, which are
summarised in the following paragraph and pointed out in Figure 3.

We will consider sub-intervals of [−2938
95 , 10] based on the values of µ for

which the bifurcations occur. Namelly:

• at µ = −12 the vertex v4 undergoes a transcritical bifurcation (see
the zero eigenvalue in Table 5) responsible for the transition of A1

from [0, 1]3 to outside, becoming a formal equilibrium; the analysis
of the bifurcation associated to A2 and A4 is similar at µ = 8 and
µ = −8, respectively;

• at µ = −6, the equilibrium A2 undergoes a transcritical bifurcation
and B2 evolves from an equilibrium (inside the cube) to a formal one
(outside the cube); the reverse happens to B1 at µ = 110

31 ;

• at µ = −122
7 , the equilibrium A4 undergoes a transcritical bifurca-

tion and B3 evolves from a formal equilibrium (outside the cube) to
an equilibrium (inside the cube);

• at µ = b2 ≈ −21.9 (see Table 4) and µ = −12, the equilibrium B2

undergoes a Belyakov transition; and, at µ = b3 ≈ −14.22 the B3

also undergoes the same bifurcation (see Table 4).

4.2. Interior. In this section, we focus our attention on the interior equi-
librium and its relation to others on the boundary.

Lemma 4. For µ ∈ ] − 2938
95 , 10[, system (6) has a unique interior equilib-

rium, whose expression is

Oµ :=

(
7µ− 1042

7µ− 2014
,
37(µ− 10)

7µ− 2014
,
109(µ− 10)

2(7µ− 2014)

)
.

Proof. The proof is immediate by computing the non-trivial zeros of the
vector field (6): 

12− µ+ (µ− 14)x− 20y − 4z = 0

−10 + 20x+ 4y − 4z = 0

27− 54x+ 11y − 4z = 0

.

□
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Taking into account that the equilibria B1, B2 and B3 depend on µ, it is
worth to notice that

lim
µ→− 2938

95

Oµ = lim
µ→− 2938

95

B2 =

(
123

218
,
74

109
, 1

)
and

lim
µ→10

Oµ = lim
µ→10

B1 = lim
µ→10

B3 =

(
1

2
, 0, 0

)
,

which means that when µ ∈ ]− 2938
95 , 10], the point Oµ travels from the face

σ5 to the edge which connects v1 to v5, the intersection of the faces σ4 and
σ6.

Remark. The points A1, A2, A3, A4, B1, B2, B3 and Oµ belong to the plane
defined by (14 − µ)x + 20y + 4z = 12− µ. This follows immediately from
the first equation of system (6). This plane is not flow-invariant.

Lemma 5. With respect to Dfµ (Oµ), there exist µ1, µ2, µ4 ∈ [−2938
95 , 10]

such that µ1 < µ2 < µ4 and1:

(1) for µ = µ1, the equilibrium Oµ undergoes a Belyakov transition;
(2) for µ = µ2 and µ = µ4 the equilibrium Oµ undergoes a supercritical

Hopf bifurcation.

Proof. The characteristic polynomial of Dfµ (Oµ) has three roots, which
depend on µ. Although these three functions have an intractable analytical
expression, it is possible to show the existence of µ1, µ2, µ4 ∈ [−2938

95 , 10]
such that µ1 < µ2 < µ4 and the following assertions hold (cf. Figures 4
and 5):

(1) for µ ∈ [−2938
95 , µ1], the three eigenvalues are real and negative;

(2) for µ ∈ ]µ1, µ2[∪ ]µ4, 10], there are two complex conjugate eigenval-
ues and one real, all of them with negative real part;

(3) for µ ∈ ]µ2, µ4[, there are two complex conjugate eigenvalues with
positive real part and one real negative.

As suggested by Figure 5, the complex (non-real) eigenvalues cross the
imaginary axis with strictly positive speed as µ passes through µ2 and µ4,
confirming that:

Re (Dfµ (Oµ))

dµ
|µ=µ2 ̸= 0 ̸= Re (Dfµ (Oµ))

dµ
|µ=µ4 .

This means that at µ = µ2 and µ = µ4, the equilibrium Oµ undergoes
a supercritical Hopf bifurcation. When µ = µ2, it gives rise to a non-
trivial attracting periodic solution, say Cµ, which collapses again into Oµ

for µ = µ4.
□

From now on, we set2:

µ1 7→ µBelyakov ≈ −30.5550;

µ2 7→ µ1
Hopf ≈ −18.1623;

µ4 7→ µ2
Hopf ≈ 9.5055.

1A parameter value µ3 ∈ ]µ2, µ4[ appears later in Subsection 5.1.
2These values coincide with those obtained via MatCont [25] for MATLAB®.
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Figure 4. Belyakov transition: graph of the imaginary part of
the complex eigenvalues of Dfµ (Oµ) for µ ∈

[
− 2938

95 , 10
]
(left) and

its zoom around µ1, µ ∈ [−30.7,−29.7] (right), for system (6).

Figure 5. Hopf bifurcation: graph of the real part of the eigen-
values of Dfµ (Oµ) for µ ∈

[
− 2938

95 , 10
]
(left) and its zoom around

µ4, µ ∈ [9.48, 9.53] (right up) and around µ2, µ ∈ [−18.2,−18.1]
(right down), for system (6).

For µ ∈ [−2938
95 , µ2], the equilibrium Oµ is globally attracting as depicted

in Figure 6. In the context of Game Theory, it is called a global attract-
ing mixed Nash equilibrium, in the sense that it is associated to non-pure
strategies.

5. Numerical Analysis

Using Mathematica Wolfram®, we present checkable numerical evidences
about the vector field fµ, for µ ∈ [−2938

95 , 10], that will constitute the foun-
dations for the persistence of strange attractors. At the end of this section
we discuss the validity of these numerical results.
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Figure 6. Global attractiveness of Oµ (cf. Proposition 6 (1)):
plot of two orbits (in blue) with initial condition near v1 (left),
initial condition near v6 (right), the interior equilibrium (in red)
and the boundary equilibria of system (6) for µ = −20 and t ∈
[0, 50].

5.1. Lyapunov exponents. Using the method in Sandri [22], in Figure 7
we computed numerically the LE of system (6) for an initial condition of
the form:

(x0, y0, z0) = Oµ +


(ε, 0,−ε), if µ ∈ [−2938

95 ,−30[

(0, 0, ε), if µ ∈ [−30, 9]

(ε, ε, 0), if µ ∈ ]9, 10]

,

with ε = 0.001, thus ensuring that (x0, y0, z0) ∈ int
(
[0, 1]3

)
\W s(Oµ). As

suggested in [26], since (x0, y0, z0) /∈ W s(Oµ), its trajectory is strongly gov-
erned by the invariant manifold W u(Oµ), which plays an essential role in
the construction of the Hénon-type strange attractor of Theorem A. From
a close analysis of Figure 7, we deduce that:

(1) for µ < µ1
Hopf and µ > µ2

Hopf, the three LE are negative;

(2) there exists µ3 ∈ ]µ1
Hopf,µ

2
Hopf[ such that:

(a) for µ ∈ ]µ1
Hopf, µ3[, there are two negative LE and one zero;

(b) there are non-trivial subintervals of ]µ3,µ
2
Hopf[ where there is

one positive LE.

From this analysis, according to [22, 27], we infer that the attracting set
of system (6), when restricted to the cube’s interior, contains:

(1) a single equilibrium, for µ < µ1
Hopf (Figure 6) and µ > µ2

Hopf;

(2) a non-trivial periodic solution, for µ ∈ ]µ1
Hopf, µ3[ (Figure 11);

(3) a strange attractor for some intervals of ]µ3,µ
2
Hopf[ (it follows from

(2)(b) and the classification of [27]).

Since µ3 is the threshold above which we find numerically strange attrac-
tors (Figure 7), we set

µ3 7→ µSA ≈ 1.4645.
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As referred in Section 3, a LE is a limit over the variable t and numerical
computations require its truncation. Since for µ > µ1

Hopf there is at least
one LE oscillating around the zero value, we decided to consider positive
LE those greater than 5 × 10−3. This will allow to discard uncertain posi-
tive Lyapunov exponents due to numerical precision issues. Lower precision
would complicate the simulations bringing no better results.

Figure 7. Sign of the Lyapunov exponents: linear interpolation
of the largest non-zero Lyapunov exponents of system (6) with ini-
tial condition near the interior equilibrium (/∈ W s(Oµ)). (−,−,−):
all LE are negative. (−,−, 0): one LE is zero and the other are
negative. (−, 0,+): one LE is negative, one is positive and the
other is zero.

5.2. Numerical facts. In this subsection, based on numerics, we list some
evidences, hereafter called by Facts and Assumption H, about system (6).
They are essential to characterise the route to chaos in Section 6 and may
be numerically checked.

Fact 1. In the parameter interval µ ∈ ]− 2938
95 , 10[:

(1) for µ < −8 there exist two heteroclinic connections from v3 and v6
to Oµ (Figure 8 (left));

(2) for µ ∈ ] − 8,µSA[∪ ]µ2
Hopf, 10[, there are two heteroclinic connec-

tions from the source v6 to Oµ, along the two branches of W s(Oµ)
(Figure 8 (right));

(3) for µ ∈ ]µSA,µ
2
Hopf[, one branch of W s(Oµ) winds around the non-

wandering set associated to W u(Oµ).

Fact 2. For µ ∈
]
µ1
Hopf,µ

2
Hopf

[
the eigenvalues of Dfµ (Oµ) are of the form

λu(µ)± iω(µ) and − λs(µ),
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Figure 8. Heteroclinic connections (cf. Fact 1): representation
of the connections from the sources v3 (in green) and v6 (in blue)
to Oµ, for system (6) with µ = −20 (left) and µ = 0 (right).
At µ = −8 the equilibrium A4 collapses with v3, which makes
the lower branch of Wu(Oµ) to connect v6, a phenomenon that
persists for µ > −8.

where

λu(µ), ω(µ), λs(µ) > 0, 2λu(µ) < λs(µ) and
d

dµ

(
λu(µ)

λs(µ)

)
̸= 0.

Fact 3. There are non-trivial subintervals of
]
µ3,µ

2
Hopf

[
where fµ has one

positive LE (Figure 7).

Fact 4. For µ ∈ ]11031 , 8[ , we have [v5 → v6] ⊂ W s(B1).

Let I1 ⊂
]
µSA,µ

2
Hopf

[
be a non-degenerate interval of µ-values for which

the greatest LE of fµ is positive.

Assumption H. For µ ∈ I1, there exists a C2–vector field g ∈ X arbitrarily
close to fµ (in the C2-topology), whose flow exhibits a homoclinic orbit to
the hyperbolic continuation of Oµ.

Facts 1–4 have been numerically checked in Mathematica Wolfram® and
MatCont. In the following subsection, we explain how numerical simulations
have suggested Assumption H.

5.3. Digestive remark about Assumption H. Finding explicitly a ho-
moclinic cycle to a saddle-focus in a 3-dimensional manifold is a hard task
because its occurrence is a codimension 2 phenomenon. This is why we used
numerical tools to illustrate its emergence.

(1) Simulations with Mathematica Wolfram® suggest the existence of a
homoclinic orbit to Oµ for the family (fµ)µ with µ = 3.6 (Figure
19). The invariant manifolds of Oµ seems to be connected.
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Figure 9. The attracting whirlpool (see Proposition 11) : illus-
tration of Fact 2 (left) and Fact 3 (right). For the values of µ for
which the greatest LE of fµ is positive, there exists a vector field
close to fµ whose flow exhibits a homoclinic orbit to Oµ. A de-
scription of the attracting whirlpool is given in detail in Subsection
8.1.

(2) Using MatCont, as illustrated in Figure 10, for µ = 3.6, the invariant
manifolds of Oµ are very close but do not intersect, which may be
seen as a consequence of the numerical precision of the software.

Figure 10. The plot of the stable (in red) and the unstable (in
blue) manifolds of Oµ, for system (6) with µ = 3.6.

For the sake of completeness, we give a heuristic justification why As-
sumption H is related with Fact 3. Observing that the absorbing domain
where we are computing the Lyapunov exponent is compact, the existence of
a positive Lyapunov exponent for (fµ)µ suggests the existence of an invari-
ant subset of R3 with positive topological entropy for the time-T map to a
cross section near the initial condition we are considering (for some T > 0).
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Since this map may be seen as a local diffeomorphism, this is closely related
to the existence of homoclinic points and horseshoes ([28, Corollary 4.3]).

Besides Oµ and the attracting periodic solution Cµ, the flow of (6) does
not have more nontrivial compact invariant sets in int([0, 1]3) for µ ≤ µSA.
Therefore, the only known way to realize the referred horseshoes is through
the birth of a homoclinic cycle to the hyperbolic continuation of Oµ at
µ = µSA (Assumption H).

The analytic construction of the vector field g of Assumption H may
be performed using the Connecting Lemma for flows [29] bearing in mind
that W s(Oµ) and W u(Oµ) are arbitrarily close. The vector field g ∈ X
is a perturbation of fµ, whose support lies on a tubular neighbourhood of
W s(Oµ). The difficulty to proceed analytically with a formal proof of the
existence of g relies on the C1–topology of this proximity.

6. Route to strange attractors

Using the same type of arguments of [30, 31], we explain the global dynam-
ics of system (6) in int

(
[0, 1]3

)
according to the local bifurcations studied

in Section 4. Based on the transcritical bifurcations of the equilibria on the
boundary and the bifurcations of Oµ, we distinguish the seven cases de-
scribed in Table 2 and we make use of the Facts and Assumption H stated
in Section 5, to prove the existence of chaos. We also denote by F the union
of all faces, i.e. F = {σ1, . . . , σ6}.

Case Interval of µ

I
I.1 ]− 2938

95 ,µBelyakov[

I.2 ]µBelyakov,µ
1
Hopf[

I.3 ]µ1
Hopf,− 122

7 [

II ]− 122
7 ,−12[

III ]− 12,−8[

Case Interval of µ

IV ]− 8,−6[

V ]− 6, 110
31 [

VI ] 11031 , 8[

VII
VII.1 ]8,µ2

Hopf[

VII.2 ]µ2
Hopf, 10[

Table 2. The sub-intervals (that we designate as Cases) of ] −
2938
95 , 10[ based on the values of µ for which the bifurcations occur

on the boundary (Cases I, . . . ,VII) and on the interior equilibrium
(Cases I.1, I.2, I.3 and VII.1,VII.2).

We illustrate our results with numerical simulations for values of the pa-
rameter in each case of Table 2. In Appendices B and C, all figures are
collected to allow a global understanding of the route to chaos. We divide
the pictures in two cases: dynamics on the boundary (Table 6) and on the
cube’s interior (Table 7).

Proposition 6. In Case I, there exists an invariant and attracting two-
dimensional set Σµ containing the points A1, A2, A3, A4, B2 and Oµ, and
the heteroclinic connections [A2 → A3], [A3 → A4], [A4 → A1], [A1 → B2],
and [A2 → B2]. Moreover,
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(1) In Cases I.1 and I.2, if p ∈ Σµ\F , then its ω-limit is Oµ.
(2) In Case I.3, if p ∈ Σµ\ (F ∪W s(Oµ)), then its ω-limit is Cµ (3).

In the three Cases, int
(
[0, 1]3

)
is divided by Σµ in two connected components.

Proof. By Lemma 2, we know that the faces are invariant. In Cases I.1 and
I.2, besides the attracting interior equilibrium, there are no more invariant
compact sets in int

(
[0, 1]3

)
. Therefore, analysing the direction of the flow,

the ω-limit of all points in the cube’s interior is the two-dimensional set
bounded by the heteroclinic connections [A2 → A3], [A3 → A4], [A4 → A1],
[A1 → B2], and [A2 → B2] as depicted in Figure 12 (left). This defines a
two-dimensional set Σµ containing Oµ which is attracting and invariant (see
Figure 6).

In Case I.3, besides the interior equilibrium Oµ, system (6) exhibits an
attracting periodic solution, Cµ, lying on the attracting two-dimensional set
Σµ (observe that this plane is attracting) (see Figure 11 (left)), which emerge
from a transcritical Hopf bifurcation by Lemma 5. This two-dimensional set
contains W s(Cµ). In all cases, since the boundary of Σµ belongs to the
opposite faces σ3, σ4 and σ5, σ6 of the phase space, it divides its interior in
two connected components.

□

Figure 11. The limit cycle in Cases I and II: plot of two orbits
(one in blue and one in green), the interior equilibrium, and all
the boundary equilibria of system (6), for µ = −17.5 (left) and
µ = −14 (right) with t ∈ [0, 100].

Proposition 7. In Case II, there exists an invariant and attracting 2-di-
mensional set Σµ containing the points A1, A2, A3, A4, B2, B3, Oµ, and Cµ.
If p ∈ Σµ\ (F ∪ {Oµ}), then its ω-limit is Cµ. The set int

(
[0, 1]3

)
is divided

by Σµ in two connected components.

Proof. The global dynamics in Case II is the same as in Case I.3, with ex-
ception that A4 has undergone a transcritical bifurcation from where the

3The set Cµ is the periodic solution which emerges from the Hopf bifurcation described
in the proof of Lemma 5.
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Figure 12. Boundary of Σµ in Cases I and II: illustration of
the dynamics on the boundary in Cases I (left, µ = −20) and II
(right, µ = −14).

saddle B3 has evolved from a formal equilibrium to an equilibrium in the
cube [0, 1]3 (see Figure 12 (right)). Using Table 4, we know that W u(B3)
points out to the interior of the cube. Thus the periodic solution Cµ is
still the ω-limit set of all points in int

(
[0, 1]3

)
\ ({Oµ} ∪W s(Oµ)) (see Fig-

ure 11 (right)). Notice also that the int
(
[0, 1]3

)
is still divided by Σµ in two

connected components.
□

Remark. The difference between Cases I and II is that B3 appears as an
equilibrium on the cube in the second scenario. However, the “interior
dynamics” does not change qualitatively.

Proposition 8. In Case III, there exists an invariant and attracting two-
dimensional set Σµ containing the points v2, v4, A2, A3, A4, B2, B3, Oµ and
Cµ. The set int

(
[0, 1]3

)
is divided by Σµ in two connected components.

Proof. The ω-limit of all points in int (σ5) and int (σ6) is B2 and B3, respec-
tively (see Figure 14 (left)). The structure of the two-dimensional set Σµ

on the face σ5 comes from Proposition 7 and the fact that A1 collapses with
the vertex v4 through a transcritical bifurcation (see Table 3). Notice also
that, by continuity from Case II, the int

(
[0, 1]3

)
is still divided by Σµ in

two connected components (see Figure 13 (left)).
□

Proposition 9. In Case IV, there exists an invariant and attracting two-
dimensional set Σµ containing the points v2, v3, v4, A2, A3, B2, B3,Oµ, and
Cµ. The set int

(
[0, 1]3

)
is divided by Σµ in two connected components.

Proof. From Case III to Case IV, the equilibrium A4 disappears through a
transcritical bifurcation (Table 3). Since the ω-limit of all points in int (σ5)
and int (σ6) is B2 and B3, respectively (see Figure 14 (right)), the two-
dimensional set Σµ of Case III gives rise to a two-dimensional set containing
Cµ and Oµ (see Figure 13 (right)). Notice that int

(
[0, 1]3

)
is divided by Σµ

in two connected components, and the latter set is still attracting.
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Figure 13. The boundary of Σµ and the limit cycle in Cases
III and IV: plot of two orbits (one in blue and one in green), the
interior equilibrium, and all the boundary equilibria of system (6),
for µ = −8.5 (left) and µ = −7 (right) with t ∈ [0, 100].

□

Figure 14. The boundary of Σµ in Cases III and IV: illustration
of the dynamics on the boundary in Cases III (left, µ = −10) and
IV (right, µ = −7).

By Fact 1, for µ ∈ ]µ1
Hopf,−8[ (Cases I–III), the two branches of W s(Oµ)

are connected with the sources v3 and v6. From Case IV on, the equilibrium
v3 changes stability and the two branches of W s(Oµ) are connected with v6
in different eigenspaces. Dramatic changes occur in Case V.

Proposition 10. In Case V, there exists an invariant and attracting two-
dimensional set Σµ containing the points A2, A3, B3, Oµ, and Cµ. This

manifold is W s(Cµ) and the set Σµ does not divide int
(
[0, 1]3

)
in two con-

nected components. Moreover, there exists µ̃ ≳ µSA such that fµ̃ is C2-close
to a vector field exhibiting strange attractors.
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Proof. From Case IV to Case V, the equilibrium B2 disappears through
a transcritical bifurcation (see Figure 16 (left)) and a screwed attracting
two-dimensional set Σµ with a singular point at A2 emerges. The manifold
W s(Cµ) is spreading along int

(
[0, 1]3

)
(see Figure 15 (left)). The last asser-

tion is a consequence of Fact 3, for the µ-values for which fµ has a positive
LE, and Theorem A.

□

Figure 15. Switching from regular (Case V) to complex (Case
VI) dynamics: plot of two orbits (left) and one orbit (right), the
interior equilibrium, and all the boundary equilibria of system (6),
for µ = 1.1 (left) and µ = 3.6 (right) with t ∈ [0, 100].

The value µ = µSA seems to be the parameter which separates regular
(zero topological entropy) from chaotic dynamics. Before going into Case
VI, notice that W s(A2) is contained in face σ5.

Figure 16. Dynamics on the boundary in Cases V, VI and VII:
illustration of the dynamics on the boundary in Cases V (left,
µ = −5), VI (center, µ = 6) and VII (right, µ = 9).

Proposition 11. In Case VI, the set W s(B1) contains the points v1, v3,

v5, v6, v7 and B1. The set [0, 1]3\W s(B1) has two connected components:
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in one, the equilibrium A2 is a sink; the other is dominated by the non-
wandering set associated to a homoclinic orbit to Oµ for the values of µ
such that the greatest LE of fµ is positive.

Proof. The proof of this result comes from a continuity analysis of Case V
and Facts 3 and 4. In int (σ4), B1 is a hyperbolic saddle and Lebesgue almost
all points are attracted to either A2 or A3 as depicted in Figure 16 (center).
Since, in Case V, W s(A2)∩ int (σ5) = int (σ5) and the equilibrium B1 comes
from A2 through a transcritical bifurcation (see Figure 15 (right)), it turns
out that, in Case VI, W s(B1) ∩ int

(
[0, 1]3

)
is a two-dimensional invariant

manifold whose shape is governed by the internal dynamics that divides the
int
(
[0, 1]3

)
in two connected components: the one whose solutions have ω-

limit equal to A2, and the one that contains the interior equilibrium Oµ.
By the same argument as in the proof of Proposition 10, the last assertion
follows.

□

Proposition 12. In Case VII, the set W s(B1) contains the points v1, v3,

v6, v7 and B1. The set Γ(2,2,2)\W s(B1) has two connected components: in
one the equilibrium v2 is a global sink; in the other, we have two sub-Cases:

(1) in Case VII.1, for the values of µ such that the greatest LE of fµ is
positive, fµ is C2-close to a vector field exhibiting strange attractors.

(2) in Case VII.2, Oµ is a global sink.

Proof. The proof of this result replicates that of Proposition 10, except that
equilibrium A2 no longer exists (see Figure 16 (right)). Notice also that the
value of separation between Cases VII.1 and VII.2 is µ = µ2

Hopf, responsible
for the disappearance of Cµ. From this parameter value on, the proximity
of the homoclinic cycle referred in Fact 3 is no longer valid (see Figure 7),
and Oµ becomes stable.

At µ = 10, the point B1 collapses to A3, meaning that volume of the
connected component containing Oµ is shrinking and collapses to a point.
In fact, at µ = 10, the points B1, B2 and Oµ collapse to A3 (see µ = 6.5
and µ = 8 in Table 7).

□

In Cases VI and VII.1, W s(B1) plays the role of separatrix : in one com-
ponent, the ω-limit is either A2 (if it exists) or v2 (if A2 does not exist); in
the other, the ω-limit is a strange attractor or a limit cycle (see µ = 3.6 and
µ = 6.5 in Table 7).

7. Proof of Theorem A

Recall, from Subsection 5.2, that I1 ⊂
]
µSA,µ

2
Hopf

[
is a non-degenerate

interval of µ-values for which the greatest LE of fµ is positive (cf. Figure 7).
By Assumption H, there exists an arbitrarily small neighbourhood U ⊂ X

of fµ,µ ∈ I1 and g ∈ U such that the flow of g exhibits a homoclinic orbit
to the hyperbolic continuation of Oµ (in the C2–topology). The eigenval-
ues of Dfµ (Oµ) have the form described in Fact 2. Reversing the time,
the previous configuration gives rise to a flow exhibiting a homoclinic cycle
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associated to the hyperbolic continuation of Oµ, say γ, whose eigenvalues
satisfy the conditions stated in [24, Theorem 1.4].

Define now a one-parameter family of vector fields (gλ)λ∈[−1,1] ∈ U un-

folding g generically4 such that:

• g0 ≡ g and
• the invariant manifolds associated to the interior equilibrium split
with non-zero speed with respect to λ.

Let T be a small tubular neighbourhood of the cycle γ and Σ a cross
section to γ. As illustrated in Figure 17, for λ ∈ [−1, 1], let us denote by
Πλ the first return map to the compact cross section Σ ∩ T , associated to
the flow of gλ.

Ws

Ws
v
6

Σ

(a)

(b) (c)

R
1

R 2

R  )1λ
R  )1λ

~R  )2λ
R  )2λ

~

W  (O)u

γ

moving λ

Figure 17. The homoclinic cycle γ: scheme and shape of the
first return map to the cross section Σ for the associated to the
flow of gλ, for different values of λ ∈ [−1, 1] (b and c). In (b) and
(c), the image, under the first return map, of the two horizontal
rectangles R1 and R2 overlap the original rectangles.

Following Shilnikov et al [33], there exists a Π0-invariant set of initial
conditions Λ0 ⊂ Σ on which the map Π0 is topologically conjugate to a
full shift over an infinite number of symbols. By Gonchenko et al [34],
the set Λ0 contains a sequence of hyperbolic horseshoes (Hn)n∈N that are
heteroclinically related : the unstable manifolds of the periodic orbits in Hn

are long enough to intersect the stable manifolds of the periodic points of
Hm (cf Figure 18), for n,m ∈ N. In other words, there exist periodic
solutions jumping from a strip of Hn to another strip of Hm. For λ ̸= 0,
the homoclinic orbit γ is broken, but finitely many horseshoes survive. We
now use the following result:

Proposition 13 ([16, 35](adapted)). With respect to the family of maps
(Πλ)λ∈[−1,1], there exists a non-degenerate interval E1 ⊂ [−1, 1] such that

4An equivalent definition of “generic unfolding” may be found on page 38 of Palis and
Takens [32].
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0 ∈ E1 and homoclinic tangencies associated to a dissipative periodic point
are dense in E1.

Therefore, for infinitely many parameters λ ∈ [−1, 1] we may find a dis-
sipative periodic point c1 ∈ Hn, n ∈ N, so that its stable and unstable man-
ifolds have a homoclinic tangency. This tangency is quadratic and breaks
generically. Although the original tangencies are destroyed, when the pa-
rameter λ varies, new tangencies arise nearby. The family (Πλ)λ may be
seen an unfolding of a map exhibiting a quadratic homoclinic tangency; thus
one can apply the results by Mora and Viana [17], which guarantee the ex-
istence of a positive Lebesgue measure set E2 ⊂ [−1, 1] of parameter values
such that for λ ∈ E2 the diffeomorphism Πλ exhibits a Hénon-type strange
attractor near the orbit of tangency. Theorem A is proved.

Σ

R
1

R 2

Π  (R  )1μ~ Π  (R  )2μ~

W  (O)u

W  (c  )
u

1

W  (c  )
u

2

W  (c  )s
1

R
1

R 2

W  (O)u

Heteroclinic tangency

Figure 18. Whiskers of the horseshoes: sketch of the hetero-
clinic tangencies associated to two saddles associated to the horse-
shoe Λ0. The homoclinic classes associated to the horseshoes are
not disjoint.

Figure 19. Strange attractor: plot of one orbit (in blue), the
interior equilibrium (in red), and all the boundary equilibria (in
the corresponding colors) of system (6), for µ = 3.6 with t ∈ [0, 40]
(left), and t ∈ [0, 170] (right).
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Remark. Besides the existence of strange attractors in the family (gλ)λ∈[−1,1],
we may apply Newhouse’s results in the version for one-parameter families
[32, Appendix 4], and conclude the existence of infinitely many values of
λ ∈ E1 for which the associated flow exhibits a sink.

8. Discussion

In this section, we describe the phenomenological scenario behind the
formation of strange attractors for the differential equation (6), relating it
with others in the literature.

8.1. Attracting whirlpool: a phenomenological description. We de-
scribe the phenomenological scenario responsible for the appearance of the
strange attractor of Theorem A. We go back to the works [33, 36] where a
similar scenario was proposed for one-parameter families of three-dimensional
flows in the context of an atmospheric model.

At µ = µBelyakov, the stable interior equilibrium Oµ ∈ Σµ becomes focal.
At µ = µHopf > µBelyakov, it undergoes a supercritical Andronov-Hopf bifur-
cation, becoming an unstable saddle-focus, and a stable invariant curve Cµ is
born in its neighborhood. The two-dimensional unstable invariant manifold
of Oµ, W

u(Oµ) ⊂ Σµ, is a topological disc limited by Cµ.
After the emergence of the saddle-focus B3 (µ > b3 – see Table 4), the set

Σµ starts rotating around W u(B3) due to the complex (non-real) eigenval-
ues of Dfµ (B3). When µ increases further, the periodic solution Cµ ⊂ Σµ

approaches the cube’s boundary and winds aroundW u(B3), forming a struc-
ture similar to the so-called Shilnikov whirlpool [33, 36]. For the µ values
associated to Cases IV and V, the equilibria B2 and B3 of this whirlpool
are pulled to the face σ4 and the orbits lying on the connected component
of int

(
Γ(2,2,2)

)
\W s(B1) containing the interior equilibrium are tightened by

this whirlpool. Further increasing µ, the size of the whirlpool decreases,
and finally, at µ ≳ µSA, the set W s(Oµ) is arbitrarily close to the screw
manifold W u(Oµ). Assumption H claims the existence of a homoclinic cy-
cle of Shilnikov type for a vector field C2–close to fµSA

. The argument that
supports this approximation, explained in Subsection 5.3, is valid for the
parameter values in the interval ]µSA,µ

2
Hopf[ for which the greatest LE of

fµ is positive.

As µ evolves, W s(B1) divides the cube in two connected components.
The one which contains the strange attractor is shrinking, meaning that the
volume of initial conditions which realize chaos is vanishing. In terms of the
EGT, this would mean that, although system (6) may exhibit chaos, the
initial strategies that realize it are very close and cannot go too far (in an
appropriate metric).

Our findings are different from those of [33] in the sense that, in their
case, the periodic solution coming from the Hopf Bifurcation becomes focal,
playing the role of “our” saddle-focus B3.

This type of mechanisms, the so called whirlpool attractor may be seen
as the universal scenario for the formation of Shilnikov cycles in a typical
system [37] – see for example the Rossler model and the “new” Lorenz two-
parameter model [36, Section 5].
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8.2. Open problem. Taking into account the numerical limitations de-
scribed in Subsection 5.3, it is an open problem to prove whether the
Shilnikov homoclinic orbit exists in the family (fµ)µ. We conjecture that,

up to a change of coordinates, the families (gλ)λ and (fµ)µ coincide. We
are trying hard to find out an answer for this problem.

8.3. Final Remark. We introduced a one-parameter family of polymatrix
replicators defined on Γ(2,2,2) and study its bifurcations in detail. In an open

interval of the parameter space, we prove the existence of a vector field, C2–
close to elements of the family (fµ)µ, exhibiting a homoclinic cycle to a
saddle-focus, responsible for the emergence of suspended horseshoes and
persistent observable chaos (Hénon-type in the sense of [17]). Numerical
simulations suggest that small perturbations of the non-zero entries of Pµ do
not drastically change the sign of the upper Lyapunov exponent associated
to an orbit lying in W u(Oµ).

The mechanism responsible for the emergence of chaos seems to be the
same for a large class of examples: we obtain an attracting limit cycle (from
a supercritical Hopf bifurcation) limiting the unstable manifold of an un-
stable focus. The stable manifold of the limit cycle starts winding around
a focus and accumulates on the stable manifold of the interior equilibrium,
undergoing successive saddle-node and period-doubling bifurcations. This
criterion relies on Shilnikov’s results [15]. It creates strange attractors that
may be seen as a suspension of Hénon-type diffeomorphisms. In particular,
when the parameter varies, on a typical cross section, topological horseshoes
emerge linked with sinks [35].

The reduction of a polymatrix replicator to dimension three may be car-
ried out just in two cases, Γ(2,2,2) (our model) and Γ(3,2) (the population is
divided in two groups, one with three available strategies and the other with
two). The search of strange attractors in the second case may be performed
in the same way as we have done in the present article.

The existence of strange attractors in polymatrix replicators has profound
implications in the setting of the EGT. Observable chaos is the result of a
strategy evolution in which individuals are constantly changing their plans
of action in an unforeseeable way. The existence of chaos for model (1) is
relevant to maintain the complexity and diversity of strategies, in particular
their high unpredictability [38].

Although a complete understanding of the bifurcation diagram associated
to (6) and the mechanisms underlying the dynamical changes is out of reach,
we uncover complex patterns for the one-parameter family under analysis,
using a combination of theoretical tools and computer simulations.

The dynamics on the interior of the cube is strongly determined by the
dynamics on the boundary. A lot more needs to be done before the dynamics
of polymatrix replicators is completely understood.
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Appendix A. Tables

Eq. Eigenvalues µ On edge On σ3 On σ5

A1

{
10(µ+38)

14−µ , 4(5µ+281)
µ−14 ,

26(µ2−2µ−168)
−(µ−14)2

} [
− 2938

95 ,−12
[

− − +

On edge On σ4 On σ5

A2

{
6(µ+6)
µ−14 , 31µ−110

µ−14 ,
6(µ2−22µ+112)

−(µ−14)2

} [
− 2938

95 ,−6
[

− + +

{−6} − + 0]
−6, 110

31

[
− + −

{ 110
31 } − 0 −]

110
31 , 8

[
− − −

On edge On σ4 On σ6

A3

{
27(µ−10)

14−µ , 10(µ−10)
µ−14 ,

2(µ2−26µ+168)
−(µ−14)2

} [
− 2938

95 , 10
]

− − +

On edge On σ3 On σ6

A4

{
4(4µ+241)

14−µ , 2(7µ+122)
14−µ ,

22(µ2−6µ−112)
−(µ−14)2

} [
− 2938

95 ,− 122
7

[
− + −

{− 122
7 } − + 0]

− 122
7 ,−8

[
− + +

Table 3. Eigenvalues of equilibria A1, A2, A3, and A4 for sys-
tem (6), on the corresponding edges and faces (pointing to the
interior), where the signs (−), (0), and (+) mean that the eigen-
values are real negative, zero, or positive, respectively.
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Eq. Eigenvalues µ On face On the interior

B1

{
37(µ−10)

µ+40 , z1, z̄1

} { 110
31 } (B1 = A2) (−, 0) (−)]

110
31 , 10

]
(−,+) (−)

B2

{
95µ+2938
2(µ+86) , z2, z̄2

} [
− 2938

95 , b2
[
∪ [−12,−6[ (−,−) (+)

[b2,−12[ (−,−)C (+)

{−6} (B2 = A2) (−, 0) (+)

B3

{
109(10−µ)
2(µ+86) , z3, z̄3

} {− 122
7 } (B3 = A4) (−, 0) (+)]
− 122

7 , b3
]

(−,−) (+)

[b3, 10] (−,−)C (+)

z1 =
8700 − 11240µ + 937µ2 +

√
−7052310000 + 1872624000µ + 179361400µ2 − 34941760µ3 + 543169µ4

8(µ + 40)2

z2 =
3
(
−8084 + 164µ + 3µ2 +

√
259862416 + 40284768µ + 1909912µ2 + 31704µ3 + 169µ4

)
2(µ + 86)2

z3 =
−19436 + 892µ + 13µ2 +

√
−3449723504 − 16764064µ + 27270168µ2 + 906392µ3 + 6889µ4

2(µ + 86)2

Table 4. Eigenvalues of equilibria B1, B2, and B3 for system (6),
on the corresponding faces and pointing to the interior, where b2 ≈
−21.9 and b3 ≈ −14.22. The signs (−), (0), and (+) mean that
the eigenvalues are real negative, zero, or positive, respectively,
and (−,−)C means that the eigenvalues are conjugate (non-real)
with negative real part.
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Eq. Eigenvalues µ Analysis

v1 {−10, 27, 12− µ}
[
− 2938

95 , 10
]

(−,+,+)

v2 {−23,−14, 8− µ}

[
− 2938

95 , 8
[

(−,−,+)

{8} (−,−, 0)

]8, 10] (−,−,−)

v3 {6, 38,−8− µ}

[
− 2938

95 ,−8
[

(+,+,+)

{−8} (0,+,+)

]−8, 10] (−,+,+)

v4 {−34, 10,−12− µ}

[
− 2938

95 ,−8
[

(−,+,+)

{−12} (−, 0,+)

]−12, 10] (−,−,+)

v5 {−27, 2, 10}
[
− 2938

95 , 10
]

(−,+,+)

v6 {6, 6, 31}
[
− 2938

95 , 10
]

(+,+,+)

v7 {−14,−16, 22}
[
− 2938

95 , 10
]

(−,−,+)

v8 {−10, 20, 26}
[
− 2938

95 , 10
]

(−,+,+)

Table 5. Real eigenvalues of the vertices v1, . . . , v8 for sys-
tem (6), where (−), (0), and (+) mean that they are negative,
zero, or positive, respectively.
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Appendix B. Summarizing movie of the boundary dynamics

(I) (II) (III)

µ ∈
[
− 2938

95 ,− 122
7

]
µ ∈

]
− 122

7 ,−12
]

µ ∈ ]−12,−8]

(IV) (V) (VI)

µ ∈ ]−8,−6] µ ∈
]
−6, 110

31

]
µ ∈

]
110
31 , 8

]

(VII)

µ ∈ ]8, 10]

Table 6. Illustration of the dynamics on the cube’s boundary
on each interval of µ in different cases of Table 2.
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Appendix C. Summarizing movie of the interior dynamics

µ = −20 µ = −17.5 µ = −14

µ = −8.5 µ = −7 µ = 1.1

µ = 3.6 µ = 6.5 µ = 8

Table 7. Illustration of the dynamics on the cube’s interior for
different values of µ.
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