

Centro de **Matemática** Universidade do Porto

Seminar on Semigroups, Automata and Languages

Some remarks on F-inverse monoids

Karl Auinger

University of Vienna, Faculty of Mathematics

Abstract: An inverse monoid M is F-inverse if every σ -class $a\sigma$ admits a greatest element $a^{\mathfrak{m}}$ with respect to the natural partial order on M (σ denotes the smallest group congruence on M). An F-inverse monoid is necessarily E-unitary and such structures have attracted considerable attention. I intend to discuss the following topics:

- F-inverse monoids with enriched signature: as algebraic structures of type (2, 1, 1, 0) (the second unary operation being $a \mapsto a^{\mathfrak{m}}$) the class of F-inverse monoids forms a variety (M. Kinyon). I shall present models of free F-inverse monoids and, more generally, universal objects in similarly defined categories (joint work with G. Kudryavtseva and M. B. Szendrei).
- ullet status of the Henckell–Rhodes problem (Does every finite inverse monoid admit a finite F-inverse cover?)
- a possible extension of the Henckell–Rhodes problem (Is there an expansion from the category of finite inverse monoids to the category of finite F-inverse monoids?)

