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RANK-ONE STRANGE ATTRACTORS VERSUS

HETEROCLINIC TANGLES
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CENTRO DE MATEMÁTICA DA UNIV. DO PORTO
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Abstract. We present a mechanism for the emergence of strange attractors (observable
chaos) in a two-parameter periodically-perturbed family of differential equations on the plane.
The two parameters are independent and act on different ways in the invariant manifolds
of consecutive saddles in the cycle. When both parameters are zero, the flow exhibits an
attracting heteroclinic cycle associated to two equilibria. The first parameter makes the
two-dimensional invariant manifolds of consecutive saddles in the cycle to pull apart; the
second forces transverse intersection. These relative positions may be determined using the
Melnikov method.

Extending the previous theory on the field, we prove the existence of many complicated
dynamical objects in the two-parameter family, ranging from “large” strange attractors sup-
porting SRB (Sinai-Ruelle-Bowen) measures to superstable sinks and Hénon-type attractors.
We draw a plausible bifurcation diagram associated to the problem under consideration and
we show that the occurrence of heteroclinic tangles is a prevalent phenomenon.

1. Introduction

Periodically perturbed homoclinic cycles have been studied extensively in history. The
topic has occupied a center position of the chaos theory since the time of Poincaré [17].
Literature on the mathematical analysis and on numerical simulations is rather abundant.
We mention a few that are closely related to this paper: the theory of Smale’s horseshoes
[21] and its applications to differential equations through the Melnikov method [11]; the work
from Shilnikov’s team [19, 20], those from Chow and Hale’s school [6], concerning chaos and
heteroclinic bifurcations in autonomous differential equations and those from Wang, Ott,
Oksasoglu and Young concerning rank-one strange attractors [26, 27, 28].

In this paper, we study the dynamics of strange attractors (sustainable chaos) in peri-
odically perturbed differential equations with two heteroclinic connections associated to two
dissipative saddles. An explicit formula for the first return map to a cross section is derived.
By extending the theory developed for the one loop case in [25, 27], we obtain a generic
overview on various admissible dynamical scenarios for the associated non-wandering sets.
We state precise hypotheses that imply the existence of observable chaos and sinks for a set
of forcing amplitudes with positive Lebesgue measure.
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2 ALEXANDRE RODRIGUES

Motivated by bifurcation scenarios involving homoclinic cycles [5], we prove the existence
of many complicated dynamical objects for a given equation, ranging from an attracting torus
of quasi-periodic solutions, Newhouse sinks and Hénon-like attractors, to rank-one strange
attractors with Sinai-Ruelle-Bowen (SRB) measures. The theory developed in this paper is
explicitly applicable to the analysis of various specific differential equations and the results
obtained go beyond the capacity of the classical Birkhoff-Melnikov-Smale method [8].

Our purpose in writing this paper is not only to point out the range of phenomena that can
occur when simple non-linear equations are periodically forced, but to bring to the foreground
the methods that have allowed us to reach these conclusions in a straightforward manner.
These techniques are not limited to the system considered here.

Structure of the article. This article is organised as follows: in Section 2 we describe the
problem and we refer some related literature on the topic. In Section 3, we state the main
results of this research and we explain how they fit in the literature. In Sections 4, 5, we
introduce some basic concepts for the understanding of this article and we review the theory
of rank-one attractors stated in [27]. The proof of the main results will be performed in
Section 7 and 8, after the precise computation of suitable first return maps to cross sections
in Section 6.

In Sections 9 and 10 we prove the results related to the heteroclinic tangle. We also show
that the existence of heteroclinic tangles is a prevalent phenomenon in a bifurcation diagram
in Section 11. In Section 12, we describe explicitly the expressions requested by the Melnikov
integral in order to satisfy Hypotheses (P6)–(P7) of Section 2. We discuss the consequences
of our findings in Section 13.

In Appendix A, we list the main notation for constants and terminology in order of ap-
pearence. We use the setting of [15, 22] because we are interested in the admissible families
that are obtained by passing to the singular limits of families of rank one maps with/without
logarithmic singularities.

We have endeavoured to make a self contained exposition bringing together all topics related
to the proofs. We have drawn illustrative figures to make the paper easily readable.

2. Setting

2.1. Starting point. Let (x, y) ∈ R2 be the phase variables and t be the independent vari-
able. We start with the following autonomous differential equation:

{
ẋ = g1(x, y)
ẏ = g2(x, y)

(2.1)

where g1 and g2 are analytic functions defined on an open domain V ⊂ R
2 and ẋ = dx

dt
, ẏ = dy

dt
.

We assume that (2.1) has two hyperbolic equilibria in V, say O1 = (x1, y1) and O2 = (x2, y2)
(see Figure 1). Let −c1 < 0 < e1 be the eigenvalues of the Jacobian matrix of (2.1) at O1,
and ū(c1), ū(e1) be their associate unit eigenvectors.

Analogously, let −c2 < 0 < e2 and ū(c2), ū(e2) be the corresponding eigenvalues and unit
eigenvectors for the jacobian matrix of (2.1) at O2. We assume that both O1 and O2 satisfy
the following conditions:

(P1) (Dissipativeness) c1 > e1 and c2 > e2.
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(P2) (Non-resonant condition) For i ∈ {1, 2}, there exist d1, d̃1, d2, d̃2 ∈ R
+ such that for

all m,n ∈ N, the following inequality holds:

|mci − n ei| > di( |m|+ |n| )−d̃i .

(P3) (Heteroclinic cycle) The system (2.1) has two heteroclinic solutions in V: one from
O1 to O2, which we denote by ℓ1 = {(a1(t), b1(t)), t ∈ R}; and the other from O2 to
O1, which we denote by ℓ2 = {(a2(t), b2(t)), t ∈ R}, forming a heteroclinic cycle (see
Figure 1).

For ε > 0 sufficiently small, we add two forcing terms to (2.1) of the type:
{
ẋ = g1(x, y) + µ1P1(x, y, ω t) + µ2Q1(x, y, ω t)
ẏ = g2(x, y) + µ1P2(x, y, ω t) + µ2Q2(x, y, ω t)

(2.2)

where ω > 0, µ1, µ2 are small independent parameters in [0, ε] and

P1(x, y, t), P2(x, y, t), Q1(x, y, t), Q2(x, y, t) : V × R −→ R

are C4. We also assume that:

(P4) (Periodic perturbations) For j ∈ {1, 2}, there exists T > 0 such that

∀x, y ∈ V, Pj(x, y, t+ T ) = Pj(x, y, t) and Qj(x, y, t+ T ) = Qj(x, y, t).

(P5) The value of P1(x, y, t), P2(x, y, t), Q1(x, y, t) and Q2(x, y, t) and their first derivatives
with respect to x and y are all zero at O1 and O2 for all t.

O
2O

1

V

l1

l
2

V* A

Figure 1. The dynamics of (2.1) defined V ⊂ R2 is governed by the existence of an
heteroclinic cycle associated to O1 and O2. ℓ1, ℓ2: heteroclinic connections; V⋆: inner
basin of attraction of the cycle (absorbing domain); A : region limited by the cycle.

In V, the heteroclinic cycle ℓ1∪ℓ2∪{O1, O2} limits a region that we call A. For µ1 = µ2 = 0,
there is an open set ∅ 6= V⋆ of A such that the ω−limit of all solutions starting in V⋆ is ℓ1∪ ℓ2.
In other words, the cycle ℓ1∪ ℓ2∪{O1, O2} is asymptotically stable “by inside” (configuration
similar to that of Takens [23]1).

1This configuration is also called the “attracting Bowen eye”.
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2.2. The lift. We now introduce an angular variable θ ∈ S
1 = R/ZT to rewrite (2.2) as





ẋ = g1(x, y) + µ1P1(x, y, θ) + µ2Q1(x, y, θ)
ẏ = g2(x, y) + µ1P2(x, y, θ) + µ2Q2(x, y, θ)

θ̇ = ω
(2.3)

or, in matricial notation, by:




ẋ
ẏ

θ̇


 =




g1(x, y)
g2(x, y)
ω


+ µ1




P1(x, y, θ)
P2(x, y, θ)

0


+ µ2




Q1(x, y, θ)
Q2(x, y, θ)

0


 . (2.4)

C
2C1

VxS µ1

µ2

1

I II
IIIIV

I II

IIIIV
Loc1 Loc2

Ψ1     2

Ψ2     1

C
2

C1

(a) (b)

Figure 2. (a) Scheme of the effects of the parameters µ1, µ2 on the equations (2.3).
(b) Sketch of the local and transition maps. I, II, III and IV represent cross sections
Out(C1), In(C2), Out(C2) and In(C1), respectively.

The vector field associated to equation (2.3) will be denoted by f(µ1,µ2). In the phase space

of (2.3), say V = V × S
1, for µ1 = µ2 = 0, there is an attracting heteroclinic cycle Γ between

two hyperbolic periodic solutions, say C1 ∪C2, connected by two manifolds diffeomorphic to
tori L1 and L2. The periodic solution Ci is the lift of Oi, i = 1, 2. Set A = A× S

1.
In the (x, y, θ)–space, let V1 and V2 be two hollow cylinders aroundC1 andC2, respectively,

where a local normal form may be defined. Let Out(C1) and Out(C2) be two sections
(planes) transverse to L1 ∪ L2 where all initial conditions go outside V1 and V2 in positive
time, respectively. Analogously, let In(C1) and In(C2) be two sections (planes) transverse to
L1 ∪ L2 where where all initial conditions go inside V1 and V2 in positive time, respectively.

2.3. Parameters effects. Concerning the addition of the non-zero perturbing terms whose
magnitude is governed by µ1 and µ2, the effect on the dynamics of (2.3) differs from the type
of intersection between the invariant manifolds of C1 and C2 as follows:

Case 1: W u(C1) ⋔W s(C2) and W
u(C2) ⋔W s(C1)

Case 2: W u(C1) ∩W
s(C2) = ∅ and W u(C2) ⋔W s(C1)

Case 3: W u(C1) ⋔W s(C2) and W
u(C2) ∩W

s(C1) = ∅

Case 4: W u(C1) ∩W
s(C2) = ∅ and W u(C2) ∩W

s(C1) = ∅,
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where A ⋔ B means that the manifolds A and B intersect transversely. In Table 1, we identify
these four cases.

Configuration W u(C1) ⋔W s(C2) W u(C1) ∩W
s(C2) = ∅

W u(C2) ⋔W s(C1) Case 1 Case 2

W u(C2) ∩W
s(C1) = ∅ Case 3 Case 4

Table 1. Four generic different cases for the dynamics of (2.3).

Remark 2.1. Since C1 and C2 are hyperbolic, they persist for µ1, µ2 > 0 small. For µ1 > 0,
when we consider empty intersection of the invariant manifolds, we mean W u(C1) enters the
absorbing domain V

⋆, otherwise there are no guarantees that the set of non-wandering points
is non-empty.

For (µ1, µ2) ∈ [0, ε]× [0, ε], let F(µ1,µ2) and G(µ1,µ2) be the return maps to the cross sections
Out(C1) and Out(C2), respectively. Denote

Ω
(
F(µ1,µ2)

)
=
{
X ∈ Out(C1) : Fn

(µ1,µ2)
(X) ∈ Out(C1), ∀n ∈ N

}

and

Λ
(
F(µ1,µ2)

)
=
⋂

n∈N
Fn
(µ1,µ2)

(Ωµ).

The set Ω(F(µ1,µ2)) represents all solutions of (2.3) that stay around the unforced heteroclinic
loop L1 ∪ L2 in forward time and Λ(F(µ1,µ2)) represents all solutions that stay around L1 ∪

L2, for all time. Analogously we define Ω
(
G(µ1,µ2)

)
and Λ

(
G(µ1,µ2)

)
, replacing Out(C1) by

Out(C2). With respect to the effect of the perturbations governed by µ1 and µ2, both act
independently and we state the following hypotheses (A ≡V⋆ B means that the manifolds A
and B coincide within V

⋆):

(P6a) If µ1 > 0 and µ2 = 0, then W u(C1) ∩W
s(C2) = ∅ and W u(C2) ≡V⋆ W s(C1).

(P6b) If µ2 > 0 and µ1 = 0, then W u(C1) ≡V⋆ W s(C2) and W
u(C2) ⋔W s(C1).

When we refer to (P6), we refer to (P6a) and (P6b). For µ1, µ2 ∈ [0, ε], in the local
coordinates of Subsection 6.1, the flow associated to (2.3) induces the C3–embeddings

Ψ1→2 : Out(C1) → In(C2) and Ψ2→1 : Out(C2) → In(C1)

of the form2:

2These hypotheses will be clear in Section 6.
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(P7a)

Ψ1→2

(
y
(1)
1 , θ(1)

)
=
[
c1y

(1)
1 + µ1Φ1

(
y
(1)
1 , θ(1)

)
; θ(1) + ξ1 + µ1Ψ1

(
y
(1)
1 , θ(1)

)]
(2.5)

where c1 6= 0, ξ1 ∈ R, Ψ1 : Out(C1) → R is C1 and Φ1 : Out(C1) → R
+ is C3, non-constant

and has a finite number of non degenerate critical points. Furthermore,

(P7b)

Ψ2→1

(
y
(2)
1 , θ(2)

)
=
[
c2y

(2)
1 + µ2Φ2

(
y
(2)
1 , θ(2)

)
; θ(2) + ξ2 + µ2Ψ2

(
y
(2)
1 , θ(2)

)]
(2.6)

where c2 6= 0, ξ2 ∈ R, Ψ2,Φ : Out(C2) → R are C1 and Φ2 : Out(C2) → R has at least two
non degenerate zeros.

Remark 2.2. When there is no risk of misunderstanding, we identify Φ1(θ) ≡ Φ1(0, θ) and
Φ2(θ) ≡ Φ2(0, θ), where θ ∈ S

1.

2.4. Literature on the topic and the goal of this article. Case 1 has been studied in
[5, 10, 18]; the authors found a sequence of suspended horseshoes accumulating on the cycle,
homoclinic tangencies and Newhouse phenomena giving rise to sinks and Hénon-type strange
attractors. Their results do not depend on the frequency ω. Case 4 has been discussed in
[13], where the authors proved the existence of an attracting torus for ω ≈ 0 and rank-one
attractors for ω ≫ 1 (sufficiently large). Combining the techniques developed in [5, 13], in
this paper we deal with Case 2 illustrated in Figure 2. Case 3 has a similar treatment. We
also provide complementary results for Cases 1 and 4.

3. Main results

Once for all, let us fix ε > 0 small. Denote by X
4
Γ(V) the two-parameter family of C4–

vector fields (2.3) satisfying conditions (P1)–(P7). Before going further, we set two positive
constants that will be used in the sequel:

KF =
1

e2
+
c2/e2
e1

and KG =
1

e1
+
c1/e1
e2

. (3.1)

Our first result strongly relies on the global map Ψ1→2 from Out(C1) to In(C2) (cf. (2.5)
and Remark 2.2).

Theorem A. Let f(µ1,0) ∈ X
4
Γ(V), with µ1 > 0. If ω is such that

ω × sup
θ∈S1

(
Φ′
1(θ)

Φ1(θ)

)
<

1

KF
,

then there is an invariant closed curve C ⊂ Out(C1) as the maximal attractor for the map
F(µ1,0). This closed curve is not contractible on Out(C1).

Although we use the Theory of Rank-one attractors to prove Theorem A, this result may
be shown using the Afraimovich’s Annulus Principle [1]. The curve C ⊂ Out(C1) is globally
attracting in the sense that, for every X ∈ V

⋆, there exists a point X0 ∈ C such that

lim
n→+∞

∥∥∥Fn
(µ1,0)

(X)−Fn
(µ1,0)

(X0)
∥∥∥ = 0,
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where ‖ ⋆ ‖ is the usual norm induced from R
2. The attracting invariant curve for F(µ1,0) is

the graph of a smooth map and corresponds to an attracting two-dimensional torus for the
flow of (2.3). When µ1 > 0 and µ2 = 0, one branch of W u(C1) accumulates on the torus.

The dynamics of F(µ1,0) induces on C a circle map. Indeed, for any given interval of unit
length [0, ε], there is a positive measure set ∆ ⊂ [0, ε] so that the rotation number of F(µ1,0)|C
is irrational if and only if µ1 ∈ ∆. This implies the existence of a set of positive Lebesgue
measure (in the bifurcation parameter) for which the torus has a dense orbit, i.e. the torus
is a minimal attractor [9].

Theorem B. Let f(µ1,0) ∈ X
4
Γ(V), with µ1 > 0. There exists ω⋆ > 0 such that for all ω > ω⋆,

there is a subset of positive Lebesgue measure ∆ ⊂ [0, ε] for which the map F(µ1,0) with µ1 ∈ ∆,
exhibits rank-one strange attractors with an ergodic SRB measure.

The existence of rank-one strange attractors for Fµ is an abundant phenomenon in the
terminology of [12]. Furthermore, these attractors are “large” according to [4], i.e. their non-
wandering points wind around an entire non-contractible annulus. These strange attractors
have strong statistical properties that will be made precise in Section 5 (see also [28]).

The proof of Theorems A and B is performed in Subsections 7.3 and 7.4 by reducing the
analysis of the two-dimensional map F(µ1,0) to the dynamics of a one-dimensional map, via
the Rank-one attractors’s theory.

Theorem C. Let f(µ1,0) ∈ X
4
Γ(V), with µ1 > 0. Under an open technical hypothesis (TH)

on the space of parameters, for ω ≫ 1 there exists a sequence of real numbers converging to
zero, say (µ1,n)n∈N, for which the flow of (2.3) exhibits a periodic sink.

This sink does not follow from the Newhouse theory [14]; it is superstable in the sense
that one of its Floquet multipliers is very close to zero. The open condition (TH) stated in
Theorem C is technical and depends on a specific variable in the definition of Misiurewicz-
type map in Subsection 5.1. It will be clear in Section 8, where the proof of the result is
performed.

The next two results concern the case µ1 = 0 and µ2 > 0, where W u(C1) ≡ W s(C2) and
W u(C2) meets transversely W s(C1), giving rise to what we usually call heteroclinic tangle.
The Rank-one maps’s theory does not apply in this context.

Theorem D. Let f(0,µ2) ∈ X
4
Γ(V), with µ2 > 0. The flow of (2.3) satisfies the following

properties for µ2 > 0:

(1) the set Λ
(
G(0,µ2)

)
contains a horseshoe with infinitely many branches.

(2) there is a sequence (µ2,i)i∈N of positive real numbers converging to zero, such that the
manifolds W u(C2) and W

s(C2) meet tangentially3 for the flow of f(0,µ2,i).

(3) there exists a positive measure set of parameters in I = [0, ε] so that G(0,µ2) admits a
strange attractor with an ergodic SRB measure.

(4) there is a sequence (µ̃2,i)i∈N of positive real numbers converging to zero, such that the
flow of f(0,µ̃2,i) has a periodic sink.

3This tangency is quadratic (generic).
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The proof of Theorem D does not depend on ω and follows the same lines to the reasoning of
[5, 10]. Item (1) of Theorem D is often called the classical Birkhoff-Melnikov-Smale horseshoe
theorem.

Remark 3.1. Points in the horseshoe stated in Theorem D lie on the topological closure of
W u(C2) ⋔W s(C1).

The horseshoe whose existence is proved in Theorem D has infinitely many saddle periodic
points, whose Lyapunov mutipliers’ modules tend to +∞ and to 0. The next notion will be
useful in the sequel.

Definition 1. We say that the embedding G(0,µ2) : Out(C2) → Out(C2) exhibits non-uniform
expansion if, given ρ > 0, for Lebesgue almost all points in Out(C2), the map G(0,µ2) is well
defined and has a positive upper Lyapunov exponent greater than ρ.

The next result ensures the existence of a “large” strange attractor for the dynamics of
(2.3) and its non-uniform expansion for most parameters.

Proposition E. Let f(0,µ2) ∈ X
4
Γ(V), with µ2 > 0. If ω ≫ 1, then the first return map G(0,µ2)

associated to (2.3) exhibits a “large” strange attractor with non-uniform expansion.

The proof of this result is proved in Section 10. In particular, it is possible to construct
invariant probabilities absolutely continuous with respect to the Lebesgue measure (cf. [28,
Sec. 3]).

Theorem F. Let f(µ1,µ2) ∈ X
4
Γ(V), with µ1, µ2 > 0. In the bifurcation parameter (µ1, µ2) ∈

[0, ε]2, there exists a curve Hom associated to the emergence of homoclinic cycles to C1.
Heteroclinic tangles occurs in the convex region defined by this curve.

2
Hom

H
e

te
ro

c
lin

ic
 t

a
n

g
le

torus / rank-one strange attractors

..
..

.

1

Ι

ΙΙ

ΙΙΙ
μ

μ

Figure 3. Plausible bifurcation diagram associated to an element f(µ1,µ2) of the

family X
4
Γ(V). I – the flow has an invariant two-dimensional torus if ω ≈ 0 and a

rank-one strange attractor if ω ≫ 1. II – transition region; III – heteroclinic tangle;
Hom – curve that corresponds to the emergence of a homoclinic tangency associated

to C1.

The proof of Theorem F is performed in Section 11. As suggested in Figure 3, for ε > 0
small and r ∈ [0, ε], defining

Br = {(µ1, µ2) ∈ [0, ε] × [0, ε] : µ21 + µ22 ≤ r2},
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we have:

lim
r→0

Leb2({(µ1, µ2) ∈ [0, r]× [0, r] : F(µ1,µ2) exhibits heteroclinic tangles} ∩Br)

Leb2(Br)
= 1,

where Leb2 denotes the usual two-dimensional Lebesgue measure. This is why we say that
non-uniform hyperbolicity is a prevalent phenomena in the problem under consideration.

4. Preliminaries: strange attractors and SRB measures

In this section, we gather a collection of technical facts used repeatedly in later sections.
We formalize the notion of strange attractor for a two-parametric family of diffeomorphisms
H(a,b) defined on M = [0, 1] × S

1, endowed with the induced topology. The set M is also

called by circloid in [16]. In what follows, if A ⊂M , A denotes its topological closure.

Let H(a,b) be an embedding such that H(a,b)(U) ⊂ U for some open set U ⊂ M . In the
present article, we refer to

Ω =

+∞⋂

m=0

Hm
(a,b)(U).

as an attractor and U its basin. The attractor Ω is irreducible if it cannot be written as the
union of two (or more) disjoint attractors.

Definition 2. The embedding H(a,b) is said to have a horseshoe with infinitely many branches
if there exists an invariant subset Σ ⊂ U on which H(a,b)|Σ is topologically conjugated to a
full shift of infinitely many symbols.

Definition 3. We say that H(a,b) possesses a strange attractor supporting an ergodic SRB
measure ν if:

• for Lebesgue almost all (y, θ) ∈ U , the H(a,b)–orbit of (y, θ) has a positive Lyapunov
exponent, ie

lim
n∈N

1

n
log ‖DHn

(a,b)(y, θ)‖ > 0;

• H(a,b) admits a unique ergodic SRB measure (with no-zero Lyapunov exponents) [26];
• for Lebesgue almost all points (y, θ) ∈ U and for every continuous test function
ϕ : U → R, we have:

lim
n∈N

1

n

n−1∑

i=0

ϕ ◦H i
(a,b)(y, θ) =

∫
ϕdν. (4.1)

Admitting that H(a,b) admits a unique ergodic SRB measure ν, we define convergence of
H(a,b) with respect to ν as follows:

Definition 4. We say that:

• H(a,b) converges (in distribution with respect to ν) to the normal distribution if, for

every Hölder continuous function ϕ : U → R, the sequence
{
ϕ
(
H i

(a,b)

)
: i ∈ N

}
obeys

a central limit theorem; ie, if

∫
ϕdν = 0 then the sequence

(
1√
m

m−1∑

i=0

ϕ ◦H i
(a,b)

)

m
converges in distribution (with respect to ν) to the normal distribution.
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• the pair (H(a,b), ν) is mixing if it is isomorphic to a Bernoulli shift.

We address the reader for [26] for more information on the subject.

5. Rank-one attractors’ theory revisited

To make a self-contained presentation, we provide an exposition of the theory of rank-
one attractors adapted to our purposes. We hope this saves the reader the trouble of going
through the entire length of [25, 26] to achieve a complete description of the theory.

In what follows, let us denote by C3(S1,R) the set of C3–maps from S
1 (unit circle) to R.

For h ∈ C3(S1,R), let

C ≡ C(h) = {θ ∈ S
1 : h′(θ) = 0}

be the critical set of h. For δ > 0, let Cδ be the δ–neighbourhood of C in S
1 and let Cδ be

the δ–neighbourhood of θ ∈ C as illustrated in Figure 4. The terminology dist denotes the
euclidian distance on R.

5.1. Misiurewicz-type map. We say that h ∈ C3(S1,R) is a Misiurewicz-type map (and
we denote it by h ∈ E) if the following assertions hold:

(1) There exists δ0 > 0 such that:

(a) ∀θ ∈ Cδ0 , we have h′′(θ) 6= 0 and

(b) ∀θ ∈ C and n ∈ N, dist(hn(θ), C) ≥ δ0.

(2) There exist constants b0, λ0 ∈ R
+ such that for all δ < δ0 and n ∈ N, we may write:

(a) if hk(θ) /∈ Cδ for k ∈ {0, , ..., n − 1}, then |(hn)′(θ)| ≥ b0 δ exp(λ0 n) and

(b) if hk(θ) /∈ Cδ for k ∈ {0, , ..., n−1} and hn(θ) ∈ Cδ0 , then |(hn)′(θ)| ≥ b0 exp(λ0 n).

Maps in E are among the simplest with non-uniform expansion. For δ0 > 0, the set Cδ0

induces a partition on S
1, ie the space S

1 may be divided in Cδ0 and S
1\Cδ0 .

Digestive remarks about Misiurewicz-type maps.

(1) The critical orbits stay a fixed distance away from the critical set C;

(2) The derivatives grow at a uniform exponential rate (up to a prefactor) along orbits
that remain outside Cδ;

(3) For θ ∈ Cδ\C, although |h′(θ)| is small, the orbit of θ ∈ S
1 does not return to Cδ

again until its derivative has regained an “amount” of exponential growth.
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y

h

0

(1) (2)

Cδ

θ θ θ

2π

2π

Figure 4. Example of a Misiurewicz-type map ha : S1 → R. For δ > 0, the set Cδ

is a δ-neighbourhood of the set of critical points C.

5.2. Admissible family. We recall the notation and main results of [28]. Let

H : [0, 2π] × S
1 → [0, 2π]

be a C3 map. The map H defines a one-parameter family of maps

{ha ∈ C3([0, 2π], [0, 2π]) : a ∈ S
1}

via ha(x) = H(x, a). We assume that there exists a⋆ ∈ S
1 such that ha⋆ ∈ E (ie ha⋆ is a

Misiurewicz map). For each c ∈ C(ha⋆), there exists a continuation c(a) ∈ C(ha) provided

a is sufficiently close to a⋆. Therefore, for a close to a⋆, let C(ha⋆) =
{
c(1)(a⋆), ...., c(q)(a⋆)

}
,

where

∀i ∈ {1, ..., q − 1}, c(i)(a⋆) < c(i+1)(a⋆) and c(q+1)(a⋆) = c(1)(a⋆).

From now on, when there is no risk of misunderstanding, we omit the dependence on a⋆

and the superscript (i) in order to simplify the notation. For c(a⋆) ∈ C(ha⋆) we denote

βc(a
⋆) = ha⋆(c(a

⋆)).

For all parameters a sufficiently close to a⋆, there exists a unique continuation βc(a) of βc(a
⋆)

such that the orbits

{hna⋆(βc(a
⋆)) : n ∈ N} and {hna(βc(a)) : n ∈ N}

have the same itineraries with respect to the partitions of [0, 1] induced by C(ha⋆) and C(ha),
respectively. This means that:

∀n ∈ N, (hna⋆(βc(a
⋆)) ∈

(
c(j)(a⋆), c(j+1)(a⋆))

)
⇔ (hna(βc(a)) ∈

(
c(j)(a), c(j+1)(a))

)
,

for j ∈ {1, ..., q}. In addition:

Lemma 5.1 ([28]). The map a 7→ βc(a) is differentiable.

The previous lemma will be implicitly used in the next definition.
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Definition 5. Let H : [0, 1] × S
1 → [0, 1] be a C3 map. The associated one-parameter family

{ha : a ∈ S
1} is admissible if:

(1) there exists a⋆ ∈ S
1 such that ha⋆ ∈ E ;

(2) for all c ∈ C(ha⋆), we have

ξ(c) =
d

da
(ha(c(a) − βc(a))

∣∣
a=a⋆

=
d

da
(ha(c(a) − ha⋆(c(a

⋆))
∣∣
a=a⋆

6= 0.

5.3. Rank-one maps. Let M = [0, 2π] × S
1, induced with the usual topology. We consider

the two-parameter family of maps H(a,b) : M → M , where a ∈ S
1 and b ∈ R is a scalar. Let

B0 ⊂ R\{0} with 0 as an accumulation point; this will be a crucial point in order to prove
our results in Subsection 7.1. We assume the following conditions:

(H1) Regularity conditions: (1) For each b ∈ B0, the function (x, y, a) 7→ H(a,b) is

at least C3–smooth.
(2) Each map H(a,b) is an embedding of M into itself.

(3) There exists k ∈ R
+ independent of a and b such that for all a ∈ S

1, b ∈ B0 and
(y1, θ1), (y2, θ2) ∈M , we have:

|detDH(a,b)(y1, θ1)|

|detDH(a,b)(y2, θ2)|
≤ k.

(H2) Existence of a singular limit: For a ∈ S
1, there exists a map

H(a,0) :M → {0} × S
1

such that the following property holds: for every (y, θ) ∈M and a ∈ [0, 2π], we have

lim
b→0

H(a,b)(y, θ) = H(a,0)(y, θ).

(H3) C3–convergence to the singular limit: For every choice of a ∈ S
1, the maps

(y, θ, a) 7→ H(a,b) converge in the C3–topology to (y, θ, a) 7→ H(a,0) on M × S
1 as b

goes to zero.

(H4) Existence of a sufficiently expanding map within the singular limit: The-
re exists a⋆ ∈ S

1 such that ha⋆(θ) ≡ H(a⋆,0)(0, θ) is a Misiurewicz-type map.

(H5) Parameter transversality: Let Ca⋆ denote the critical set of a Misiurewicz-type
map ha⋆ . For each x ∈ Ca⋆ ≡ C(ha⋆), let p = ha⋆(x), and let x(ã) and p(ã) denote
the continuations of x and p, respectively, as the parameter a varies around a⋆. The
point p(ã) is the unique point such that p(ã) and p have identical symbolic itineraries
under ha⋆ and hã, respectively. We have:

d

da
hã(x(ã))|a=a⋆ 6=

d

da
p(ã)|a=a⋆ .

(H6) Nondegeneracy at turns: For each x ∈ Ca⋆ , we have

d

dy
H(a⋆,0)(y, θ)|y=0 6= 0.
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(H7) Conditions for mixing: If J1, . . . , Jr are the intervals of monotonicity of a Misiu-
rewicz-type map ha⋆ , then:

(1) exp(λ0/3) > 2 (see the meaning of λ0 in Subsection 5.1) and

(2) if Q = (qim) is the matrix of all possible transitions between the intervals of
monotonicity of ha⋆ defined by:

{
1 if Jm ⊂ ha⋆(Ji)
0 otherwise,

then there exists N ∈ N such that QN > 0 (in other words, all entries of the
matrix QN , endowed with the usual product topology, are positive).

Remark 5.2. By (H2), identifying S
1 × {0} with S

1, we refer to H(a,0) the restriction ha :

S
1 → S

1 defined by ha(θ) = H(a,0)(θ, 0) as the singular limit of H(a,b).

5.4. Wang and Young’s reduction. The results developed in [26, 27] are about maps with
attracting sets on which there is strong dissipation and (in most places) a single direction of
instability. Two-parameter families H(a,b) have been considered and it has been proved that
if a singular limit makes sense (for b = 0) and if the resulting family of one-dimensional maps
has certain “good” properties, then some of them can be passed back to the two-dimensional
system (b > 0). They in turn allow us to prove results on strange attractors for a positive
Lebesgue measure set of a.

Conditions (H1)–(H7) are simple and checkable; when satisfied, they guarantee the exis-
tence of strange attractors with a package of statistical and geometric properties:

Theorem 5.3 ([26], adapted). Suppose the family H(a,b) satisfies (H1)–(H7). Then, for all
sufficiently small b ∈ B0, there exists a subset ∆ ⊂ [0, 2π] with positive Lebesgue measure such

that for a ∈ ∆, the map H(a,b) admits an irreducible strange attractor Ω̃ ⊂ Ω that supports

a unique ergodic SRB measure ν. The orbit of Lebesgue almost all points in Ω̃ has positive
Lyapunov exponent and is asymptotically distributed according to ν.

The map H(a,b) has exponential decay of correlations for Hölder continuous observables.

The theory may be extended for [0, 1]N−1 × S
1, with N ≥ 2 [28].

5.5. Periodic attractors in singular limits of families of rank-one maps. We now
introduce the combinatorics needed to prove Theorem 5.5. Let δ < δ0 be fixed (δ0 > 0 is
the constant coming from the definition of Misiurewicz-type map in Subsection 5.1). For

1 ≤ i ≤ q, let J (i) be a subinterval of C
(i)
δ , the connected component of Cδ containing the

critical point c(i), and assume that there exist n = n(i) and j = j(i) associated to J (i) such
that:

(1) hk(J (i)) ∩ Cδ = ∅ for all 0 < k < n and

(2) hn(J (i)) = C
(j)
δ .

In other words, we have:
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q: number of connected components of S1\Cδ (q ≥ 1);

n(i): number of interactions needed to J (i) to intersect the critical set;

j(i): label of the connected component of the critical set intersected by hn(i)(J (i)).

Now, for δ > 0 fixed, define the collection:

Jδ =
{(
J (i), n(i), j(i)

)
: 1 ≤ j ≤ q

}

We associate a directed graph P(Jδ) with Jδ as follows:

• the graph P(Jδ) contains q vertices v1, ..., vq representing c1, ..., cq ;

• there exists a directed edge from vi to vℓ in P(Jδ) if and only if j(i) = ℓ.

According to [15], we define the concept of completely accessible vertex.

Definition 6. We say that a vertex vi0 in P(Jδ) is completely accessible if for every 1 ≤ i ≤ q,
there exists a directed path from vi to vi0 in the graph P(Jδ).

For fixed λ < λ0/5 and α > 0 small, let ∆(λ, α) be the set of a ∈ S
1 for which the following

conditions hold for a critical point c ∈ C ≡ C(ha):

(CE1): dist(hna(c), C) ≥ min{δ0/2, exp(−αn)};

(CE2): |(hna)
′(ha(c))| ≥ 2b0δ0 exp(λn).

These assertions are usually called by (λ, α)–Collet-Eickmann conditions. Next lemma says
that, in the C3–topology, if a⋆ ∈ S

1 is such that ha⋆ ∈ E , we may “easily” find other values
close to a⋆ for which ha ∈ E .

Lemma 5.4 ([28], adapted). If a⋆ ∈ S
1 is such that ha⋆ ∈ E then

lim inf
r→0+

Leb1(∆(λ, α) ∩ [a⋆ − r, a⋆ + r])

2r
> 0,

where Leb1 denotes the usual one-dimensional Lebesgue measure.

Theorem 5.5 ([15], adapted). Let {ha : a ∈ S
1} be an admissible family and let a⋆ ∈ S

1

be such that ha⋆ ∈ E. Fix λ < λ0/5. Then for α < λ sufficiently small, there exists δ1 > 0
sufficiently small such that the following holds. If ha⋆ admits a collection Jδ such that the
directed graph P(Jδ) has a completely accessible vertex for some δ < δ1, then for every â ∈
∆(λ, α) sufficiently close to a⋆, there exists a sequence an converging to â such that for every
n ∈ N, the map han admits a periodic sink.

The periodic sink is superstable because it is a critical point for the singular limit (⇒ one
of the Lyapunov multipliers is very close to 0).
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6. Computation of the first return map

For ε > 0, in this section we denote by Bε(Oi) the set of points X ∈ V ⊂ R
2 such that

‖X −Oi‖ < ε. When the phase space of (2.2) is augmented with a S1 factor, the hyperbolic
saddles O1 and O2 of (2.1) become hyperbolic periodic solutions that we call by C1 and C2.
These hyperbolic periodic orbits persist for µ = (µ1, µ2) sufficiently small (in the Ck–norm,
k ≥ 3). By [25], under hypotheses (P1)–(P5), there exist ε0, µ0 > 0 and a µ-dependent
coordinate system (x, y, θ) defined on the open set Vi = Bε0(Oi) × S

1 such that for every
µ = (µ1, µ2) ∈ [0, µ0]× [0, µ0], we may write

Ci =
{(
x
(i)
1 , x

(i)
2 , θ(i)

)
: x

(i)
1 = x

(i)
2 = 0, θ(i) ∈ S

1
}

and the stable and unstable manifolds are locally flat:

W s(Ci) ∩ Vi ⊂
{(
x
(i)
1 , x

(i)
2 , θ(i)

)
: x

(i)
2 = 0, θ(i) ∈ S

1
}

and

W u(Ci) ∩ Vi ⊂
{(
x
(i)
1 , x

(i)
2 , θ(i)

)
: x

(i)
1 = 0, θ(i) ∈ S

1
}
.

For µ ∈ ]0, µ0]× ]0, µ0] define the cross sections:

In(C1) =
{(
x
(1)
1 , x

(1)
2 , θ(1)

)
: x

(1)
1 = ε0, −‖µ‖/C1 ≤ x

(1)
2 ≤ C1‖µ‖, θ(1) ∈ S

1
}

Out(C1) =
{(
x
(1)
1 , x

(1)
2 , θ(1)

)
: x

(1)
2 = ε0, 0 ≤ x

(1)
1 ≤ C ′

1‖µ‖, θ(1) ∈ S
1
}

In(C2) =
{(
x
(2)
1 , x

(2)
2 , θ(2)

)
: x

(2)
1 = ε0, −‖µ‖/C2 ≤ x

(2)
2 ≤ C2‖µ‖, θ(2) ∈ S

1
}

Out(C2) =
{(
x
(2)
1 , x

(2)
2 , θ(2)

)
: x

(2)
2 = ε0, −‖µ‖/C ′

2 ≤ x
(2)
1 ≤ C ′

2‖µ‖, θ(2) ∈ S
1
}

where the constants Ci > 0 are suitably chosen and C ′
i satisfy C

′
iµ0 ≪ ε0.

6.1. Magnified coordinates. For µ = (µ1, µ2) ∈ ]0, µ0]×]0, µ0], we make following change
of coordinates: (

‖µ‖ y
(1)
1 , ‖µ‖ y

(1)
2 , θ(1)

)
7→
(
x
(1)
1 , x

(1)
2 , θ(1)

)
(6.1)

and (
‖µ‖ y

(2)
1 , ‖µ‖ y

(2)
2 , θ(2)

)
7→
(
x
(1)
1 , x

(2)
2 , θ(2)

)
(6.2)

and therefore we obtain (see Table 2):

In(C1) =
{(
y
(1)
1 , y

(1)
2 , θ(1)

)
: y

(1)
1 = ε0/‖µ‖, −1/C1 ≤ y

(1)
2 ≤ C1, θ(1) ∈ S

1
}

Out(C1) =
{(
y
(1)
1 , y

(1)
2 , θ(1)

)
: y

(1)
2 = ε0/‖µ‖, 0 ≤ y

(1)
1 ≤ C ′

1, θ(1) ∈ S
1
}

In(C2) =
{(
y
(1)
1 , y

(1)
2 , θ(1)

)
: y

(2)
1 = ε0/‖µ‖, −1/C2 ≤ y

(2)
2 ≤ C2 , θ(2) ∈ S

1
}

Out(C2) =
{(
y
(1)
1 , y

(1)
2 , θ(1)

)
: y

(2)
2 = ε0/‖µ‖, −1/C ′

2 ≤ y
(2)
1 ≤ C ′

2, θ(2) ∈ S
1
}
.
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Set Notation Set Notation

In(C1)
(
y
(1)
1 , y

(1)
2 , θ(1)

)
In(C2)

(
y
(2)
1 , y

(2)
2 , θ(2)

)

Out(C1)
(
y
(1)
1 , y

(1)
2 , θ

(1)
)

Out(C2)
(
y
(2)
1 , y

(2)
2 , θ

(2)
)

Table 2. Coordinates and notation of the cross sections after the change of coordi-
nates (6.1) and (6.2).

For i ∈ {1, 2}, the sets In(Ci) may be divided as follows:

In(Ci) = In+(Ci) ∪̇ W s(Ci) ∪̇ In−(Ci),

according to the sign of the y
(i)
2 coordinate: positive (negative) for initial conditions in In+(Ci)

(In−(Ci)), zero for initial conditions in W s(Ci). We define analogously the sets Out+(C2)
and Out−(C2).

For i ∈ {1, 2}, we start by computing a normal form for (2.3) valid in Vi×] 0, µ0]
2 and the

associated local map near Ci, say

Loci : In(Ci)\W
s(Ci) → Out(Ci).

The notation ‖⋆‖
C

3 denote the C3–norm defined for maps defined in Vi×]0, µ0]
2. Recall that

Vi = Bε0(Oi)× S
1 is a genus two torus.

Proposition 6.1 ([25], adapted). System (2.3) may be written, in terms of coordinates(
y
(i)
1 , y

(i)
2 , θ(i)

)
on Vi × [0, µ0]

2, in the following form:





ẏ
(i)
1 =

(
−ci + ‖µ‖g1

(
y
(i)
1 , y

(i)
2 , θ(i);µ

))
y
(i)
1

ẏ
(i)
2 =

(
ei + ‖µ‖g2

(
y
(i)
1 , y

(i)
2 , θ(i);µ

))
y
(i)
2

θ̇(i) = ω

(6.3)

There exists K1 ∈ R
+ such that the maps g1, g2 are analytic on Vi×] 0, µ0] and satisfies

‖g1‖C3 , ‖g2‖C3 ≤ K1, i ∈ {1, 2}.

Notice that, by construction, V⋆ is a neighbourhood of Γ = L1 ∪L2 such that all solutions
starting at V⋆ remain inside V

⋆ for all positive t.

For µ = (µ1, µ2) ∈ ]0, µ0]
2, let q

(i)
0 =

(
y
(i)
1 (0), y

(i)
2 (0), θ(i)(0)

)
∈ V

⋆ ∩ In(Ci)\W
s(Ci) and

let

q(i)
(
t, q

(i)
0 ;µ

)
=
[
y
(i)
1

(
t, q

(i)
0 ;µ

)
, y

(i)
2

(
t, q

(i)
0 ;µ

)
, θ(i)

(
t, q

(i)
0 ;µ

)]
, t ≥ 0
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denote the unique solution of (6.3) with q(i)
(
0, q

(i)
0 ;µ

)
= q

(i)
0 (initial condition). Integrating

(6.3), we may write:





y
(i)
1

(
t, q

(i)
0 ;µ

)
= y

(i)
1 (0) exp

∫ t

0

[
−ci + ‖µ‖g

(i)
1

(
q(i)
(
s, q

(i)
0 ;µ

))
ds
]

y
(i)
2

(
t, q

(i)
0 ;µ

)
= y

(i)
2 (0) exp

∫ t

0

[
ei + ‖µ‖g

(i)
2

(
q(i)
(
s, q

(i)
0 ;µ

))
ds
]

θ(i)
(
t, q

(i)
0 ;µ

)
= θ

(i)
0 + ωt.

(6.4)

The expression (6.4) may be rephrased as:





y
(i)
1 (t, q0, µ) = y

(i)
1 (0) exp

(
t
[
−ci + w

(i)
1

(
t, q

(i)
0 ;µ

)])

y
(i)
2 (t, q0, µ) = y

(i)
2 (0) exp

(
t
[
ei + w

(i)
2

(
t, q

(i)
0 ;µ

)])

θ(i)(t, q0;µ) = θ
(i)
0 + ωt

(6.5)

where

w
(i)
j

(
t, q

(i)
0 ;µ

)
=

1

t

∫ t

0
‖µ‖ g

(i)
j

(
q(i)
(
s, q

(i)
0 ;µ

)
;µ
)
ds, for j ∈ {1, 2}. (6.6)

The next result establishes the C3–control of wj on Vi×]0, µ0]
2, i, j ∈ {1, 2}.

Proposition 6.2 ([25], adapted). For j ∈ 1, 2, there exists K2 ∈ R
+ such that the following

holds: for any T ⋆ > 1 such that all solutions of (2.3) that start in (In(Cj)\W
s(Cj)) ∩ V

⋆

remain in Vi up to time T ⋆, we have ‖wj‖C3 ≤ K2µ.

Let q
(i)
0 ∈ In(Ci)\W

s(Ci) and µ = (µ1, µ2) ∈ ]0, µ0]
2. The time of flight T ≡ T

(
q
(i)
0 ;µ

)

inside Vi may be determined explicitly by solving the equation:

ε0/‖µ‖ = y
(i)
2 (0) exp

(
T
(
ei + w

(i)
2

(
T, q

(i)
0 ;µ

)))
,

from where we deduce that

T ≡ T
(
q
(i)
0 ;µ

)
=

1

ei + w
(i)
2

(
T, q

(i)
0 ;µ

) ln

(
ε0

‖µ‖ y
(i)
2 (0)

)
.

Proposition 5.7 and Lemma 7.4 of [25] provide a precise control of T , in the C3–norm (check
the last paragraph of [25, Sec. 7]).

6.2. Local map. For i ∈ {1, 2}, from now on, let us omit the constant components of the
cross sections In+(Ci) and Out(Ci). More specifically, let us use the covers (see Table 2):

In(Ci) :
(
y
(i)
1 , y

(i)
2 , θ(i)

)
7→
(
y
(i)
2 , θ(i)

)

and

Out(Ci) :
(
y
(i)
1 , y

(i)
2 , θ

(i)
)
7→
(
y
(i)
1 , θ

(i)
)
.
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The local map Loc i near Ci sends
(
y
(i)
2 , θ(i)

)
∈ In+(Ci) to coordinates

(
y
(i)
1 , θ

(i)
)

in

Out(Ci) and it is given by:

y
(i)
1 =

ε0
‖µ‖

[
ε0

‖µ‖ y
(i)
2

]−δi

(6.7)

θ
(i)

= θ(i) +
ω

ei +w
(i)
2

ln

(
ε0

‖µ‖ y
(i)
2

)
,

where

δi ≡ δi

(
t, q

(i)
0 ;µ

)
=
ci + w

(i)
1

ei + w
(i)
2

> 1. (6.8)

These formulas will be simplified later. Note that lim
(µ1,µ2)→(0,0)

δi

(
t, q

(i)
0 ;µ

)
= ci/ei > 1.

A corresponding map can be constructed from In−(Ci) to Out(Ci), but we are interested

in trajectories following the heteroclinic cycle Γ in the positive y
(i)
2 -direction.

6.3. The global map. We assume that for µ = (µ1, µ2) ∈ ]0, µ0]
2, the flow generated by

(2.3) induces a map from Out(Ci) into In(Ci+1) satisfying conditions (P7a) and (P7b) –
see Figure 5. The global map Ψ1→2 : Out(C1) → In(C2) is given in the rescaled coordinates
defined in Subsection 6.1, by:

y
(2)
2 = b1y

(1)
1 +

µ1
‖µ‖

φ1

(
y
(1)
1 , θ

(1)
)

θ(2) = θ
(1)

+ ξ1 + µ1ψ1

(
y
(1)
1 , θ

(1)
)
,

(6.9)

where b1 6= 0, φ1

(
y
(1)
1 , θ

(1)
)
= Φ1

(
‖µ‖y

(1)
1 , θ

(1)
)
and ψ1

(
y
(1)
1 , θ

(1)
)
= Ψ1

(
‖µ‖y

(1)
1 , θ

(1)
)
, for

Φ1,Ψ1 are the maps defined in (P7a). Analogously, the global map Ψ2→1 : Out(C2) → In(C1)
is given in the rescaled coordinates by:

y
(1)
2 = b2y

(2)
1 +

µ2
‖µ‖

φ2

(
y
(2)
1 , θ

(2)
)

θ(1) = θ
(2)

+ ξ2 + µ2ψ2

(
y
(2)
1 , θ

(2)
)
,

(6.10)

for b2 6= 0, φ2

(
y
(2)
1 , θ

(2)
)
= Φ2

(
‖µ‖y

(2)
1 , θ

(2)
)
and ψ2

(
y
(2)
1 , θ

(2)
)
= Ψ2

(
‖µ‖y

(2)
1 , θ

(2)
)
, where

Φ2,Ψ2 are the maps defined in (P7b).

Remark 6.3. At this stage, we may need to slighly change the positive constants C1, C2, C
′
1

and C ′
2 in order that the global maps are well defined (this would correspond to “shrink” the

domain of definition of Ψ1→2 and Ψ2→1). We omit this technicality.
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0 2π
0

Out(C ) In(C  )

W  (C  )  s


1 2

 2




W  (C  )  u
 1 W  (C  )  s


  2

W  (C  )  u
 1

2π
Ψ1     2

0 2π
0

Out(C ) In(C  )

W  (C  )  s


2 1

 1




W  (C  )  u
 2 W  (C  )  s


  1

W  (C  )  u
 2

2π
Ψ2     1

Figure 5. Transition maps from Out(C1) to In(C2) (Case I) and from Out(C2) to
In(C1) (Case II). In Case I: Wu(C1) ∩W s(C2) = ∅. In Case II: Wu(C2) ⋔ W s(C1).
Double bars mean that the sides are identified.

6.4. First return maps to a cross section. For the flow of (2.3), the first return map to
Out+(C1),

F(µ1,0) = Loc 1 ◦Ψ2→1 ◦ Loc 2 ◦Ψ1→2 : Out+(C1) → Out(C1)

is then given by

F(µ1,0)

(
y
(1)
1 , θ(1)

)
= (F1,F2)

where

F1 = ε1−δ1
0 ‖µ‖δ1−1

[
b2ε

1−δ2
0 ‖µ‖δ2−1

[
b1y

(1)
1 +

µ1
‖µ‖

φ1

(
y
(1)
1 , θ

(1)
)]δ2

+
µ2
‖µ‖

φ2

(
y
(2)
1 , θ

(2)
)]δ1

F2 = θ
(1)

+ ξ1 + ξ2 + µ1ψ1

(
y
(1)
1 , θ

(1)
)
+ µ2ψ2

(
y
(2)
1 , θ

(2)
)
−

(
ω

e2 + ω
(2)
2

+
ω

e1 + ω
(1)
2

)
ln

(
‖µ‖

ε0

)

−
ω

e2 + ω
(2)
2

ln

[
b1y

(1)
1 +

µ1
‖µ‖

φ1

(
y
(1)
1 , θ

(1)
)]

−
ω

e1 + ω
(1)
2

ln

[
b2ε

1−δ2
0 ‖µ‖δ2−1

[
b1y

(1)
1 +

µ1
‖µ‖

φ1

(
y
(1)
1 , θ

(1)
)]δ2

+
µ2
‖µ‖

φ2

(
y
(2)
1 , θ

(2)
)]

.

The first return map to Out(C2), G(0,µ2) = Loc 1◦Ψ1→2◦Loc 1◦Ψ2→1 : Out(C2) → Out(C2)
is given by
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G(0,µ2)

(
y
(2)
1 , θ(2)

)
= (G1,G2)

where

G1 =
ε0
‖µ‖

[
b1

(
‖µ‖

ε0

)δ1
[
b2y

(2)
1 +

µ2
‖µ‖

φ2

(
y
(2)
1 , θ

(2)
)]δ1

+
µ1
‖µ‖

φ1

(
y
(1)
1 , θ

(1)
)]δ2

G2 = θ
(2)

+ ξ1 + ξ2 + µ2ψ2

(
y
(2)
1 , θ

(2)
)
+ µ1ψ1

(
y
(1)
1 , θ

(1)
)
−

(
ω

e1 + ω
(1)
2

+
ω

e2 + ω
(2)
2

)
ln

(
‖µ‖

ε0

)

−
ω

e1 + ω
(1)
2

ln

[
b2y

(2)
1 +

µ2
‖µ‖

φ2

(
y
(2)
1 , θ

(2)
)]

−
ω

e2 + ω
(2)
2

ln

[
b1ε

1−δ1
0 ‖µ‖δ1−1

[
b2y

(2)
1 +

µ2
‖µ‖

φ2

(
y
(2)
1 , θ

(1)
)]δ1

+
µ1
‖µ‖

φ1

(
y
(1)
1 , θ

(1)
)]

.

6.5. Simplified model for the return maps F(µ1,0) and G(0,µ2). In what follows we as-
sume, without loss of generality, that b1 = b2 = ε0 = 1. This assumption simplifies the
formulas and do not restrict the generality of the results.

Lemma 6.4. If b1 = b2 = ε0 = 1, then the first return map F(µ1,0) to Out(C1) may be written
as F(µ1,0) = (F1,F2) where:

F1 = µδ−1
1

[
y
(1)
1 + φ1

(
y
(1)
1 , θ

(1)
)]δ

F2 = θ
(1)

+ ξ + µ1ψ1

(
y
(1)
1 , θ

(1)
)
− ωKF ln (µ1)− ωKF ln

[
y
(1)
1 + φ1

(
y
(1)
1 , θ

(1)
)]

with δ = δ1δ2 (4), ξ = ξ1+ξ2 and KF = 1

e2+ω
(2)
2

+ δ2

e1+ω
(1)
2

, where ω
(1)
2 and ω

(2)
2 are the integrals

defined in (6.5).

Proof. First of all note that when µ1 > 0 and µ2 = 0, then ‖µ‖ = µ1. Using the results of
§6.4, the first return map F(µ1,0) = Loc1 ◦Ψ2→1 ◦ Loc2 ◦Ψ1→2 is given by

F(µ1,0)

(
y
(1)
1 , θ(1)

)
= (F1,F2)

where

F1 = µδ−1
1

[
y
(1)
1 + φ1

(
y
(1)
1 , θ

(1)
)]δ

.

4See equation (6.8) for the definitions of δ1 and δ2.
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Simplifying expression of F2 given in §6.4, we get:

F2 = θ
(1)

+ ξ1 + ξ2 + µ1ψ1

(
y
(1)
1 , θ

(1)
)
−

(
ω

e2 + ω
(2)
2

+
ω

e1 + ω
(1)
2

)
ln (µ1)

−
ω

e2 + ω
(2)
2

ln
[
y
(1)
1 + φ1

(
y
(1)
1 , θ

(1)
)]

−
ω

e1 + ω
(1)
2

ln

[
µδ2−1
1

[
y
(1)
1 + φ1

(
y
(1)
1 , θ

(1)
)]δ2]

= θ
(1)

+ ξ1 + ξ2 + µ1ψ1

(
y
(1)
1 , θ

(1)
)
−

(
ω

e2 + ω
(2)
2

+
ωδ2

e1 + ω
(1)
2

)
ln (µ1)

−

(
ω

e2 + ω
(2)
2

+
ωδ2

e1 + ω
(2)
2

)
ln
[
y
(1)
1 + φ1

(
y
(1)
1 , θ

(1)
)]

= θ
(1)

+ ξ + µ1ψ1

(
y
(1)
1 , θ

(1)
)
− ωKF ln (µ1)− ωKF ln

[
y
(1)
1 + φ1

(
y
(1)
1 , θ

(1)
)]

where ξ and KF are as stated. �

Lemma 6.5. If b1 = b2 = ε0 = 1, then the first return map G(0,µ2) to Out(C2)\W
s(C2) may

be written as G(0,µ2) = (G1,G2) where:

G1 = µδ−1
2

[
y
(2)
1 + φ2

(
y
(2)
1 , θ

(2)
)]δ

G2 = θ
(2)

+ ξ + µ2ψ2

(
y
(2)
1 , θ

(2)
)
− ωKG ln (µ2)− ωKG ln

[
y
(2)
1 + φ2

(
y
(2)
1 , θ

(2)
)]

where ξ = ξ1 + ξ2 and KG = 1

e1+ω
(1)
2

+ δ1

e2+ω
(2)
2

.

We omit the proof of Lemma 6.5 since it is similar to that of Lemma 6.4.

Remark 6.6. Using the integrals defined in (6.6), note that when µ1 = µ2 = 0, the formulas

ω
(1)
2 = ω

(2)
2 ≡ 0. For this case, we obtain formulas (3.1):

KF =
1

e2
+
δ2
e1

=
e1 + c2
e1e2

6= 0 and KG =
1

e1
+
δ1
e2

=
e2 + c1
e1e2

6= 0.

In order to improve the readability of the manuscript, we use the the terminology of Table
3 in the Sections 7–10:

7. Proofs of Theorems A and B

This case reports the scenario described by µ1 > 0 and µ2 = 0. This is why we use the
first return map F(µ1,0) 7→ Fµ (cf. Table 3).

7.1. The singular limit. Let k : R+ → R be the invertible map defined by

k(x) = −ωKF ln(x).

For µ0 < ε, define now the decreasing sequence (µn)n such that, for all n ∈ N, we have:
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F(µ1,0) 7→ Fµ Sections 7 and 8

G(0,µ2) 7→ Gµ Sections 9 and 10

Table 3. Notation for the next sections where µ1, µ2 ∈ ]0, ε].

(1) µn ∈ ]0, µ0[ and

(2) k(µn) ≡ 0 mod 2π.

Since k is an invertible map, for a ∈ S
1 fixed and n ≥ n0 ∈ N, let

µ(a,n) = k−1(k(µn) + a) ∈ ]0, µ0[. (7.1)

It is easy to check that:

k(µ(a,n)) = −ωKF ln(µn) + a = a mod 2π. (7.2)

Define F(a,µ(a,n)) as Fµ(a,n)
. The following proposition establishesC3–convergence to a singular

limit as n→ +∞.

Lemma 7.1. In the C3–norm, for a ∈ S
1, the following equality holds:

lim
n∈N

‖F(a,µ(a,n)) − (0, ha)‖ = 0

where 0 is the null map and

ha

(
θ
(1)
)
= θ

(1)
+ ξ + a− ωKF ln

[
φ1

(
0, θ

(1)
)]
. (7.3)

Proof. The proof of this lemma follows from the fact that k(µ(a,n)) = a mod 2π. The C3–
convergence is a consequence of Hypothesis (P2), Proposition 6.1 and Lemma 6.4. See also
Lemma 7.4 of [25]. �

Remark 7.2. The map ha
(
θ(1)
)
= θ(1) + ξ + a − ωKF ln

(
φ1(θ

(1))
)
≡ F1

(a,µ(a,n))

(
0, θ(1)

)
is a

Morse function with finitely many nondegenerate critical points (by Hypothesis (P7a)).

7.2. Verification of the hypotheses of the theory of rank-one maps. From now on,
our focus will be the sequence of two-dimensional maps

F(a,b) = F(a,µ(a,n)) with n ∈ N and a ∈ S
1 fixed. (7.4)

Since our starting point is an attracting heteroclinic cycle (for µ1 = µ2 = 0), the absorbing
sets defined in Subsection 2.4 of [26] follow from the existence of the attracting annular
region. Now, we show that the family of maps (7.4) satisfies Hypotheses (H1)–(H6) stated
in Subsection 5.3.
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(H1): The first two items are immediate. We establish the distortion bound (H1)(3)
by studying DF(a,µ(n,a)). Direct computation implies that for every µ ∈ (0, µ̃) and(
y
(1)
1 , θ

(1)
)
∈ Out(C1) ∩ V

⋆, one gets:

|detDF(a,µ(n,a))

(
y
(1)
1 , θ

(1)
)
| = |detLoc 1||detΨ2→1||detLoc 2||detΨ1→2|

where
∣∣∣detΨ1→2

(
y
(1)
1 , θ

(1)
)∣∣∣ =

∣∣∣∣
(
b1 +

∂φ1
∂y

)(
1 + µ1

∂Ψ1

∂θ(1)

)
− µ1

∂ψ1

∂y(1)
∂φ1

∂θ
(1)

∣∣∣∣
∣∣∣detLoc 2

(
y
(2)
2 , θ(2)

)∣∣∣ =

∣∣∣∣µ
δ2−1
1

(
y
(2)
2

)δ2−1
∣∣∣∣

∣∣∣detΨ2→1

(
y
(2)
1 , θ

(2)
)∣∣∣ =

∣∣∣∣
(
b2 +

∂φ2
∂y

)(
1 + µ1

∂Ψ2

∂θ(1)

)
− µ1

∂ψ2

∂y(2)
∂φ2

∂θ
(2)

∣∣∣∣
∣∣∣detLoc 1

(
y
(1)
2 , θ(1)

)∣∣∣ =

∣∣∣∣µ
δ1−1
1

(
y
(1)
2

)δ1−1
∣∣∣∣

Since
(
y
(2)
2

)δ2−1
,
(
y
(1)
2

)δ1−1
are positive and b1, b2 6= 0 (because c1, c2 6= 0 in (P6))

we conclude that there exists µ⋆ > 0 small enough such that:

∀µ ∈ ] 0, µ⋆ [,
∣∣∣detDF(a,µ(n,a))

(
y
(1)
1 , θ

(1)
)∣∣∣ ∈ ] k−1

1 , k1 [,

for some k1 > 1. This implies that hypothesis (H1)(3) is satisfied.

(H2) and (H3): It follows from Lemma 7.1 where b = µ(n,a) (see (7.4)).

(H4) and (H5): These hypotheses are connected with the family of circle maps

ha : S1 → S
1

defined in Remark 7.2. We now use the following result:

Proposition 7.3 ([27], adapted). Let Φ : S1 → R be a C3 function with nondegenerate
critical points. Then there exist L1 and δ such that of L ≥ L1 and Ψ : S1 → R is a
C3 map with ‖Ψ‖C2 ≤ δ and ‖Ψ‖C3 ≤ 1, then the family

ha(θ) = θ + a+ L(Φ(θ) + Ψ(θ)), a ∈ S
1

satisfies (H4) and (H5). If L is sufficiently large, then (H7) is also verified.

It is immediate to check that the family ha satisfies Properties (H4) and (H5).

(H6): The computation follows from direct computation using the expression of Fµ

(
y
(1)
1 , θ

(1)
)
.

Indeed, for each θ ∈ Ca⋆ (set of critical points of ha⋆ defined in (7.3)), we have

d

dy
F(a,µ(n,a))

(
y
(1)
1 , θ(1)

) ∣∣
y
(1)
1 =0

6= 0.

(H7): It follows from Proposition 7.3 if ω is large enough.

We apply the theory developed by [26] to prove Theorems A and B.
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7.3. Proof of Theorem A: attracting torus. The map ha(θ) = θ+ ξ+a−ωKF ln [φ1 (θ)]
is a diffeomorphism on the circle if and only if:

h′a(θ) > 0 ⇔ 1− ωKF
φ′1(θ)

φ1(θ)
> 0

(6.9)
⇔ 1− ωKF

Φ′
1(θ)

Φ1(θ)
> 0

⇔ ω × sup
θ∈S1

Φ′
1(θ)

Φ1(θ)
< 1/KF .

In particular, if ω × sup
θ∈S1

Φ′
1(θ)

Φ1(θ)
<

1

KF
, the map ha is a diffeomorphism on C (⇒ the flow of

(2.3) has an invariant torus). The circle C is attracting by Lemma 7.1 and it is not contractible
because it may be seen as the graph of a map. Theorem A is proved.

7.4. Proof of Theorem B: rank-one strange attractors. Since the family F(a,µ(n,a))

satisfies (H1)–(H7) then, for µ+ = min{ε, µ⋆} > 0 and ω ≫ 1, there exists a subset of
∆ ⊂ [0, µ+] with positive Lebesgue measure such that for µ ∈ ∆, the map Fµ admits a
strange attractor in

Ω ⊂
+∞⋂

m=0

Fm
µ (Out+(C1))

supporting a unique ergodic SRB measure ν. Denoting by Leb1 the one-dimensional Lebesgue
measure, from the reasoning of [25, Sec. 3], we have:

lim inf
r→0+

Leb1 {µ ∈ [0, r] ∩∆ : Fµ has a strange attractor with a SRB measure}

r
> 0. (7.5)

Theorem B is shown.

Technical remarks.

(1) Throughout the proof, it is essential that the domain of definition of Fµ is diffeomor-
phic to a cylinder. Otherwise the results of [25] cannot be applied.

(2) The SRB measure ν obtained in this result is global in the sense that almost ev-
ery point in Ω is generic with respect to ν. The orbit of Lebesgue almost all points
in Ω has positive Lyapunov exponent and is asymptotically distributed according to ν.

(3) The strange attractor Ω is non-uniformly hyperbolic, non-structurally stable and is
the limit of an increasing sequence of uniformly hyperbolic invariant sets.

8. Proof of Theorem C

In order to prove Theorem C, we use Theorem 5.5. We make use of the fact that the family
ha : S1 → S

1, a ∈ S
1, is admissible (see §7.2). In particular, there exists a⋆ ∈ S

1 such that
ha⋆ ∈ E (is a Misiurewicz map). In this section we assume the following technical hypothesis
on λ0 > 0 (this constant comes from the definition of Misiurewicz-type map of §5).
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(TH): exp(λ0) > 2.

Let Si be one of the connected components of C
(i)
δ \{c(i)}, i = 1, ..., q. This interval is

contained in one monotonicity interval of ha⋆ (see (H7)).

Lemma 8.1. Let a⋆ ∈ S
1 be such that ha⋆ ∈ E. Then, there exists m1 ∈ N such that the

following conditions hold:

(1) hka⋆(Si) ∩Cδ = ∅, for all k ∈ {1, ...,m1 − 1} and

(2) hm1
a⋆ (Si) ∩ Cδ 6= ∅.

Proof. Suppose, by contradiction, that hna⋆(Si) never intersect Cδ, for all n ∈ N. For C ⊂ S
1,

let us denote by diam(C) the maximum distance of points in C. Therefore, for y ∈ ha⋆(Si)
we have:

diam(hna⋆(Si)) ≥ diam(ha⋆(Si))m where m = inf
y∈ha⋆(Si)

diam((hn−1
a⋆ )′(y))

> diam(ha⋆(Si))b0δ exp(λ0(n − 1))

> Cb0δ exp(λ0(n − 1)), for some C > 0.

Since lim
n→+∞

Cb0δ exp(λ0(n− 1)) = +∞ and diam(Si) ≤ 2π, this is a contradiction. Then the

images of Si under ha⋆ should intersect Cδ. �

From Lemma 8.1, we may identify three disjoint possibilities:

(1) there exists j0 ∈ {1, ..., q} such that C
(j0)
δ ⊂ hm1

a⋆ (Si) ⇒ n(i) = m1.

(2) ]c(l), c(l+1)[⊂ hm1
a⋆ (Si) for some l ∈ {1, ..., q}. Since [0, 2π] ⊂ ha⋆(]c

(l), c(l+1)[) for all
l ∈ {1, ..., q} and ω ≫ 1 (remind that for ω ≫ 1 the map ha⋆ is mixing by Proposition

7.3), it follows that hm1
a⋆ (Si) ∩C

(j0)
δ 6= ∅ ⇒ n(i) = m1 + 1.

(3) none of the above.

Under the notation of Lemma 8.1, let L0 be one connected component of hm1
a⋆ (Si)\Cδ with

one endpoint at hm1
a⋆ (c(i)), i = 1, ..., q.

Lemma 8.2. If (TH) holds, there exists m2 ∈ N and a subinterval L1 of L0 such that

hka⋆(L1) ∩ Cδ = ∅ for all k < m2 and hm1
a⋆ (L1) = ]c(l), c(l+1)[ for some l ∈ {1, ..., q}.

Proof. The proof follows the same lines to those of Lemma 3.2 of [15]. �

Using Lemmas 8.1 and 8.2, for δ > 0 sufficiently small, the map ha⋆ admits a collection Jδ
such that all vertices of the directed graph P(Jδ) are completely accessible. By Theorem 5.5,
we may conclude that for every α > 0 sufficiently small and for every â ∈ ∆(λ, α) close to a⋆,
there exists a sequence (an)n∈N converging to â for which han admits a superstable sink. By
(7.2), we have

µn = exp

(
an − 2nπ

ωKF

)
, n ∈ N.
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It is easy to see that lim
n→+∞

µn = 0. Setting µ1,n = µn, n ∈ N, we obtain the sequence needed

to prove Theorem C. The way this superstable periodic orbit (which is a critical point of han)
is obtained has been sketched in Figure 6.

x

y

2π

2π
ha

x

y

2π

2π ha

Figure 6. Graph of the map ha for a = µn and ω ≫ 1 with q = 2 (number of
critical points). Indicated is a superstable periodic orbit of period 2.

9. Proof of Theorem D

This case reports the scenario described by Hypotheses (P1)–(P5) and (P6b)–(P7b)
with µ1 = 0 and µ2 > 0. We use the first return map G(0,µ2) 7→ Gµ (cf. Table 3). The
proof of Theorem D follows the arguments of [10, 18] and Appendices B and C of [24].
For the sake of completeness, we reproduce the main ideas of the proof. It was shown
in [18], that Λ(G(0,µ2)) contains infinitely many horseshoes near the heteroclinic network
which emerges near W u(C2) ⋔W s(C1). We describe the geometry of W u(C2) ∩ In(C1) and
W s(C1)∩Out(C2) for µ1 = 0 and µ2 6= 0. First, we introduce the notation depicted in Figure
7:

• (O1
2, 0) and (O2

2 , 0) with 0 < O1
2 < O2

2 < 2π are the coordinates of the two points
where W u

loc(C2) meets W s
loc(C1) in Out(C2) in the first turn around the cycle;

• (I11 , 0) and (I21 , 0) with 0 < I11 < I21 < 2π are the coordinates of the two points where
W u

loc(C2) meets W s
loc(C1) in In(C1) in the first turn around the cycle;

• (Ii1, 0) and (Oi
2, 0) are on the same trajectory for each i ∈ {1, 2} (also called 0-pulses).

By (P6b), for µ1 = 0 and small µ2 > 0, the curves W s
loc(C1) ∩ Out(C2) and W u

loc(C2) ∩
In(C1) are the graphs of periodic functions ηs and ηu, for which we make the following con-
ventions (see the meaning of C1 and C ′

2 in Subsection 6.1):

• W s
loc(C1) ∩Out(C2) is the graph of ηs : S

1 → [−1/C ′
2, C

′
2];

• W u
loc(C2) ∩ In(C1) is the graph of ηu : S1 → [−1/C1, C1];
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• η′u(I
1
1 ), η

′
s(O

1
2) > 0 and η′u(I

2
1 ), η

′
s(O

2
2) < 0.

The maximum value of ηu depends on µ and is attained at some point of the type:
(
y
(1)
2 , θ(1)

)
= (θ⋆(µ),M) with I11 < θ⋆ < I21 and 0 < M < C1 < 1.

We will need to introduce the definition of spiral on an annulus A parametrised by the
coordinates (y, θ) ∈ [0, C1]× S

1.

Definition 7. A spiral on the annulus A accumulating on the circle defined by y = 0 is a
curve on A, without self-intersections, that is the image, by the parametrisation (y, θ), of a
C1 map H : (b, c) → [0, C1]× S

1,

H(s) = (y(s), θ(s)) ,

such that:

i) there are b̃ ≤ c̃ ∈ (b, c) for which both θ(s) and y(s) are monotonic in each of the

intervals (b, b̃) and (c̃, c);

ii) either lim
s→b+

θ(s) = lim
s→c−

θ(s) = +∞ or lim
s→b+

θ(s) = lim
s→c−

θ(s) = −∞;

iii) lim
s→b+

y(s) = lim
s→c−

y(s) = 0.

Out(C )2In(C )1

W  (C  )u
 2

W  (C  )
s

 1
W  (C  )u

 2

W  (C  )s
 1

2

M M

∗
M

II O O1
1

1
1
2

2
2θ

δ

Figure 7. The set ηu =Wu(C2) ∩ In+(C1) is mapped by Loc2 ◦Ψ1→2 ◦ Loc1 into

a spiral accumulating on the circle defined by y
(2)
1 = 0 (ie the parametrisation of

Out(C2) ∩Wu(C2)). There is a sequence (µi)i for which the flow of Gµi
exhibits a

quadratic heteroclinic tangency.

It follows from the assumptions on the function θ(s) that it has either a global minimum
or a global maximum, and that y(s) always has a global maximum. The point where the map
θ(s) has a global minimum or a global maximum will be called a fold point of the spiral. The
global maximum value of r(s) will be called the maximum radius of the spiral.

Lemma 9.1 (Prop. 10 of [10], adapted). The map Loc2 ◦ Ψ1→2 ◦ Loc1 transforms the line
W u(C2)∩In

+(C1)
5 into a spiral on Out(C2) accumulating on the circle defined by Out(C2)∩

W u(C2) (i.e., y
(2)
1 = 0). This spiral has maximum radius M δ as µ tends to zero. It has a

fold point that turns around W u(C2) ∩Out+(C2).

5This line is part of the graph of ηu (red continuous line on the left image of Figure 7).
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The geometric idea of Lemma 9.1 is depicted in Figure 7. Since δ > 1 and M < 1, then
M δ < M < C1.

9.1. Proof of Theorem D(1): rotational horseshoes. For τ > 0 sufficiently small, define
a rectangle R ⊂ Out(C2) parameterized by [O1

2 − τ,O2
2 + τ ]×]0, τ ]. The map Gµ compresses

R in the vertical direction and stretches in the vertical direction, making the image infinitely
long towards both ends. In other words, the map Gµ folds and wraps R infinitely many
times. This is why Λ(Gµ) contains a horseshoe of infinitely many branches for all µ ∈ [0, ε].
When restricted to a compact set of Out+(C2) not containing W

u(C2), these horseshoes are
uniformly hyperbolic. All details of this proof may be found in [18, Th. 8]6

9.2. Proof of Theorem D(2): sequence of heteroclinic tangencies. The set ηs divides
Out(C2) in two connected components. By Lemma 9.1 and using the fact that M δ < M , the
fold point of Loc2 ◦Ψ1→2 ◦Loc1(W

u(C2)∩ In+(C1)) moves around Out(C2) at a speed (with
respect to the parameter µ) greater than the speed of ηs, from one connected component to the
other, as µ vanishes. Two points where the fold point of the spiral Loc2◦Ψ1→2◦Loc1(W

u(C2)∩
In+(C1)) intersects the graph of ηs come together and collapse at the heteroclinic tangency
associated to the two-dimensional manifolds W s(C1) and W u(C2). As µ goes to zero, it
creates a sequence (µi)i∈N of tangencies to the graph of ηs (see Figure 7). This tangency has
a quadratic form.

9.3. Proof of Theorem D(3): strange attractors. By [18] there is a horseshoe near the
0-pulses associated to W u(C2) ⋔ W s(C1). Hence, there are hyperbolic fixed points of the
first return map Gµ arbitrarily close to the 0-pulse; let Pi be one of these periodic orbits.

First, note that Pi is dissipative (the absolute value of the product of the Lyapunov mul-
tipliers is less that the unit). The unstable manifold of Pi crosses W

s(C1) and so its image
under Loc2 ◦Ψ1→2 ◦Loc1 accumulates on W u(C2) (some reasoning of Lemma 9.1); in partic-
ular, Loc2 ◦Ψ1→2 ◦Loc1(W

u(Pi)∩Out(C2)) contains infinitely many spirals in Out(C2), each
one having a fold point. Since the fold points turn around Out(C2) infinitely many times as
µ varies, this curve is tangent (quadratic tangency) to W s(Pi) at a sequence µi of values of
µ. Hence, there exists a sequence of parameter values for which the associated flow exhibits
non-degenerate heteroclinic tangencies formed by the invariant manifolds of the periodic or-
bits of the horseshoe. The existence of strange attractors of Hénon-type follows from [12].
Setting µ2,i = µi, i ∈ N, we obtain the sequence needed to prove Theorem D(3).

9.4. Proof of Theorem D(4): sequence of sinks. The existence of a sequence of param-
eter values for which the flow of (2.3) exhibits a sink is a result of the quadratic homoclinic
tangency associated to a dissipative point. The result follows from Gavrilov-Shilnikov [7] and
Newhouse [14] theories.

10. Proof of Proposition E

This case addresses the scenario described by µ1 = 0 and µ2 > 0. This is why we use the
first return map G(0,µ2) 7→ Gµ (cf. Table 3). Taking into account Lemma 6.5, the singular
cycle associated to Gµ has the form:

ha (θ) = θ + ξ + µ2ψ2 (θ)− a− ωKG ln [φ2 (θ)] , θ ∈ S
1, (10.1)

6The shift dynamics is what the authors of [18] call horseshoe in time.
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where

ξ = ξ1 + ξ2 and KG =
1

e1 + ω
(1)
2

+
δ1

e2 + ω
(2)
2

.

The meaning of a is the same of equation (7.2). Since φ2 has zeros, the singular limit has
logarithmic singularities. By [22, pp. 534], for ε > 0 small and ω ≫ 1, there exists a set
∆ ⊂ S

1 of a-values with Leb1(∆) > 0 such that if a ∈ ∆ and c ∈ C (set of critical points of
ha), the following inequality holds:

∀n ∈ N, |(hna)
′(ha(c))| > (ωKG)

λn. (10.2)

In addition lim
ω→+∞

Leb1(∆) = 2π. Since the recurrence of the critical points is almost inevitable

with respect to the Lebesgue measure ([22]), from (10.2) we may conclude that for almost all
points θ ∈ S

1, we have:

lim sup
n→+∞

ln |(hna)
′(θ)|

n
≥

lnω

log ε
+O(1) > 0,

where O(1) denotes the usual Landau notation. This proves Proposition E.

Remark 10.1. The nature of the strange attractor of Proposition E is different from that
of Theorem D. In the latter case, the strange attractor is of Hénon-type and its basin of
attraction is confined to a portion of the phase space near the homoclinicity. In the first
case, the strange attractor shadows the entire locus of a two-dimensional torus (defined by
W u(C2)). This strange attractor coexists with the heteroclinic pulses whose existence is
guaranteed in [18].

11. Proof of Theorem F

We are looking for homoclinic tangencies to C1. In Out(C1), the local unstable manifold
of C1 is parametrised by (

0, θ
(1)
)
, θ

(1)
∈ S

1

The expression for Ψ2→1 ◦ Loc 2 ◦Ψ1→2(W
u
loc(C1) ∩Out(C1)) ⊂ In(C1) is given by:

y
(1)
2 = b2

µδ21
‖µ‖

φ1

(
0, θ(1)

)δ2
+

µ2
‖µ‖

φ2

(
y
(2)
1 , θ(2)

)
(11.1)

where

y
(2)
1 =

µδ21
‖µ‖

φ1

(
0, θ(1)

)δ2

θ
(2)

= θ
(1)

+ ξ1 + µ1ψ1

(
0, θ

(1)
)
−

ω

e2 + w
(2)
2

ln
(
µ1φ1

(
0, θ

(1)
))

There is a homoclinic cycle to C1 when y
(1)
2 = 0 (parameterization of the local stable

manifold of C1). Using (11.1), we get

Hom: b2µ
δ2
1 C1 + µ2C2 = 0 ⇔ |µ2| = C|µ1|

δ2 , C,C1, C2 ∈ R
+.

The invariant manifolds associated to C1 develop a tangency along the curve Hom, and
above this tangency (in the parameter space) there are transverse heteroclinic connections and
thus a heteroclinic tangle. In the convex region defined by the curve Hom, the set W u(C1)
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does not play any longer the role of separatrix. A plausible bifurcation diagram is depicted
in Figure 3 and an interpretation for the different regions follows:

I → Attracting two-dimensional torus if ω ≈ 0;

I → Rank-one attractors if ω ≫ 1;

II → Dynamical structures associated to the torus-breakdown scenario when ω ≈ 0

and heteroclinic bifurcations;

III → Heteroclinic tangles; pulses; “large” strange attractors if ω ≫ 1.

Dynamical properties of these three regions are discussed in Section 13.

12. Rewriting Properties (P7a) and (P7b) with Melnikov integrals

We start with the Melnikov functions for system (2.2), explicitly defined for the unperturbed
heteroclinic solutions ℓ1 and ℓ2 respectively. Let:

τ1(t) =
1

|ℓ′1(t)|
l′1(t) and τ2(t) =

1

|ℓ′2(t)|
l′2(t)

be the unit tangent vectors of the heteroclinic solutions at ℓ1 and ℓ2 respectively. It is easy
to check that:

lim
t→−∞

τ1(t) = u(e1), lim
t→+∞

τ1(t) = u(c2),

and

lim
t→−∞

τ2(t) = u(e2), lim
t→+∞

τ2(t) = −u(c1).

For i ∈ {1, 2}, let τ⊥i (t) denote a unit vector that is perpendicular to τℓi(t) and
(
τ⊥ℓi (t)

)T
its transpose. The splitting of the stable and unstable manifolds on a global transverse cross
section Σ for the perturbed system is measured by the Melnikov function:

Wi(θ) =

∫ +∞

−∞

〈
(P (ℓi(t), t+ θ), Q(ℓi(t), t+ θ)), τ⊥i (t)

〉
exp

(
−

∫ t

0
Ei(s)ds

)
dt, θ ∈ S

1

where 〈., .〉 denotes the usual inner product7 in R
2 and

Ei(t) = τ⊥ℓi (t)




∂g1
∂x

(ℓi(t))
∂g1
∂y

(ℓi(t))

∂g2
∂x

(ℓi(t))
∂g2
∂y

(ℓi(t))



(
τ⊥i (t)

)T
∈ R.

It is easy to check that

lim
t→−∞

E1(t) = e1 and lim
t→+∞

E1(t) = c2

and

lim
t→−∞

E2(t) = e2 and lim
t→+∞

E2(t) = e1.

According to [3, 8, 11], Hypotheses (P7a) and (P7b) main be rephrased as:

7This inner product corresponds to the wedge product ∧ defined by Melnikov [11] (see also [8]).
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(P7a) If µ1 > 0 and µ2 = 0, then min
θ∈S1

W1(θ) and max
θ∈S1

W1(θ) have the same sign.

(P7b) If µ2 > 0 and µ1 = 0, then min
θ∈S1

W2(θ) < 0 < max
θ∈S1

W2(θ) and if W2(θ0) = 0 for some

θ0 ∈ S
1, then W ′

2(θ0) 6= 0.

13. Rank-one strange attractors and heteroclinic tangles:

a short discussion

When a planar heteroclinic cycle associated to two dissipative saddles is periodically per-
turbed, the perturbation either pulls the stable and the unstable manifolds of the equilibria
completely apart, or it creates chaos through a heteroclinic tangle. In both (exclusive) cases,
the singular limit induced by the perturbed equation (at least C4) in the extended phase
space may be written as a family of two-dimensional maps. The singular limit cycle is a
one-dimensional map of the form:

θ 7→ θ + a+ ωK ln |Φ(θ)|, θ ∈ S
1

where:

(1) K > 0 depends on the eigenvalues of the derivative of the original vector field at the
hyperbolic equilibria;

(2) ω is the frequency of the non-autonomous perturbation;

(3) a ∈ S
1 (depends on the magnitude of the forcing);

(4) Φ : S1 → R is C3 and periodic;

(5) Φ′(θ) 6= 0 if Φ(θ) = 0 and Φ′′(θ) 6= 0 if Φ′(θ) = 0.

Usually, the map Φ may be seen as the classical Melnikov function.

For system (2.3), if µ1 > 0 and µ2 = 0, the stable and unstable manifolds of the perturbed
saddles are pulled completely apart by the forcing function, implying Φ(θ) 6= 0 for all θ ∈ S

1.
In this case, we obtain an attracting two-dimensional torus or strange attractors, to which
the theory of rank-one maps may be applied. Here, the parameter ω plays an important
role to understand how “large” strange attractors come from the destruction of an attracting
two-dimensional torus.

If µ1 = 0 and µ2 > 0, the two-dimensional stable and unstable manifolds of the saddles
intersect (⇔ Φ(θ) = 0 has solutions) and strange attractors are associated to a heteroclinic
tangle. As ω gets larger, the contracting region gets smaller and the dynamics is more
and more expanding in most of the phase space. The recurrence of the critical points is
inevitable, and infinitesimal changes of dynamics occur when a is varied. The logarithmic
nature of the singular set turns out to present a new phenomenon which is unknown to occur
for Misiurewicz-type maps. Proposition E states that strange attractors with nonuniform
expansion prevails provided ω ≫ 1. When µ1, µ2 6= 0, we also proved that, under conditions
(P1)–(P7), the existence of heteroclinic tangles is a prevalent phenomenon for the dynamics
of (2.3).
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The techniques we have used to prove the main results follow the spirit of previous results
in the literature. In Table 4, we give an overview of the results and the contribution of the
present article (in blue) for the dynamics of (2.3).

Configuration Wu(C1) ⋔W s(C2) Wu(C1) ∩W s(C2) = ∅

Case 1 Case 2 (Novelty of this article)
Heteroclinic tangles Region with torus if ω ≈ 0

Wu(C2) ⋔ W s(C1) (Horseshoes, tangencies, sinks Region with rank-one attractors if ω ≫ 1
Newhouse phenomena, pulses) Superstable sinks
[5, 10, 18] Heteroclinic tangles prevail

Case 3 Case 4
Region with torus if ω ≈ 0

Wu(C2) ∩W s(C1) = ∅ Similar to Case 2 Region with rank-one attractors if ω ≫ 1
[13]

Table 4. Overview of the results in the literature and the contribution of the present
article (in blue) for the dynamics of (2.3).

Strange attractors found in Theorems B and D are qualitative different. In the first case,
they are rank-one strange attractors; if ω ≫ 1, they are not confined to a small portion of the
phase space – their basin of attraction spreads around the whole “torus-ghost” (annulus in
the cross section Out(C1)). According to [4], they are called “large” strange attractors. On
the other hand, in Theorem D, Hénon-type strange attractors are confined to a small portion
of the phase space near the homoclinic tangency. In this case, the study of properties of the
strange attractors is more involved due to the existence of infinitely many pulses which cannot
be disconnected from the attractor (there are infinitely many points within W s(O1) where
the first return map is not well defined). This difference justifies the title of this manuscript.
A lot more needs to be done before these two types of chaos are well understood.

The sinks of Theorems C and D(3) have similarities but they have been obtained in a
different way. While in the first case, sinks are due to critical periodic points of the singular
cycle [15], in the second, sinks are a consequence of Gavrilov-Newhouse phenomena [7, 14].

Finally, we would like to point out that in Case 4, the non-wandering set associated to
Γ has one, two or three attracting tori according to the relative position of W u(C1) and
W u(C2). In the same spirit of [5], in Figure 8, we have summarized all possibles of invariant
curves that can appear in the unfolding of system (2.3), for µ1 6= 0 and µ2 = 0. In these
cases, Theorems A, B and C still hold with minor variations. Finding an explicit example
where Hypotheses (P1)–(P7) are met is the next ongoing research.
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Appendix A. Notation

In Table 5, we list the main notation for constants and auxiliary functions used in this
paper in order of appearance with the reference of the section containing a definition.
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Notation Definition/meaning Section

V Open region of R2 where equation (2.1) is well defined §2.1

O1, O2 Saddle-equilibria of the equation (2.1) §2.1

ℓ1, ℓ2 Connections from O1 to O2 and from O2 to O1 §2.1

A Region limited by the heteroclinic cycle ℓ1 ∪ ℓ2 §2.1

V⋆ Inner basin of attraction of the heteroclinic cycle ℓ1 ∪ ℓ2 §2.1
(absorbing domain)

V V × S
1 – open region where equation (2.3) is defined §2.2

C1,C2 Saddle periodic solutions of the equation (2.3) §2.2

Γ Heteroclinic cycle associated to C1,C2 §2.2

A A× S
1 §2.2

V
⋆ V⋆ × S

1 §2.2

L1,L2 Connections from C1 to C2 and from C2 to C1 §2.2

V1, V2 Hollow cylinders around C1 and C2 §2.2

A ≡V⋆ B The manifolds A and B coincide within V
⋆ §2.3

F(µ1,µ2) ≡ Fµ First return map to Out(C1) §6.5 and Table 3

G(µ1,µ2) ≡ Gµ First return map to Out(C2) §6.5 and Table 3

Table 5. Notation.
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