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Abstract. We provide examples of vector fields on (C3, 0) admitting a formal first integral but
no holomorphic first integral. These examples are related to a question raised by D. Cerveau
and motivated by the celebrated theorems of Malgrange [7] and Mattei-Moussu [9].

1. Introduction

A celebrated theorem due to Mattei and Moussu [9] states that a holomorphic codimension 1
foliation admitting a formal first integral necessarily possesses a holomorphic first integral as
well. The theorem and its proof completely clarify the relationship between formal and holo-
morphic first integrals for codimension 1 foliations, whereas the general investigation of the
existence of these first integrals also includes an influential work of Malgrange [6]. For higher
codimension foliations, the relationship between formal and holomorphic first integrals remains
quite mysterious. In this context, D. Cerveau naturally asked whether a holomorphic vector
field X defined on a neighborhood of the origin of C3 and admitting one - or two - formal first
integral must possess holomorphic first integrals as well. The goal of this paper is to show
that the existence of a single formal first integral is not enough to guarantee the existence of
holomorphic ones and this will be done by means of the following theorem:

Theorem 1.1. Consider the family Xa,b,c of vector fields on C3 defined by

(1) Xa,b,c = x2 ∂

∂x
+ (1 + ax)

[
y1

∂

∂y1
− y2

∂

∂y2

]
+ bxy2

∂

∂y1
+ cxy1

∂

∂y2
,

where a, b, and c are complex parameters. Assume that the parameters are such that

cos(2πa) 6= cos(2π
√
a2 + bc) .

Then the vector field Xa,b,c possesses no (non-constant) holomorphic first integrals, albeit it does
possess formal first integrals.

In particular, the vector field X1,1,1 obtained by setting a = b = c = 1 admits a formal first
integral but no holomorphic one. The existence of these examples was certainly expected, given
the transcendental behavior of singular foliations, but we highlight the simplicity of its expres-
sion which suggests that this might be a fairly common phenomena in applications. The issue
is therefore also related to Malgrange’s theorem in [7] in that they confirm that some (strong)
additional assumptions are, in fact, needed (see below for further information). As a side note,
the simple nature of the examples provided by Theorem 1.1 also bears some similarities with
certain results quoted in the survey article [11] by Stolovitch: many normalization results for
“simple” vector fields having formulas not too different from Xa,b,c are presented under some
additional geometric condition (for example “volume-preserving” or “hamiltonian”). We might
wonder what is the influence of these conditions on the problem discussed here. Conversely, it
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is also fair to wonder if the (potential) ability to turn formal first integrals into holomorphic
ones may shed new light in more general normal form problems.

As a matter of fact, our observation of the vector field (1) is a by-product of our study of
the global dynamics of the Airy and Painlevé I and II equations [3]. Our original motivation
was the local analysis of the saddle-node singularity associated with the vector-field

YA = −1

2
x4 ∂

∂x
+

(
z − 1

2
x3y

)
∂

∂y
+ (y − x3z)

∂

∂z
,

which appears in a convenient birational model for the compactified Airy equation. The formal
normal form of YA as well as the corresponding Stokes phenomenon can accurately be computed
with the same technique detailed in Section 2 for the vector field Xa,b,c. In doing so, there follows
that YA admits a first integral in the field of fractions of formal power series, i.e., there is a
formal first integral of the form F/G with F, G ∈ C[[x, y, z]]. Yet YA has no holomorphic or
meromorphic first integral. Basically, the difference between the example provided by YA and
Cerveau’s general questions lies in the fact the “formal first integral” of the vector field YA
has a “meromorphic” nature rather than a more standard power series representation without
negative terms. In turn, there are deep differences between first integrals of “holomorphic”
and of “meromorphic” natures as already underlined in the topological context. In fact, in
codimension 1, Mattei-Moussu [9] theorem asserts that first integrals are topological invariants
and the existence of formal first integrals implies the existence of holomorphic ones. On the
other hand, the existence of meromorphic first integrals is not a topological invariant already
in the two-dimensional ambient case, cf. [4, 8, 10]. Similarly, in codimension 2 complete
integrability in the holomorphic sense is not a topological invariant either [10]. From this point
of view, the vector-field YA falls genuinely short of shedding light into Cerveau’s questions due
to the nature of its formal first integral.

It is now interesting to investigate whether a holomorphic vector field X defined on a
neighborhood of the origin of C3 and admitting two formal first integrals F1, F2 such that
dF1∧dF2 6≡ 0, necessarily admits at least one holomorphic first integral. The best result in this
direction, as far as we are aware of, remains the previously mentioned theorem of Malgrange
[7] concerning Pfaffian systems in arbitrary dimensions. More precisely, given a codimension r
foliation defined in some open set of Cn and generated by r one-forms Ω = {ω1, . . . , ωr}, denote
by S(Ω) the singular locus of Ω, that is, the set of points where the r-form ω1 ∧ . . . ∧ ωr is
identically zero. We say that Ω is integrable (respectively formally integrable) at x ∈ Cn, if
there exists r holomorphic function germs f1, . . . , fr ∈ Ox (respectively r formal power series in

Ôx) such that the module generated by {df1, . . . , dfr} coincides with Ω · Ox (respectively, with

Ω · Ôx). In [7], Malgrange shows that if S(Ω) has codimension 3, or if Ω is formally integrable
and S(Ω) has codimension 2, then Ω is integrable. As mentioned, these hypotheses are generally
quite strong when we consider a Pfaffian system obtained as the dual of a vector field.

The proof of Theorem 1.1 relies on the standard theory of linear systems (normal forms
and Stokes phenomena among others). We refer the reader to [5, §16 and 20] and references
there-within (or [1, 12]) for an introduction to the methods used in this work.
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through the project “Complex dynamics of group actions, Halphen and Painlevé systems”.
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2. Proof of Theorem 1.1

Let us begin our approach to Theorem 1.1 by noticing that the vector field Xa,b,c is associated
with the time-dependent linear differential system

(2) x2 dy

dx
=

[
1 + ax bx
cx −1− ax

]
y, y =

[
y1

y2

]
.

Following classical terminology of linear systems, the system above has a non-resonant irregular
singular point of Poincaré rank 1 at x = 0, see for example [5, § 20]. Note that this differential
system is in the so-called Birkhoff normal form: the system is well defined for all x ∈ CP1 and has
only two singular points, namely x = 0 and x =∞, see e.g. [5, § 20B]. In turn, the singularity
at x = ∞ is a Fuchsian one. In other words, the system has a simple pole at x = ∞, see e.g.
[5, Definition 16.9]. In addition, since the linear system (2) is non-resonant, it can formally be
transformed into a diagonal linear system by means of the standard Poincaré-Dulac method
[5, Theorem 20.7]. Whereas the resulting (formal) power series is divergent, Sibuya’s Theorem
asserts that it is Borel 1-summable in all directions x ∈ eiαR>0 with exception of the singular
directions, namely the directions corresponding to α ∈ πZ. The preceding is made accurate by
the lemma below:

Lemma 2.1. There exists a formal linear change of coordinates having the form y = T̂ (x)u,

with T̂ (0) = I, which conjugates system (2) to the (diagonal) linear system

(3) x2du

dx
=

[
1 + ax 0

0 −1− ax

]
u, u =

[
u1

u2

]
.

Moreover, for every α ∈ ]0, π[ ∪ ]π, 2π[, there exists a holomorphic transformation y = Tα(x)u
conjugating systems (2) and (3) and satisfying the following conditions:

(a) Tα(x) is analytic on the open sector of opening angle π bisected by the half-line eiαR>0.
(b) Tα(x) and Tβ(x), with α < β, coincide on the intersection of the corresponding half

planes provided that the interval ]α, β[ does not contains an integral multiple of π.

(c) Tα(x) is asymptotic to T̂ (x).

Proof. As previously stated, the existence of a formal change of variables conjugating sys-
tems (2) and (3), as well as its analytic nature on the indicated sectors, goes back to classical
results by Birkhoff and Malmquist (or more general versions by Hukuhara, Turittin, and Sibuya,
see [5, Theorems 20.7 and 20.16]). Therefore it only remains to check that the diagonal matrix
appearing in (3) has the indicated form. To do this, note that the formal invariants of the
initial system (2) can be read off a suitable finite jet of the eigenvalue functions associated with
the matrix [

1 + ax bx
cx −1− ax

]
.

Clearly these eigenvalue functions are equal to ±
√

(1 + ax)2 + bcx2. Now, since the Poincaré

rank of the singularity is 1, only the 1-jet of the eigenvalue function is a formal invariant, c.f.
[5, Proposition 20.2]. Therefore ±(1 + ax) are the only formal invariants of the system. This
completes the proof of the lemma. �

Next, note that the system (3) clearly admits

(4) U(x) =

[
xae−1/x 0

0 x−ae1/x

]
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as fundamental (matrix) solution. Consider one of the two singular directions, namely β = 0 or
β = π. Let Tβ+ and Tβ− denote, respectively, the Borel sums on the “left” and on the “right”
of the fixed singular direction β. Then, there is a constant matrix Sβ satisfying

Tβ−(x) = Tβ+(x)U(x)SβU(x)−1 ,

for x ∈ eiβR>0. The matrices S0 and Sπ are called the Stokes matrices and they have the
general forms

S0 =

[
1 s0

0 1

]
and Sπ =

[
1 0
sπ 1

]
,

for suitable constants s0, sπ ∈ C, see e.g. [5, § 20G]. In the particular case in question, explicit
formulas for s0 and sπ are known, see [2, pages 86 and 87]. However, for our purposes, it suffices
to prove that:

Lemma 2.2. The product s0sπ 6= 0 if and only if cos(2πa) 6= cos(2π
√
a2 + bc).

Proof. The lemma will be proved by explicitly computing the monodromy matrix M associated
with the system (2) around x = 0 in two different ways: first we compute the matrix directly
around x = 0 by using the Stokes matrices and then we will compute the monodromy (holo-
nomy) around x = ∞ which is a Fuchsian singular point. The monodromy around x = ∞ is
the inverse of the monodromy matrix M since the system in question has only two singular
points (corresponding to x = 0 and to x =∞). The result will then easily follow by computing
the trace of M in each situation.

Claim. The monodromy matrix around the origin is conjugate to M = S0NSπ, where

N =

[
e2πia 0

0 e−2πia

]
is the “formal monodromy” of the fundamental matrix solution U(x) introduced in Equation (4).
Proof of the claim. The statement follows from the sequence of equations

T0+(e2πix)U(e2πix) = Tπ−(e2πix)U(e2πix) = Tπ+(e2πix)U(e2πix)Sπ

= T2π−(e2πix)U(e2πix)Sπ = T0−(x)U(x)NSπ = T0+(x)U(x)S0NSπ ,

where item (b) of Lemma 2.1 has implicitly been used. �
Since M = S0NSπ, it immediately follows that

trM = 2 cos(2πa) + e−2πias0sπ.

Let us now compute the matrix M by looking at the singular point x =∞. Let v = 1/x so
that the system (2) becomes

(5) v
dy

dv
=

[
a+ v b
c −a− v

]
y = A(v)y ,

and note that v = 0 corresponds to x = ∞. Denote by λ1 and λ2 the eigenvalues of of the
matrix A(0). Naturally the matrix A(0) is the so-called residue matrix of system (5). Clearly
these two eigenvalues are symmetric and, up to relabeling, we set λ1 = λ and λ2 = −λ where
λ =
√
a2 + bc. In this case, the system is non-resonant if 2λ /∈ Z, see e.g. [5, Definition 16.12].

In turn, provided that there is no resonance, the system is locally holomorphically equivalent
to the Euler system tv′ = A(0)v, see e.g. [5, Theorem 16.16]. In turn, the monodromy matrix
around v = 0 is conjugate to the exponential of 2πiA(0) and the latter matrix is conjugate to
the inverse of the initial monodromy matrix M . Since traces of matrices remain invariant under
conjugations, the preceding finally yields

trM = 2 cos(2πλ) .



A REMARK ON FIRST INTEGRALS OF VECTOR FIELDS 5

In fact, this last formula holds whether or not the system (5) is resonant as it immediately
follows from the continuity of trM with respect to the parameters a, b, and c (the set of
non-resonant systems is open and dense). Lemma 2.2 promptly follows. �

Next, note that the the diagonal differential system (3) is naturally equivalent to the following
family of vector fields on C3:

(6) Xa = x2 ∂

∂x
+ (1 + ax)

[
u1

∂

∂u1
− u2

∂

∂u2

]
,

where a ∈ C. Clearly vector fields in the family Xa admits the function h(u1, u2) = u1u2 as a
holomorphic first integral. Furthermore, we have:

Lemma 2.3. The function h(u) = u1u2 is a primitive first integral of Xa in the following

sense: if F̂ = F̂ (x, u1, u2) ∈ C[[x, u]] is a formal first integral of Xa, then there exists a formal

power series Ĝ ∈ C[[z]] such that F̂ = Ĝ ◦ h.

Proof. Assume that F̂ = F̂ (x, u1, u2) is a formal first integral of Xa and consider a Taylor
expansion of the form:

(7) F̂ (x, u1, u2) =
∞∑
j=0

xj f̂j(u1, u2) =
∞∑
j=0

xj
∑
k∈Z

uk1 f̂j,k(u1u2) .

Claim. We have F̂ (x, u1, u2) = f̂0,0(u1u2) + o(xn) for all n ∈ N.
Clearly the lemma is an immediate consequence of the claim so that it suffices to prove the

claim.
Proof of the Claim. We argue by induction. Assume the claim holds for n = n0 (where the
possibility of having n0 = 0 is not excluded). Since F is a formal first integral of Xa, a direct
computation yields

0 = d0F̂ .Xa = xn0

(∑
k∈Z

kuk1 f̂n0,k(u1u2)

)
+ o(xn0+1) .

By comparing monomial degrees, there follows that all the functions f̂n0,k(·) must vanish iden-

tically provided that k 6= 0. Thus the power series expansion (7) of F̂ takes on the form

F̂ = f̂0,0(u1u2) + xn0 f̂n0,0(u1u2) +
∞∑

j=n0+1

xj
∑
k∈Z

uk1 f̂j,k(u1u2) .

In turn, this refined formula for F̂ yields

0 = d0F̂ .Xa = xn0+1

(
n0f̂n0,0(u1u2) +

∑
k∈Z

kuk1 f̂n0+1,k(u1u2)

)
+ o(xn0+2) .

Therefore also f̂n0,0(·) must vanish identically unless n0 = 0. Hence F̂ is actually of the form

F̂ (x, u1, u2) = f̂0,0(u1u2) + o(xn0+1) which establishes the induction step. The proof of the
claim is complete and so is the proof of the lemma. �

Remark 2.4. The computation carried out in the proof of Lemma 2.3 is related to a qualitative
issue that is worth pointing out. For this, note first that the general solution of the diagonal
system (3) has the form {

u1(x) = c1e
−1/xxa

u2(x) = c2e
1/xx−a
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for suitable constants c1, c2 ∈ C. It follows that for any formal first integral F̂ = F̂ (x, u1, u2)

of Xa, the composition F̂ (x, c1e
− 1

xxa, c2e
1
xx−a) must be a constant, and hence must factor

through h due to the presence of the essential singular point arising from e
1
x .

We are now able to provide the proof of Theorem 1.1.

Proof of Theorem 1.1. Owing to Lemma 2.1, the vector field Xa,b,c has a formal first integral

f̂ = f̂(x, y1, y2) which is obtained out of the first integral h(u1, u2) of Xa by means of the
equation

f̂(x, T̂ (x)u) = h(u) .

Furthermore, according to Lemma 2.3, every other formal first integral of Xa,b,c must formally

factor through f̂ . The proof of Theorem 1.1 is then reduced to showing that if a (non-constant)

first integral of Xa,b,c is holomorphic then we necessarily have cos(2πa) = cos(2π
√
a2 + bc).

Let us then assume there is a (non-constant) holomorphic first integral f for the vector field
Xa,b,c defined as in (1). It follows from Lemmas 2.1 and 2.3 the existence of a formal series

Ĝ ∈ C[[z]] such that f(x, T̂ (x)u) = Ĝ◦h, where u = (u1, u2). Since the formal series on the left
side is 1-Borel summable in the variable x, while the right hand side is independent of x, we
conclude that Ĝ ◦ h is an analytic function on u = (u1, u2). We set Ĝ ◦ h = g(u). In particular,
there follows that fα(x, Tα(x)u) = g(u), where fα(x, y) denotes a sectorial Borel sum. We thus
obtain that fβ+ = fβ− for both singular directions β = 0 and β = π, where fβ+ (resp. fβ−)
stands as usual for the Borel sum on the “left” (resp. “right”) of the fixed singular direction β.
Therefore we have

g(u) =fβ−(x, Tβ−(x)u) = fβ+(x, Tβ+(x)U(x)SβU(x)−1u)

=g(U(x)SβU(x)−1u) .

In other words, the function g(u) is invariant by the Stokes operators

S : u 7→ U(x)SβU(x)−1u .

However, it follows from direct computation that the function g(u), which factors through
h(u) = u1u2, is invariant by this operator only if sβ = 0. Hence, the existence of the holomorphic
first integral f implies that the product s0sπ equals zero so that Lemma 2.2 ensures that we
must have cos(2πa) = cos(2π

√
a2 + bc). This ends the proof of Theorem 1.1. �
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