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LIE ALGEBROID CONNECTIONS, TWISTED HIGGS BUNDLES AND

MOTIVES OF MODULI SPACES

DAVID ALFAYA AND ANDRÉ OLIVEIRA

Abstract. Let L = (L, [· , ·], δ) be an algebraic Lie algebroid over a smooth projective curve of
genus g ≥ 2 such that L is a line bundle whose degree is less than 2− 2g. Let r and d be coprime
numbers. We prove that the motivic class (in the Grothendieck ring of varieties) of the moduli space
of L-connections of rank r and degree d over X does not depend on the Lie algebroid structure
[· , ·] and δ of L and neither on the line bundle L itself, but only the degree of L (and of course on
r, d, g and X). In particular it is equal to the motivic class of the moduli space of KX(D)-twisted
Higgs bundles of rank r and degree d, for D any divisor of positive degree. As a consequence,
similar results (actually a little stronger) are obtained for the corresponding E-polynomials. Some
applications of these results are then deduced.
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1. Introduction

Consider the de Rham moduli space MdR(r, 0) of rank r algebraic connections over a smooth
projective curve X and write KX for the canonical bundle of X. So MdR(r, 0) parameterizes
S-equivalence classes of pairs (E,∇) (all of them are semistable), with E a rank r and degree 0
algebraic vector bundle on X and ∇ : E → E ⊗KX an algebraic connection on E. In general, the
integrability condition ∇2 = 0 must be imposed, but in this case this is automatic because KX is
a line bundle. Consider also the closely-related Dolbeault moduli spaceMKX

(r, 0), of rank r and
degree 0 semistable Higgs bundles (E,ϕ), with E as before, and ϕ : E → E ⊗KX a morphism of
OX -modules, called the Higgs field. The link between these two moduli spaces is provided by the
non-abelian Hodge correspondence [Hit87, Sim92, Sim94, Sim95], which yields a homeomorphism
between them and hence allows the study of the topology of the de Rham moduli, by studying the
Dolbeault one.

Actually, more is true, as proved by Simpson in [Sim94]: both MKX
(r, 0) and MdR(r, 0) are,

respectively, the fiber over 0 and 1 of an isosingular algebraic family over the affine line, such that
any other fiber is isomorphic to MdR(r, 0). This family is obtained by taking the moduli space
Mλ(r, 0) of λ-connections (E,∇, λ) of rank r and degree 0, with λ ∈ C. Here, the Leibniz rule for
a λ-connection is obtained from the usual Leibniz rule by multiplying the summand with the de
Rham differential by λ. If we consider the moduli space of semistable λ-connections (E,∇, λ), with
λ varying in C, then we obtain the so-called Hodge moduli space MHod(r, 0). Then the obvious
projectionMHod(r, 0)→ C mapping to λ, produces the mentioned isosingular family.

The existence of singularities on the moduli spaces MKX
(r, 0) and MdR(r, 0) introduces, how-

ever, serious difficulties on the study of their topology and geometry. This is ‘circumvented’ if we
consider instead d coprime with r and the corresponding moduli spacesMKX

(r, d) of stable degree
d and rank r Higgs bundles andMdR(r, d) of stable logarithmic connections, hence with poles at
some prescribed punctures on X, with fixed holonomy, depending on d, around the punctures. The
non-abelian correspondence extends to this case, and MKX

(r, d) and MdR(r, d) are also homeo-
morphic. Moreover, a complete analogue of the picture of the preceding paragraph holds as well,
by using the Hodge moduli spaceMHod(r, d), defined in the same way. The substantial difference
is that all these moduli spaces (including all moduliMλ(r, d) of logarithmic λ-connections of rank
r and degree d) are now smooth.

Using MHod(r, d), and taking r and d coprime, Hausel and Thaddeus proved in [HT03] that
MKX

(r, d) andMdR(r, d) actually share deeper geometrical invariants, other than just topological
ones. Namely, their Hodge structure is pure and equal, so in particular both spaces share the
same E-polynomial. The basic feature of their proof1 is the use of the fact that, as proved in
[Sim94, Sim97],MHod(r, d) is a smooth semiprojective variety in the sense of Hausel—Rodriguez-
Villegas [HRV15] (which implies that it comes endowed with a C∗-action), together with a surjective
C∗-equivariant submersion onto C.

More recently, it was verified that the smoothness and the semiprojective structure on the Hodge
moduli space MHod(r, d) implies the existence of another fundamental correspondence between
MdR(r, d) andMKX

(r, d). Namely, in [HL19], Hoskins and Lehaleur established what they called

1This was actually done in [HT03] for the fixed determinant (and traceless) versions of these moduli spaces, but
the argument also works in the non-fixed determinant case.
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a “motivic non-abelian Hodge correspondence” by proving an equality of the Voevodsky motives of
MdR(r, d) andMKX

(r, d); their result indeed holds for any characteristic zero field, not just C. In
fact, by considering d = 0 and the stacky version of these moduli spaces, a similar result was proved
before in [FSS18], for motivic classes in the Grothendieck ring of stacks, but through a completely
different technique, namely point counting. This was recently generalized to the parabolic setting
in [FSS20].

In the present paper, we prove the equality of the motivic class in the Grothendieck ring of
varieties (and other invariants) between two generalizations of MKX

(r, d) and MdR(r, d), as we
explain in the next paragraphs.

The Hodge moduli spaceMHod(r, d) is just a particular case of a much more general construction,
by Simpson [Sim94], arising from the moduli space MΛ(r, d) of Λ-modules (see Definition 3.8),
where Λ is a sheaf of rings of differential operators on X. Now, as proved by Tortella in [Tor11,
Tor12], there is an equivalence of categories between a certain subclass of such sheaves (consisting of
the split and almost polynomial ones) and algebraic Lie algebroids on X. In turn, such equivalence
induces an equivalence of categories between integrable L-connections, where L is a Lie algebroid
on X and ΛL-modules, with ΛL the split almost polynomial sheaf of rings of differential operators
corresponding to L. This correspondence preserves semistability, hence one can think ofMΛL

(r, d)
as the moduli space of L-connections of rank r and degree d.

We now briefly recall what are these objects. Let TX = K−1
X be the tangent bundle of X.

An algebraic Lie algebroid L = (V, [· , ·], δ) on X consists of an algebraic vector bundle V → X,
equipped with a Lie bracket [· , ·] : V ⊗C V → V and an anchor algebraic map δ : V → TX , such
that [· , ·] and δ are related by a Leibniz rule relation. Then an integrable (or flat) L-connection of
rank r and degree d on X is a pair (E,∇L), where E → X is an algebraic vector bundle of rank r
and degree d, together with a C-linear algebraic map ∇L : E → E⊗V ∗, satisfying a generalization
of the Leibniz rule to the Lie algebroid setting, i.e. where the usual differential is replaced by an L-
differential dL, and so that the integrability condition ∇2

L = 0 holds. In this language, an algebraic
connection on X is just a TX-connection, where TX is the canonical Lie algebroid structure with
underlying bundle TX . Note also that if we consider the trivial algebroid L = (V, 0, 0), then an
integrable L-connection on X is simply a V ∗-twisted Higgs bundle on X. i.e. so that the Higgs
field ϕ is twisted by V ∗ rather than KX and, furthermore, ϕ ∧ ϕ = 0.

More generally, we can consider integrable (λ,L)-connections (E,∇L, λ) for each λ ∈ C, these
being the analogues of the above mentioned λ-connections (which are hence (λ,TX)-connections).
As before, we see that for L = (V, [· , ·], δ), an integrable (0,L)-connection is just a V ∗-twisted
Higgs bundle on X and an integrable (1,L)-connection is an integrable L-connection. Then, the
generalized version of the above Hodge moduli space is the L-Hodge moduli spaceMΛred

L

(r, d) which

parameterizes S-equivalence classes of semistable integrable (λ,L)-connections on X. As before it
comes with the natural map MΛred

L

(r, d) → C, (E,∇L, λ) 7→ λ, whose fiber over zero is hence the

moduli space of rank r and degree d V ∗-twisted Higgs bundles and every other fiber is isomorphic
to the fiber over 1, namely the moduli space of integrable L-connections of rank r and degree d.

The first main result of this paper is the following (see Theorem 5.15).

Theorem 1.1. For any Lie algebroid L = (L, [· , ·], δ) such that L is a line bundle with deg(L) <
2 − 2g, where g ≥ 2 is the genus of X, and (r, d) = 1, the L-Hodge moduli space MΛred

L

(r, d) is a

smooth semiprojective variety. Moreover the projectionMΛred
L

(r, d)→ C is a surjective submersion.

This generalizes the above mentioned result by Simpson for the Hodge moduli space for any
Lie algebroid on the given conditions. The two equivalent interpretations of the “same object” —
L-connections and ΛL-modules — are actually required in this proof. For instance, in order to
prove smoothness, we make use of the deformation theory for integrable L-connections, developed
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in [Tor12], since deformation theory for Λ-modules is not yet well-understood in the required
generality. On the other hand, the proof of the existence of limits of a natural C∗-action on the
L-Hodge moduli (which is a condition for being semiprojective) is carried out by explicitly using
ΛL-modules rather than L-connections.

LetK(VarC) be the Grothendieck ring of varieties and let K̂(VarC) be its completion with respect
to the Lefschetz motive L = [A1]. Let L = (L, [· , ·], δ) be a Lie algebroid of rank 1. Then, using the
previous semiprojectivity result, and making use of the Bialynicki-Birula decompositions of both
the L-Hodge moduli space and of the L−1-twisted Higgs bundle moduli spaceML−1(r, d), we prove
the following result, concerning the motives of the moduli spacesMΛL

(r, d) of L-connections on X
(note that integrability is automatic because L is a line bundle) and also concerning their Hodge
structures and E-polynomials (cf. Theorem 6.7 and Theorem 7.4).

Theorem 1.2. Suppose the genus of X is g ≥ 2. Let L = (L, [· , ·], δ) and L′ = (L′, [· , ·]′, δ′) be
any two Lie algebroids on X, such that L and L′ are line bundles with deg(L) = deg(L′) < 2− 2g.
Suppose (r, d) = 1. Then

I(MΛL
(r, d)) = I(MΛL′ (r, d)).

where I(X) denotes one of the following:

(1) The virtual motive [X] ∈ K̂(VarC);
(2) The Voevodsky motive M(X) ∈ DMeff(C, R) for any ring R. In this case, moreover, the

motives are pure;
(3) The Chow motive h(X) ∈ Choweff(C, R) for any ring R;
(4) The Chow ring CH•(X,R) for any ring R.

Moreover, the mixed Hodge structures of the moduli spaces are pure and if d′ is any integer coprime
with r, then

E(MΛL
(r, d)) = E(MΛL′ (r, d

′)).

Finally, if L = L′ = K(D) for some effective divisor D, then there is an actual isomorphism of
pure mixed Hodge structures

H•(MΛL
(r, d)) ∼= H•(MΛL′ (r, d

′)).

This is proved as follows. We prove it for K̂(VarC) in Theorem 6.7. The results for the other
motives (Theorem 7.4) follow by the same techniques using technical results of [HL19]. For Theorem
6.7, firstly we use the semiprojectivity of the L-Hodge and L′-Hodge moduli spaces described before
to show that the classes ofMΛL

(r, d) andMΛL′ (r, d) equals, respectively, that of the twisted Higgs
bundles moduli spaces ML−1(r, d) and ML′−1(r, d), which correspond to the particular case of
trivial algebroids; see Theorem 5.17. Notice that this is a generalization (for k = C) of the “motivic
non-abelian Hodge correspondence” of [HL19] to any Lie algebroid L on the given conditions.
Secondly, by studying the Bialynicki-Birula decomposition of ML−1(r, d), we can prove that its
motive only depends on the degree of the twisting line bundle L−1, but not on the twisting itself;
see Theorem 6.6.

Notice also that our setting includes, for example, the moduli spaces of logarithmic connections
(without fixed residues on the poles), corresponding to the Lie subalgebroid TX(−D) ⊂ TX , and
hence to the case L−1 = KX(D) for an effective and reduced divisor on X. It also includes the
moduli spaces of wild connections (again without fixing the corresponding Stokes data), by taking
TX(−D

′) ⊂ TX , thus L−1 = KX(D
′), where D′ is an effective and non-reduced divisor on X.

Hence, we have the following direct application of the above theorem (see Corollary 7.6):

Corollary 1.3. The motive and E-polynomial of any moduli space of irregular connections on
a smooth projective curve X of genus at least 2 equals that of any moduli space of logarithmic
connections X, with singular divisor of the same degree.
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Moreover, using the above theorem, we provide the formulas for the motivic classes and for the
E-polynomials ofMΛL

(r, d), for any rank 1 Lie algebroid L of degree less than 2−2g, when r = 2, 3
and d coprime with r; see Corollaries 7.7 and 7.9.

In addition, for a Lie algebroid L under the same conditions, we also compute the homotopy
groups of the moduli spacesMΛL

(r, d), up to some bound depending on the rank of the L-connection
and on the genus of the curve X. See Theorem 7.2.

Our main results hold for Lie algebroids L whose underlying bundle is a line bundle, but we
expect that at least some of them hold for higher rank Lie algebroids (see Remark 5.16). In
addition, we prove some results in the higher rank setting, mostly concerning non-emptiness of the
moduli spaces of L-connections; see section 3.3.

Here is a brief description of the contents of the paper. In section 2 we give a quick introduction
to V -twisted Higgs bundles. In Section 3 we introduce Lie algebroids, sheaves of rings of differential
operators, L-connections and Λ-modules and, following [Tor11, Tor12], give a short overview of the
equivalence of categories between integrable L-connections and ΛL-modules. This is done over
any base variety. Then we introduce the moduli spaces of ΛL-modules / integrable L-connections
over a curve X, prove some non-emptiness results about them, and also introduce the L-Hodge
moduli spaces. The purpose of Section 4 is to introduce the Grothendieck ring of varieties and
motives and to give an overview of our strategy to prove the main results. Sections 5 and 6 are
the technical core of the paper. In Section 5 we prove that the motivic class of the moduli spaces
of Lie algebroid connections equals that of the corresponding twisted Higgs bundle moduli (using
the semiprojectivity of the L-Hodge moduli, which is also proved) and in Section 6 we show that
the motivic class of the twisted Higgs bundles moduli is independent of the twisting. In Section 7
we deduce some applications of the results proved in the previous sections, including the versions
of the main theorem for Voevodsky motives, Chow motives and Chow rings. Finally, in Section 8
we show how to achieve similar results for the same moduli spaces of L-connections (E,∇L) but
where the determinant of E and the trace of ∇L are fixed.

Acknowledgments. This research was funded by MICINN (grants MTM2016-79400-P, PID2019-
108936GB-C21 and “Severo Ochoa Programme for Centres of Excellence in R&D” SEV-2015-0554)
and by CMUP – Centro de Matemática da Universidade do Porto – financed by national funds
through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020. The first author was also supported by a postdoctoral grant from ICMAT
Severo Ochoa project. He would also like to thank the hospitality of CMUP during the research
visits which took place in the course of the development of this work. Finally, we thank Vicente
Muñoz, José Ángel González and Jaime Silva for helpful discussions.

2. Moduli space of twisted Higgs bundles

Throughout the paper we will only be considering algebraic objects (vector bundles, Lie alge-
broids, connections, etc.) on smooth projective varieties over C, this being implicitly assumed
whenever the corresponding adjective is missing. We will also always take the usual identification
between algebraic vector bundles and locally free sheaves.

Let Y be a smooth complex projective variety and let V be an algebraic vector bundle on Y ,
thus a locally free OY -module.

Definition 2.1. A V -twisted Higgs bundle on Y is a pair (E,ϕ) consisting by an algebraic vector
bundle E on Y and a map of OY -modules

ϕ : E −→ E ⊗ V,

called the Higgs field, such that ϕ ∧ ϕ = 0 ∈ H0(End(E) ⊗ Λ2V ).
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If ϕ ∈ H0(End(E)⊗ V ), by ϕ ∧ ϕ ∈ H0(End(E)⊗ Λ2V ) in the previous definition we mean the
following. Let p : V ⊗ V → Λ2V be the quotient map. Then

ϕ ∧ ϕ = (IdE ⊗p) ◦ (ϕ⊗ IdV ) ◦ ϕ.

A local version is given as follows. Take an open set U ⊂ Y where both E and V are trivialized,
and let w1, . . . , wk be a local trivializing basis of V ; then we can write ϕ|U =

∑
iGi ⊗ wi, with Gi

a local section of End(E), so an OX(U)-valued matrix, and

(ϕ ∧ ϕ)|U =
∑

i<j

[Gi, Gj ]⊗ wi ∧ wj .

A map between V -twisted Higgs bundles (E,ϕ) and (E′, ϕ′) is an algebraic map f : E → E′

such that (f ⊗ IdV ) ◦ ϕ = ϕ′ ◦ f , and if there is such an f which is an isomorphism, then (E,ϕ)
and (E′, ϕ′) are isomorphic.

Observe that the integrability condition ϕ ∧ ϕ = 0, implies that providing a Higgs field on E
is equivalent to endowing a Sym•(V ∗)-module structure on E compatible with the OY -module
structure.

Consider now the case where Y is a smooth projective curve X. This is going to be our base
setting, by further assuming that the genus of X is at least 2, but we will also consider some
particular cases where Y is any smooth projective variety. Let also KX denote the canonical line
bundle of X.

Higgs bundles were introduced by Hitchin in [Hit87] for V = KX , in the context of gauge
theory, namely as objects which are naturally associated to solutions to the now known as Hitchin
equations.

Given a vector bundle E over X, let

µ(E) :=
deg(E)

rk(E)

be the slope of E. The vector bundle E is called (semi)stable if for every subbundle 0 6= F ( E we
have

µ(F ) < µ(E) (resp. ≤).

Similarly, a V -twisted Higgs bundle (E,ϕ) on X is (semi)stable if for every subbundle 0 6= F ( E
preserved by ϕ (i.e., such that ϕ(F ) ⊆ F ⊗ V ) we have

µ(F ) < µ(E) (resp. ≤).

By degree of a V -twisted Higgs bundle (E,ϕ) on the curve X, we mean the degree of the
underlying bundle E. Let MV (r, d) be the moduli space of (S-equivalence classes of) semistable
V -twisted Higgs bundles (E,ϕ) on X of rank r and degree d. When V is a line bundle this moduli
space was first constructed, via GIT, by Nitsure [Nit91]. A gauge theoretic construction for V = KX

is given in [Hit87]. In general,MV (r, d) exists as a consequence of Simpson’s GIT construction of
the moduli space of Λ-modules [Sim94] (the general notion of Λ-module will be reviewed in Section
3). It is a quasi-projective complex algebraic variety and, moreover, we have the following Lemma
which is a direct consequence of [BGL11, Proposition 3.3 and Theorem 1.2].

Lemma 2.2. Suppose that r ≥ 1 and d are coprime and that L is a line bundle with deg(L) >
2g − 2, where g ≥ 2 is the genus of X. Then the moduli space ML(r, d) is a smooth connected, so
irreducible, quasi-projective variety of dimension 1 + r2 deg(L).

Remark 2.3. There are choices of the twist V which do not satisfy the assumptions of the Lemma
and for which MV (r, d) is nonetheless a smooth variety. For instance, the classical case V = KX

from [Hit87] and which was also considered in [BGL11, Proposition 3.3].
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However, a condition similar to the one presented in the previous lemma is to be expected in
general since there exist many examples of low degree twists for which the moduli space is not
smooth and even not irreducible.

For example, if L = OX(x) for a curve X with genus at least 4 and x ∈ X, thenMOX(x)(r, d) is,

in general, a singular variety. For generic stable vector bundles E, we have H0(End(E)(x)) ∼= C

by [BGM13, Lemma 2.2] soMOX(x)(r, d) contains an open subvariety U ⊂MOX(x)(r, d) which is a
line bundle over the open locus of such bundles in the moduli spaceM(r, d) of stable vector bundles.
Nevertheless, suppose that we pick the curve X so that there exists a stable vector bundle F on X
with a nonzero section ϕ ∈ H0(End0(F )(x)), ϕ 6= 0. Then (F,ϕ) ∈ MOX(x)(r, d) will not belong
to the closure of U , so the moduli space will not be irreducible, and the point (F, 0) ∈MOX(x)(r, d)
will belong to two different irreducible components, making the moduli space a singular variety.

Consider a V -twisted Higgs bundle (E,ϕ) on X. Since ϕ∧ϕ = 0, the Higgs field ϕ : E → E⊗V
induces maps

∧iϕ : ΛiE −→ ΛiE ⊗ SiV,

for i = 1, . . . , r. If we define

si = tr(∧iϕ) ∈ H0(SiV ),

then this yields the Hitchin map

(2.1) H :MV (r, d) −→
r⊕

i=1

H0(SiV ), H(E,ϕ) = (s1, . . . , sr).

We call W :=
⊕r

i=1H
0(SiV ) the Hitchin base.

Lemma 2.4. The Hitchin map H :MV (r, d) −→ W is proper.

Proof. When V is a line bundle, this was proven by Nitsure [Nit91, Theorem 6.1]. In the case
V = KX , besides being proven by Hitchin [Hit87], it was also proven by Faltings [Fal93, Theorem
I.3] following an argument by Langton, and the same argument works word by word for an arbitrary
twisting V . �

3. L-connections, Λ-modules and moduli spaces

3.1. Lie algebroids and L-connections. Let Y be a smooth complex projective variety with
tangent bundle TY . We will be mostly interested in the case Y is the smooth projective curve X,
but we will actually need to consider a higher dimensional variety in sections 3.4 and 5.3.

Definition 3.1. An algebraic Lie algebroid on Y is a triple L = (V, [· , ·], δ) consisting on

• an algebraic vector bundle V on Y ,
• a C-bilinear and skew-symmetric map [· , ·] : V ⊗C V → V , called the Lie bracket,
• a vector bundle map δ : V → TY , called the anchor,

satisfying the following properties:

(1) [u, [v,w]] + [v, [w, u]] + [w, [u, v]] = 0 (Jacobi rule),
(2) [u, fv] = f [u, v] + δ(u)(f)v (Leibniz rule),

for any local sections u, v, w of V and any local function f in OY .
The rank of a Lie algebroid L, denoted by rk(L), is the rank of the underlying vector bundle V .

Example 3.2.

(1) The canonical example of Lie algebroid is the tangent bundle TY , together with the Lie
bracket of vector fields and the identity anchor. Denote it as TY = (TY , [· , ·]Lie, Id).
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(2) More generally, an algebraic foliation FY ⊂ TY gives also rise to a Lie algebroid FY simply
by restricting the Lie bracket [· , ·]Lie and by taking the inclusion FY →֒ TY as the anchor
map.

(3) Any algebraic vector bundle can be seen as a Lie algebroid with the zero bracket and the
zero map as the anchor; this is called a trivial algebroid.

The Lie bracket of a Lie algebroid L = (V, [· , ·], δ) endows V with a structure of a sheaf of C-Lie
algebras, which is not a sheaf of OY -Lie algebras unless the anchor δ is zero.

A Lie algebroid map f : L → L′ between L = (V, [· , ·]V , δV ) and L′ = (V ′, [· , ·]V ′ , δV ′) is a
algebraic C-Lie algebra bundle map f : V → V ′ such δV ′ ◦ f = δV . For example, the anchor
δ : V → TY is a Lie algebroid map δ : L → TY . A Lie algebroid isomorphism is a Lie algebroid
map which is an isomorphism of the underlying bundles; in that case, the Lie algebroids are said
to be isomorphic.

Let L = (V, [· , ·], δ) be a Lie algebroid. We now define a differential on the complex of exterior
powers Ω•

L = Λ•V ∗,

dL : ΩkL −→ Ωk+1
L ,

generalizing the classical de Rham complex d : ΩkY −→ Ωk+1
Y on Ω•

Y = Λ•T ∗
Y . In degree 0, define

dL : OY → V ∗ as the composition of the canonical differential d : OY → T ∗
Y with the dual of the

anchor, δt : T ∗
Y → V ∗. Thus, given v ∈ V and f a local algebraic function on Y ,

(3.1) dL(f)(v) = df(δ(v)) = δ(v)(f).

The map dL : OY → V ∗ is clearly a V ∗-valued derivation. Now we extend it to higher order
exterior powers through the usual recursive equation, but using the anchor map δ. For ω ∈ ΩnL and
v1, . . . , vn+1 local sections of V , take

dL(ω)(v1, . . . , vn+1) =
n+1∑

i=1

(−1)i+1δ(vi)(ω(v1, . . . , v̂i, . . . , vn+1))

+
∑

1≤i<j≤n+1

(−1)i+jω([vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . , vn+1).

(3.2)

This differential satisfies d2L = 0, so (Ω•
L, dL) is a complex, called the Chevalley–Eilenberg–de Rham

complex of L. Note that dL = 0 for a trivial algebroid.
From dL we now define a generalization of an algebraic connection.

Definition 3.3. Let L = (V, [· , ·], δ) be a Lie algebroid on Y . An L-connection on Y is a pair
(E,∇L), where E is an algebraic vector bundle and where ∇L is a C-linear algebraic vector bundle
map

∇L : E −→ E ⊗ Ω1
L = E ⊗ V ∗,

such that
∇L(fs) = f∇L(s) + s⊗ dL(f),

for s a local section of E and f a local algebraic function on Y . The rank of an L-connection is
the rank of the underlying algebraic vector bundle.

We will also refer to ∇L : E → E ⊗ Ω1
L as an L-connection on the algebraic vector bundle E.

Note that, for a trivial algebroid L, the map ∇L : E → E⊗Ω1
L is actually OY -linear rather than

just C-linear.
Any L-connection (E,∇L) can be extended to a map

∇L : E ⊗ Ω•
L −→ E ⊗ Ω•+1

L ,

as
∇L(s⊗ ω) = ∇L(s) ∧ ω + s⊗ dL(ω).
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Definition 3.4. Let (E,∇L) be an L-connection on Y . The composition ∇2
L : E → E ⊗ Ω2

L is
called the curvature of (E,∇L). An L-connection is integrable or flat if its curvature vanishes.

Example 3.5.

(1) Recall the canonical Lie algebroid TY = (TY , [· , ·]Lie, Id) given by the tangent bundle of Y .
Then, a flat TY -connection is just a flat algebraic connection in the usual sense.

(2) If L is a trivial algebroid, i.e. L = (V, 0, 0), then a flat L-connection is simply a pair
(E,∇L) formed by a vector bundle E and an OY -linear map ∇L : E → E ⊗ V ∗ such that
∇L ∧ ∇L = 0. This is precisely a V ∗-twisted Higgs bundle from Definition 2.1.

Alternatively, we can think of L-connections, for any Lie algebroid L = (V, [· , ·], δ), from a slightly
different point of view. An L-connection ∇L : E → E ⊗ Ω1

L induces a OY -linear map

(3.3) ∇̄L : V −→ EndC(E), v 7→ ∇L,v,

which, by (3.1), satisfies

(3.4) ∇L,v(fs) = f∇L,v(s) + δ(v)(f)s.

In particular, identifying the local function f ∈ OY with the endomorphism E → E, s 7→ fs, we
have that ∇L,v ◦ f − f ◦ ∇L,v is OY -linear,

∇L,v ◦ f − f ◦ ∇L,v ∈ EndOY
(E).

Hence, ∇L,v is a section of the locally free sheaf Diff1(E) of differentials of order at most 1. Note

that, since EndC(E) is a sheaf of associative algebras, the vector bundle Diff1(E) inherits canonically
a Lie algebroid structure D(E) = (Diff1(E), [· , ·]D(E), δD(E)) through the commutator, by taking

[A,B]D(E) = AB −BA ∈ Diff1(E),

for each A,B ∈ Diff1(E), and, by making use of the OY -module structure of Diff1(E),

δD(E)(A)(f) = Af − fA ∈ OY ⊆ EndOY
(E),

for every f ∈ OY . Now, note that the L-connection ∇L is integrable if and only if

[∇L,u,∇L,v]D(E) = ∇L,[u,v],

for all u, v ∈ V . Furthermore, it follows by (3.4) that, for every v,

δD(E)(∇L,v) = δ(v).

We conclude that the map (3.3) can be canonically upgraded to a Lie algebroid map ∇̄L : L → D(E),
sometimes called a representation of L in D(E). In addition, the correspondence ∇L 7→ ∇̄L yields
a bijective correspondence

(3.5)
{
integrable L-connections on E

}
←→

{
representations of L in D(E)

}
.

3.2. Λ-modules and L-connections. In [Tor11, §3] and [Tor12, §4], Tortella proved that there is
a very close relation between integrable L-connections and Simpson’s notion of Λ-modules [Sim94],
to be introduced below. This will be important for us to deduce properties of the corresponding
moduli spaces.

Let S be a smooth variety and let X → S be a smooth variety over S. We start with the notion
of sheaf of rings of differential operators as defined in [Sim94].

Definition 3.6. A sheaf of rings of differential operators on X over S is a sheaf of OX -algebras Λ
over X , with a filtration by subalgebras Λ0 ⊆ Λ1 ⊆ · · · ⊆ Λ, verifying the following properties:

(1) Λ =
⋃∞
i=0Λi and Λi · Λj ⊆ Λi+j, for every i, j;

(2) Λ0 = OX ;
(3) the image of p−1(OS) in OX lies in the center of Λ;
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(4) the left and right OX -module structures on Gri(Λ) := Λi/Λi−1 are equal;
(5) the sheaves of OX -modules Gri(Λ) are coherent;
(6) the morphism of sheaves

Gr1(Λ)⊗ · · · ⊗Gr1(Λ)→ Gri(Λ)

induced by the product is surjective.

Moreover, Λ is said to be polynomial if Λ ∼= Sym•(Gr1(Λ)) and almost polynomial if Gr•(Λ) ∼=
Sym•(Gr1(Λ)).

Remark 3.7. Simpson’s definition is a slightly more general in point (2), allowing Λ0 to be a
quotient of OX and, therefore, allowing Λ to be supported on a subscheme of X . However, we will
only be interested on sheafs of rings supported on the whole scheme X .

Definition 3.8. Let Λ be a sheaf of rings of differential operators over X , flat over S. A Λ-
module is a pair (E,∇Λ) consisting of an algebraic vector bundle E on X , flat on S, with an action
∇Λ : Λ ⊗OX

E → E satisfying the usual module conditions. Moreover, E is required to be locally
free as a Λ-module and its inherent OX -module structure coincides with the OX -module structure
induced by the inclusion OX ⊆ Λ. The rank of a Λ-module is the rank of the underlying bundle.

The notions of maps and isomorphisms between Λ-modules over X are the obvious ones, as in
the Lie algebroids and Higgs bundles cases.

Let us now briefly recall the relation between integrable L-connections and Λ-modules. For
details, see [Tor11, §3] and [Tor12, §4].

Fix a Lie algebroid L = (V, [· , ·], δ) on Y . Consider the associated Lie algebroid

L̂ = (OY ⊕ V, [· , ·]1, δ1)

given by

[(f, u), (g, v)]1 = (δ(u)(g) − δ(v)(f), [u, v]), δ1(f, u) = δ(u),

with u, v ∈ V and f, g ∈ OY . Note that this means that, if OY also denotes the trivial algebroid
(OY , 0, 0), then we have a split short exact sequence

(3.6) 0 −→ OY −→ L̂ −→ L −→ 0

of Lie algebroids, where by this we mean L̂ ∼= OY ⊕L as Lie algebroids or, equivalently that there

is a splitting ζ : L → L̂ of the sequence (3.6), which in this case is simply given by ζ(v) = (0, v),
v ∈ V .

From the Lie algebroid L̂, hence from L, there is an associated an almost polynomial sheaf of
rings of differential operators ΛL whose weight 1 piece ΛL,1 ⊂ ΛL in corresponding filtration is
isomorphic to OY ⊕ V . This is roughly constructed as follows. The universal enveloping algebra of
the Lie algebra (OY ⊕ V, [· , ·]1) is the sheaf of OY -algebras, defined by

U = T •(OY ⊕ V )/ 〈x⊗ y − y ⊗ x− [x, y]1 |x, y ∈ OY ⊕ V 〉 ,

with T •(OY ⊕V ) being the tensor algebra on OY ⊕V . If i : OY ⊕V →֒ U is the canonical inclusion,
then let U † ⊂ U be the subalgebra generated by i(OX ⊕ V ) and take

ΛL = U †/ (i(f, 0) · i(g, v) − i(fg, fv) | f, g ∈ OY , v ∈ V ) .

This is the universal enveloping algebra of the Lie algebroid L. Then the graded structure from the
tensor algebra T •(OY ⊕ V ) induces a filtered algebra structure on ΛL which satisfies the axioms of
an almost polynomial sheaf of rings of differential operators. We thus get the correspondence

(3.7) L 7→ ΛL.
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Since this construction started by taking the trivial extension of Lie algebroids in (3.6), the sheaf
ΛL is called a split almost polynomial sheaf of differential operators.

Conversely, take an almost polynomial sheaf of rings of differential operators Λ. Then the OY -
module Λ1 ⊂ Λ inherits a Lie algebroid structure in the following way [Tor11, Proposition 28]
[Tor12, §4.1]. Given local sections u, v of Λ1 and f of OY , define

(3.8) [u, v]Λ1 = uv − uv and δΛ1(u)(f) = uf − fu,

using the product in Λ. Let us prove that [u, v]Λ1 ∈ Λ1 and that δΛ1(u)(f) ∈ OY . As Λ is almost
polynomial, then Gr•(Λ) is abelian. Let sb : Λ → Gr•(Λ) be the symbol map sending an element
to the highest graded class where it is nonzero. One can check that sb is multiplicative. We have

sb(uv)− sb(vu) = sb(u) sb(v)− sb(v) sb(u) = 0 ∈ Gr•(Λ)

As uv, vu ∈ Λ2, we conclude that uv ≡ vu mod Λ1, that is, uv − vu ∈ Λ1, proving the first
claim. For the second claim, we use the fact that the left and right OY -module structures on
Gr1(Λ) = Λ1/Λ0 agree. Hence uf − fu ∈ Λ0 = OY and the second claim follows. Now, using
the associativity of Λ and the fact that elements of OY commute with all elements of Λ, one sees
that [· , ·]Λ1 is OY -bilinear, skew-symmetric and verifies the Jacobi identity and that δΛ1 is so that
Leibniz rule also holds. So (3.8) gives the mentioned Lie algebroid structure on Λ1.

Now, it is clear that the induced Lie algebroid structure on OY = Λ0 ⊂ Λ1 is trivial, thus (3.8)
descends to give a Lie algebroid structure on Gr1(Λ), which we denote by LΛ:

LΛ = (Gr1(Λ), [· , ·]Gr1(Λ1), δGr1(Λ1)).

Moreover, the following short exact sequence of Lie algebroids

0 −→ (OX , 0, 0) −→ (Λ1, [· , ·]Λ1 , δΛ1) −→ LΛ −→ 0,

hence the sheaf Λ is split. Thus, we have the correspondence

(3.9) Λ 7→ LΛ.

By [Tor12, Theorem 4.4], Λ is split almost polynomial if and only if it is isomorphic to the uni-
versal enveloping algebra of Gr1(Λ). Hence, the upshot of this discussion is the following theorem.

Theorem 3.9. The correspondences (3.7) and (3.9) induce inverse equivalences of categories:

{
isomorphism classes of
Lie algebroids on Y

}
←→





isomorphism classes of split
almost polynomial sheaves of rings

of differential operators on Y



 .

L 7−→ ΛL

(3.10)

Moreover, (3.10) induces a correspondence between integrable L-connections and ΛL-modules.
This goes roughly as follows (see again the above mentioned references for details).

Let L = (V, [· , ·], δ) be a Lie algebroid with corresponding sheaf ΛL. So we have a short exact
sequence

0→ OY → ΛL,1 → L → 0

of Lie algebroids, with
ΛL,1 = OY ⊕ L ⊂ ΛL.

Given a ΛL-module ∇ΛL
: ΛL ⊗ E → E, define the L-connection (E,∇L) by taking

(3.11) ∇L : E → E ⊗ V ∗, ∇L(s)(v) = ∇ΛL
((0, v) ⊗ s),

for s and v local sections of E and V respectively. This is a flat L-connection.
Conversely, from a flat L-connection (E,∇L), define

∇ΛL,1
: ΛL,1 ⊗ E → E, ∇ΛL,1

((f, v) ⊗ s) = fs+∇L(s)(v),
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where f ∈ OY , v ∈ V and s ∈ E. By successive compositions, this defines a (ΛL,1)
⊗•-module

structure on E, which descends to a ΛL-module structure

(3.12) ∇ΛL
: ΛL ⊗ E → E

because ∇L is integrable and satisfies Leibniz.
Now, from [Tor12, Proposition 5.3], we have the following.

Theorem 3.10. The correspondences (3.11) and (3.12) induce inverse equivalences of categories:

(3.13)

{
isomorphism classes of

integrable L-connections on Y

}
←→

{
isomorphism classes of

ΛL-modules on Y

}
.

Remark 3.11. The results of [Tor11] and [Tor12] are actually more general, in the sense that there
is no split condition on the almost polynomial sheaves of differential operators. The correspondence
there includes, in both sides, a certain cohomology class Q, which is the obstruction to the existence
of a Lie algebroid splitting of the above short exact sequence. The case stated above corresponds to
Q = 0, which is actually the one of interest to us, since that is the only split case for which the
corresponding moduli spaces (to be introduced in the next section) are non-empty.

3.3. Moduli spaces of L-connections and of Λ-modules. Let us return now to the case where
Y is our fixed smooth complex projective curve X and where X → S is an S-family of smooth
complex projective curves over a scheme S. An L-connection (E,∇L) is (semi)stable if for every
subbundle 0 6= F ( E preserved by ∇L, i.e. such that ∇L(F ) ⊆ F ⊗ Ω1

L, we have

µ(F ) < µ(E) (resp. ≤)

and that a Λ-module (E,∇Λ) on a fiber Xs of X → S is (semi)stable if for every 0 6= F ( E
preserved by ∇Λ, i.e. such that ∇Λ(Λ⊗ F ) ⊆ F we have

µ(F ) < µ(E) (resp. ≤).

Note that if the vector bundle E is semistable, then any L-connection and any Λ-module are also
semistable. Clearly, an L-connection is (semi)stable if and only if the corresponding ΛL-module is
(semi)stable. Define the degree of an L-connection or of a Λ-module over X to be the degree of the
underlying vector bundle.

For any sheaf of rings of differential operators Λ on X over S, and any rank r ≥ 0 and d ∈ Z,
Simpson [Sim94] proved that there exists a moduli spaceMΛ(X , r, d) of semistable Λ-modules of
rank r and degree d and that it is a complex quasi-projective variety over S. If the family X is
clear from the context, we denote the moduli space simply byMΛ(r, d). If s ∈ S is a point, let Λs
be the pullback of Λ to the fiber Xs of X → S. A closed point of MΛ(X , r, d) over a point s ∈ S
represents a semistable Λs-module (E,∇Λs) over Xs.

Then, Theorem 3.10 also identifiesMΛL
(r, d) with the moduli space of integrable L-connections

of rank r and degree d [Tor12].

Remark 3.12. Alternatively, a moduli space of (possibly non-integrable) Lie algebroid connections
was also constructed by Krizka [Kri09] using analytic tools. When L has rank 1, integrability is
automatic and, therefore, this construction gives an alternative description for the moduli space of
integtrable Lie algebroid connections. On the other hand, in an unpublished work [Kri10], the same
author works with flat connections and proposes a general analytical construction of such moduli
space.

We saw in Example 3.5 that when L has the trivial algebroid structure L = (V, 0, 0), an L-
connection is precisely the same thing as a V ∗-twisted Higgs bundle. Moreover, it is obvious that
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(semi)stability is preserved under this identification. Hence, the moduli space of integrable L-
connections coincides with the moduli space of V ∗-twisted Higgs bundles. Therefore, for a trivial
Lie algebroid L = (V, 0, 0), we have the following canonical identification

MΛ(V,0,0)L(r, d) =MV ∗(r, d)

between the moduli spaces of integrable L-connections, ΛL-modules and V ∗-twisted Higgs bundles
over X, all of the same rank r and degree d.

Note that, depending on the choice of the rank, degree and Λ, the moduli spaceMΛ(X , r, d) may
be singular or even empty. For instance, if Λ is the sheaf of differential operators DX on a curve
X, then MDX

(r, d) coincides with the moduli space of semistable (TX-)connections on X whose
underlying vector bundle has rank r and degree d. But the flatness condition (which is automatic
since TX is a line bundle) implies that d = 0, so the moduli space is empty for d 6= 0. Moreover,
for d = 0 and r ≥ 2, the moduli space of flat connections is singular due to the existence of strictly
semistable objects. In the remaining part of this section we will to prove sufficient conditions for
these moduli spaces to be nonempty and smooth varieties.

The existence of algebraic connections (i.e. TX-connections in the language of Lie algebroids) on
an algebraic vector bundle E over X has been studied by Atiyah in [Ati57]. There it was proved the
existence of a class in Ext1(TX ,End(E)) — now known as the Atiyah class of E — whose vanishing
is equivalent to the existence of such a algebraic connection. A generalization of this picture to
L-connections was carried out in [Tor11, Section 2.4.4] [Tor12, §4]. Keep considering the bundle E
and let L = (V, [· , ·], δ) be a Lie algebroid. Let a(E) ∈ Ext1(TX ,End(E)) be the Atiyah class of E.
Define the L-Atiyah class of E as

aL(E) = δ∗(a(E)) ∈ Ext1(V,End(E)).

Proposition 3.13. [Tor11, Proposition 17] An algebraic vector bundle E admits an algebraic L-
connection if and only if aL(E) = 0.

From this we can exhibit some concrete examples of L-connections.

Corollary 3.14. Let E be a semistable vector bundle on the curve X. Let L = (V, [· , ·], δ) be a
Lie algebroid such that the vector bundle V is semistable and −µ(V ) > 2g − 2. Then E admits an
L-connection. Moreover, if rk(L) = 1, then E admits an integrable L-connection.

Proof. The L-Atiyah class a(E) is an element of

Ext1(V,End(E)) ∼= H1(End(E)⊗ V ∗) ∼= H0(End(E) ⊗KX ⊗ V )∗,

by Serre duality. Since both E and V are semistable then End(E) ⊗ KX ⊗ V is also semistable.
Moreover

µ(End(E) ⊗KX ⊗ V ) = 2g − 2 + µ(V ) < 0,

so H0(End(E)⊗KX ⊗ V ) = 0. Thus a(E) = 0, and the result follows from Proposition 3.13.
If in addition rk(L) = 1, then Ω2

L = Λ2V ∗ = 0 thus any L-connection on E is automatically
flat. �

A Lie algebroid L is called transitive if the anchor δ is surjective and intransitive otherwise.

Corollary 3.15. Let L be any intransitive Lie algebroid on X and let E be a semistable algebraic
vector bundle. Then E admits an integrable L-connection.

Proof. As L = (V, [· , ·], δ) is intransitive, the anchor map δ : V → TX is not surjective. Then,
as TX is a line bundle, there exists a point x ∈ X such that δ|x = 0. Thus, δ factors through
δ̄ : V → TX(−x) ⊂ TX . Actually, the line bundle TX(−x) inherits a natural Lie algebroid structure,
denoted by T (−x), from the one of T = (TX , [· , ·]Lie, Id), since the Lie bracket of two local vector
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fields which annihilate at x also annihilates at x. Thus, the anchor in TX(−x) is just the inclusion
TX(−x) →֒ TX . Since we also know the anchor maps are also Lie algebroid maps, we have a
commutative diagram of Lie algebroid maps

L T

T (−x).

δ

δ̄

Now, TX(−x) is a line bundle such that − deg(TX(−x)) = 2g − 1 > 2g − 2, so the previous
corollary shows that E admits an integrable T (−x)-connection. Moreover, by (3.5) such connection
is determined by a representation T (−x)→ D(E). Pre-composing it with δ̄ yields a representation
L → D(E) and, hence, again by (3.5), gives rise to an integrable L-connection on E. �

The previous results can be now immediately used to prove, under certain conditions, non-
emptiness of the moduli spaces of L-connections of any rank and degree.

Proposition 3.16. For any rank r and degree d and any Lie algebroid L such that either

(1) rk(L) = 1 and deg(L) < 2− 2g, or
(2) L is intransitive.

Then the moduli space MΛL
(r, d) is nonempty.

Proof. Let L be any Lie algebroid verifying either of the two given conditions. Choose any
semistable vector bundle E over X. By Corollary 3.14, if rk(L) = 1 and deg(L) < 2 − 2g, or
by Corollary 3.15, if L is intransitive, we conclude that E admits an integrable L-connection
∇L. Moreover, since E is semistable, then so is (E,∇L), which therefore represents a point in
MΛL

(r, d). �

3.4. The L-Hodge moduli spaces. Let us now introduce the deformation of a split almost
polynomial sheaf of rings of differential operators (cf. Definition 3.6) to its associated graded ring,
as described in [Sim94, p. 86].

Let L = (V, [· , ·], δ) be a Lie algebroid over X and let ΛL be its associated split almost polynomial
sheaf of rings of differential operators. By construction, we know that

Gr•(ΛL) ∼= Sym•(V ).

We can associate to ΛL a sheaf of rings of differential operators Λred
L on X × C over C whose fiber

over 1 is ΛL and whose fiber over 0 is isomorphic to its graded algebra Sym•(V ). Let λ be the
coordinate of C and let pX : X × C → X be the projection. We define Λred

L as the subsheaf of
p∗X(ΛL) generated by sections of the form

∑
i≥0 λ

iui, where ui is a local section of ΛL,i ⊆ ΛL. This
subsheaf is a sheaf of filtered algebras on X × C over C, which coincides with the Rees algebra
construction of the sheaf of filtered algebras Λ and one can verify that it satisfies all properties of
Definition 3.6, making it a sheaf of rings of differential operators on X × C over C.

On the other hand, given the Lie algebroid L = (V, [· , ·], δ) and λ ∈ C, we can define another Lie
algebroid Lλ as

(3.14) Lλ = (V, λ[· , ·], λδ),

Then, the following can be checked through direct computation

(3.15) Λred
L |X×{λ}

∼= ΛLλ
.

Observe that if λ 6= 0 then multiplicacion by λ defines an isomorphism of Lie algebroids

Lλ
∼
−→ L, v 7→ λv
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and for λ = 0, we have that L0 = (V, 0, 0) is the trivial algebroid over V . This implies the following
properties of the fibers of Λred

L over λ ∈ C which are also well known consequences of the Rees
construction.

(1) For every λ 6= 0 we have Λred
L |X×{λ}

∼= Λred
L |X×{1}

∼= ΛL.

(2) If λ = 0 then Λred
L |X×{0}

∼= Gr•(ΛL) ∼= Sym•(V ).

Now, consider the moduli spaceMΛred
L

(r, d) of Λred
L -modules of rank r and degree d. By Simpson’s

construction, it is a quasiprojective variety with a map

(3.16) π :MΛred
L

(r, d) −→ C

and, by (3.15), it parametrizes S-equivalence classes of triples (E,∇Lλ
, λ) where λ = π(E,∇Lλ

, λ) ∈
C and (E,∇Lλ

) is a semistable integrable Lλ-connection of rank r and degree d on X. By properties
(1) and (2) above, it becomes clear that
(3.17)
π−1(λ) =MΛLλ

(r, d) ∼=MΛL
(r, d) = π−1(1), for every λ ∈ C∗ and π−1(0) ∼=MV ∗(r, d).

soMΛred
L

(r, d) is a variety which “interpolates” between the moduli space lf L-connections and the

moduli space of V ∗-twisted Higgs bundles.
Let us explore more precisely what is an Lλ-connection, for Lλ as in (3.14). By (3.1) and

(3.2) we see that if (Ω•
L, dL) is the Chevalley–Eilenberg–de Rham complex of L, then Ω•

Lλ
= Ω•

L

and (Ω•
Lλ
, λdL) is the Chevalley–Eilenberg–de Rham complex of Lλ. Hence, in an Lλ-connection

(E,∇Lλ
), the map ∇Lλ

: E → E ⊗ V ∗ verifies

(3.18) ∇Lλ
(fs) = f∇Lλ

(s) + λs⊗ dL(f).

Motivated by the classical example of a λ-connection on an algebraic vector bundle E (see
the example below), we also call a Lλ-connection to be a (λ,L)-connection, and consider it as a
triple (E,∇L, λ), where ∇L : E → E ⊗ V ∗ verifies (3.18). Then we identify MΛred

L

(r, d) with the

moduli space of (λ,L)-connections and, in analogy with the terminology for the moduli space of
λ-connections, we call it the L-Hodge moduli space.

Example 3.17.

(1) A (λ,TX)-connection is a λ-connection on an algebraic vector bundle E.
(2) An L-connection is a the same thing as a (1,L)-connection.
(3) For L = (V, [· , ·], δ), a (0,L)-connection is a V ∗-twisted Higgs bundle.

The moduli spaceMΛred
L

(r, d) is endowed with a C∗-action scaling the (λ,L)-connection,

(3.19) t · (E,∇L, λ) = (E, t∇L, tλ), t ∈ C.

Indeed, since (E,∇L) is flat and semistable, then so is (E, t∇L) for every t. Furthermore, (E, t∇Lλ
)

is a (tλ,L)-connection. Thus the map π is C∗-equivariant with respect to this C∗-action and the
standard one on C.

Note that for λ = 0, the action (3.19) restricts to the usual C∗-action on the Higgs bundle moduli
space by scaling the Higgs field (cf. (5.8)), and which will play an important role in section 6.

Finally, observe that since it is clear that (E, t∇L, t) is semistable if and only if (E,∇L, 1) is, so
the C∗-action (3.19) induces an isomorphism

π−1(C∗) ∼= π−1(1)× C∗ =MΛL
(r, d) × C∗
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4. Grothendieck ring of varieties, motives and E-polynomials

4.1. Grothendieck ring of varieties, motives and E-polynomials. The main goal of this
paper is to compare the class of the moduli spacesMΛL

(r, d) in the Grothendieck ring of varieties
by varying the Lie algebroid L. In this brief section we recall such ring and its basic properties.

Denote by VarC the category of quasi-projective varieties over C. For each Y ∈ VarC, let [Y ]
denote the corresponding isomorphism class. Consider the group obtained by the free abelian group
on isomorphism classes [Y ], modulo the relation

[Y ] = [Y ′] + [Y \ Y ′],

where Y ′ ⊂ Y is a Zariski-closed subset. In particular, in such group,

[Y ] + [Z] = [Y ⊔ Z],

where ⊔ denotes disjoint union. If we define the product

[Y ] · [Z] = [Y × Z],

in this quotient, then we obtain a commutative ring, known as the Grothendieck ring of varieties
and denoted by K(VarC). Then 0 = [∅] and 1 = [Spec(C)] are the additive and multiplicative units
of this ring.

The following is an extremely useful property of K(VarC), which follows directly from the defi-
nitions, and which we will repeatedly use without further notice.

Proposition 4.1. If π : Y → B is an algebraic fiber bundle (thus Zariski locally trivial), with fiber
F , then [Y ] = [F ] · [B].

The class of the affine line, sometimes called the Lefschetz object, is denoted by

L := [A1] = [C].

Of course, Ln = [An] = [Cn]. We will consider the localization K(VarC)[L
−1], and then the

dimensional completion

K̂(VarC) =




∑

r≥0

[Yr]L
−r

∣∣∣∣∣∣
[Yr] ∈ K(VarC) with dimYr − r −→ −∞



 .

Notice that we have a map K(VarC) −→ K̂(VarC). Observe also that Ln − 1 is invertible in

K̂(VarC), for every n, with inverse equal to −
∑∞

k=0 L
−kn. This is the reason why we had to

introduce the completion K̂(VarC): there will be computations in which we will need to invert
elements of the form Ln or Ln − 1.

In this paper, by motive we mean the following.

Definition 4.2. Let Y be a quasi-projective variety. The class [Y ] in K(VarC) or in K̂(VarC) is
called the motive, or motivic class, of Y .

There are other notions of motive in different, but related, categories, such as Chow motive or
Voevodsky motive. These will not appear anywhere in this paper, except in section 7.2.

The motive [Y ] is an important invariant of Y , from which it is possible to read of geometric
information, such as the E-polynomial. If Y ∈ VarC is d-dimensional variety, with pure Hodge
structure, then its E-polynomial is defined as

E(Y ) = E(Y )(u, v) =

d∑

i=0

hp,qc (Y )upvq,



LIE ALGEBROID CONNECTIONS, TWISTED HIGGS BUNDLES AND MOTIVES OF MODULI SPACES 17

where hp,qc (Y ) stands for the dimension of the compactly supported cohomology groups Hp,q
c (Y ).

For instance, E(C) = uv. Actually, the E-polynomial can be seen as a ring map

(4.1) E : K̂(VarC) −→ Z[u, v]

[[
1

uv

]]

with values in the Laurent series in uv, which takes values in Z[u, v] when restricted to K(VarC).
Hence two varieties with the same motive have the same E-polynomial. In particular, Y ′ ⊂ Y is a
closed subvariety, then E(Y ) = E(Y ′) + E(Y \ Y ′) and for an algebraic fiber bundle Y → B with
fiber F , we have E(Y ) = E(F )E(B).

4.2. The plan. The goal of this paper is to prove that given any two rank 1 Lie algebroids L and
L′, over the genus g curve X, such that deg(L) = deg(L′) < 2− 2g, we have an equality of motivic
classes

[MΛL
(r, d)] = [MΛL′ (r, d)] ∈ K̂(VarC),

where d is coprime with r. We will prove this in two steps.
Take any rank 1 Lie algebroid L = (L, [· , ·], δ) with deg(L) < 2−2g on X. Take r ≥ 1 and d ∈ Z

such that (r, d) = 1. We first prove that, under the given assumptions, the motive of the moduli
space of L-connections is invariant with respect to the Lie algebroid structure on L, i.e., that the
motive of the moduli space of rank r and degree d flat L-connections is the same as the motive of
the moduli space of flat L0 = (L, 0, 0)-connections (i.e., of flat (0,L)-connections) of the same rank
and degree, which just means the moduli space of L−1-twisted Higgs bundles or rank r and degree
d,

[MΛL
(r, d)] = [ML−1(r, d)].

Then, we prove that [ML−1(r, d)] is also invariant with respect to the choice of the twisting line
bundle L−1 as long as we fix its degree. Thus, we prove that for any pair of line bundles L,L′ with
deg(L) = deg(L′) < 2− 2g and any d coprime with r we have

[ML−1(r, d)] = [ML′−1(r, d)].

Combining the two results we conclude that

[MΛL
(r, d)] = [MΛL′ (r, d)],

for every L and L′ of degree less than 2− 2g and every d and r coprime.
In particular, such equalities imply by (4.1) that the E-polynomials of these moduli spaces are

also equal. Then, we can go further by using results by Maulik–Shen [MS20a] or of Groechening,
Wyss and Ziegler [GWZ20] which imply that for every line bundle N → X such that deg(N) >
2g − 2, and every d and d′ coprime with r, we have

E(MN (r, d)) = E(MN (r, d
′)).

Hence, this implies, together with the above equality of motivic classes, that

E(MΛL
(r, d)) = E(MΛL′ (r, d

′)),

for every L and L′ of degree less than 2− 2g and every d and d′ coprime to r.

5. Invariance of the motive and E-polynomial with respect to the algebroid
structure

As outlined in the previous section, our first objective is to prove that the motive (and, thus,
the E-polynomial) of the moduli space of L-connections is invariant with respect to the algebroid
structure by proving that given a rank 1 algebroid L = (L, [· , ·], δ) such that deg(L) < 2 − 2g we
have

[MΛL
(r, d)] = [ML−1(r, d)]
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In order to prove it, we will generalize the strategy used by Hausel and Rodriguez-Villegas to
show that the moduli spaces of Higgs bundles and certain logarithmic connections share the same
E-polynomials [HRV15] by using the semiprojectivity of the Hodge moduli space (moduli space of
λ-connections). In our case, we will show that for every algebroid L satisfying the given hypothesis
the moduli spaceMΛred

L

(r, d) is a smooth semiprojective variety over C which interpolates between

MΛL
(r, d) and ML−1(r, d)]. The C∗-action on this moduli space induces Bialynicki-Birula strat-

ifications on ML−1(r, d) and MΛred
L

(r, d) which allow us to decompose the corresponding motives

and prove the desired motivic equality.
In order to follow this approach on motivic classes (Hausel and Rodriguez-Villegas results were

explicit equalities of Hodge structures), we will first explore some results on motivic decompositions
of semiprojective varieties. Then we will prove the regularity properties of each of the involved
moduli spaces needed to guarantee that the interpolating scheme is a semiprojective variety inducing
the desired motivic equality.

5.1. Bialynicki-Birula stratification. Let Y be a smooth quasi-projective variety endowed with
an algebraic C∗-action, denoted as Y → Y , x 7→ t · x, x ∈ Y , t ∈ C∗.

Definition 5.1. [HRV15, Definition 1.1] The variety Y is semiprojective if the following conditions
are satisfied:

(1) for each x ∈ Y the limit limt→0 t · x exists in Y ;
(2) the fixed-point locus of the C∗ action Y C∗

is proper.

Every semiprojective variety Y admits a canonical stratification as follows. Let

Y C∗

=
⋃

µ∈I

Fµ

be the decomposition of the C∗-fixed-point loci into connected components. Then, for each Fµ, we
can consider the subsets

U+
µ = {x ∈ M| lim

t→0
t · x ∈ Fµ} and U−

µ = {x ∈ M| lim
t→∞

t · x ∈ Fµ}.

By (1) of Definition 5.1, every point in Y belongs to exactly one of the subsets U+
µ , hence there is

a decomposition

Y =
⋃

µ∈I

U+
µ ,

called the Bialynicki-Birula decomposition of Y .
The arguments in [BB73, SS4], [Kir84] and [HRV15, SS1] prove the following lemma (see [HL19,

Apendix A] for a compact complete proof).

Lemma 5.2. Using the above notations, the following properties hold.

(1) For every µ ∈ I, the map U+
µ → Fµ defined by x 7→ limt→0 t ·x and the map U−

µ → Fµ given
by x 7→ limt→∞ t · x are Zariski locally trivial fibrations in affine spaces.

(2) For every µ ∈ I, U+
µ is a locally closed subset of Y .

(3) There exists an order of the components {µi}
n
i=1 such that

0 ⊂ U+
µ1 ⊂ . . . ⊂

⋃

i≤j

U+
µi ⊂ . . . ⊂

n⋃

i=1

U+
µi = Y

is a stratification of Y .
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For each p ∈ Fµ the tangent space TpY splits as follows

TpY = Tp(U
+
µ |p)⊕ TpFµ ⊕ Tp(U

−
µ |p).

Define

(5.1) N+
µ = dimTp(U

+
µ |p), N0

µ = dimTpFµ and N−
µ = dimTp(U

−
µ |p).

Clearly N+
µ = dim(U+

µ ) − dim(Fµ) is the rank of the affine bundle U+
µ → Fµ and, as we assumed

that Y is smooth,

(5.2) N+
µ +N0

µ +N−
µ = dimY.

Lemma 5.3. Let Y be a smooth complex semiprojective variety and consider the above notations.
Then the motivic class of Y decomposes as

[Y ] =
∑

µ∈I

LN
+
µ [Fµ].

Proof. As Y is semiprojective, we have a Bialynicki-Birula decomposition which, in virtue of prop-
erties (2) and (3) of Lemma 5.2, forms a stratification

0 ⊂ U+
µ1 ⊂ . . . ⊂

⋃

i≤j

U+
µi ⊂ . . . ⊂

n⋃

i=1

U+
µi = Y.

As the Grothendieck class is additive on closed subvarieties, we have

(5.3) [Y ] =
∑

µ∈I

[U+
µ ].

By property (1) of Lemma 5.2, each µ ∈ I is a Zariski locally trivial affine fibration over Fµ whose
fiber has dimension N+

µ , so we have

(5.4) [U+
µ ] = [CN

+
µ ][Fµ] = LN

+
µ [Fµ].

Now, (5.3) and (5.4) prove the lemma. �

On the other hand, we have the following proposition that is a generalization for motives of
[HRV15, Corollary 1.3.3].

Proposition 5.4. Let Y be a smooth complex semiprojective variety together with a surjective C∗-
equivariant submersion π : Y → C covering the standard scaling action on C. Then in K̂(VarC)
we have

[π−1(0)] = [π−1(1)] and [Y ] = L[π−1(0)].

Proof. Clearly, the fixed-point locus of Y is concentrated in π−1(0). As π−1(0) is a smooth closed
subspace of Y , then π−1(0) is also a smooth semiprojective variety. Moreover, since π is C∗-
equivariant, then the fixed points of the C∗-action on Y are precisely those of π−1(0). Let

Y C∗

= π−1(0)C
∗

=
⋃

µ∈I

Fµ

be the decomposition of the fixed-point locus into connected components. As we have discussed
above, both Y and π−1(0) admit Bialynicki-Birula stratifications of the form

Y =
⋃

µ∈I

Ũ+
µ and π−1(0) =

⋃

µ∈I

U+
µ ,

where

Ũ+
µ =

{
p ∈ Y

∣∣∣ lim
t→0

t · p ∈ Fµ
}

and U+
µ =

{
p ∈ π−1(0)

∣∣∣ lim
t→0

t · p ∈ Fµ
}
.
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Moreover, Ũ+
µ and U+

µ are affine bundles over Fµ of rank Ñ+
µ and N+

µ respectively. On the other
hand, let

Ũ−
µ =

{
p ∈ Y

∣∣∣ lim
t→∞

t · p ∈ Fµ
}

and U−
µ =

{
p ∈ π−1(0)

∣∣∣ lim
t→∞

t · p ∈ Fµ
}
.

Then Ũ−
µ and U−

µ are also affine bundles over Fµ, of rank Ñ
−
µ and N−

µ respectively, and we have

the following decomposition of the tangent spaces TpY and Tp(π
−1(0)) at each p ∈ Fµ,

TpY = Tp(Ũ
+
µ |p)⊕ Tp(Ũ

−
µ |p)⊕ TpFµ and Tp(π

−1(0)) = Tp(U
+
µ |p)⊕ Tp(U

−
µ |p)⊕ TpFµ.

Using the smoothness assumption, this yields

(5.5) dimY = Ñ+
µ + Ñ−

µ + dim(Fµ) and dimπ−1(0) = N+
µ +N−

µ + dim(Fµ).

Since C∗-action contracts the points of Y to the 0 fibre of π−1(0), then, for each µ ∈ I, all the
points points p of Y such that limt→∞ t · p ∈ Fµ must lie in π−1(0). Thus Ũ−

µ = U−
µ and we have

Ñ−
µ = N−

µ . On the other hand, as π : Y → C is a submersion of smooth varieties, we have that

dimY = dimπ−1(0) + 1, so from (5.5) we conclude that for each µ we have

(5.6) Ñ+
µ = N+

µ + 1.

Thus, using the Bialynici-Birula decompositions of Y and π−1(0), we can apply Lemma 5.3 to

decompose the corresponding motives as [π−1(0)] =
∑

µ∈I L
N+

µ [Fµ], and

(5.7) [Y ] =
∑

µ∈I

LÑ
+
µ [Fµ] = L[π−1(0)].

On the other hand, the C∗-action yields an isomorphism π−1(C∗) ∼= π−1(1)×C∗, so we can write

[Y ] = [π−1(0)] + [π−1(C∗)] = [π−1(0)] + (L − 1)[π−1(1)],

and, by (5.7), this shows that [π−1(1)] = [π−1(0)] in K̂(VarC). �

5.2. Semiprojectivity of the moduli space of Higgs bundles. Let L be a line bundle over
the genus g curve X. In this section we show the well-known fact that the moduli spaceML(r, d)
of L-twisted Higgs bundles over X is a smooth semiprojective variety, under the usual conditions
on the degree of L and on r and d. In the next section, we will prove the analogous result for the
L-Hodge moduli space and that will a more substantial amount of work.

The moduliML(r, d) admits a natural C∗-action by scaling the Higgs field

(5.8) t · (E,ϕ) = (E, tϕ).

Note that this is a particular case of (3.19).
Recall now the Hitchin map from (2.1). Then the Hitchin base W =

⊕r
i=1H

0(Li) also admits a
natural C∗-action given by

t · (s1, . . . , sr) = (ts1, t
2s2, . . . , t

rsr),

which makes the Hitchin map H :ML(r, d)→ W a C∗-equivariant map.
Let us first prove that the C∗-action onML(r, d) verifies the first condition on Definition 5.1.

Lemma 5.5. Let (E,ϕ) be a semistable Higgs bundle on X. Then the limit limt→0(E, tϕ) exists
in ML(r, d).

Proof. As H :ML(r, d)→ W is C∗-equivariant, we have

lim
t→0

H(E, tϕ) = lim
t→0

t ·H(E,ϕ) = 0,
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thus the map C∗ → W given by t 7→ H(E, tϕ) extends to C → W . By Lemma 2.4, H is proper,
so by the valuative criterion of properness the map C∗ →ML(r, d) given by t 7→ (E, tϕ) must also
extend to a map C→ML(r, d), thus providing the desired limit. �

Now we consider the second condition on Definition 5.1.

Lemma 5.6. The fixed-point set of the C∗-action on MV (r, d) is a proper scheme contained in
H−1(0).

Proof. Since the Hitchin map H is C∗-equivariant, the fixed-point setML(r, d)
C∗

must be a closed
subset of H−1(WC∗

) = H−1(0). By Lemma 2.4, H is proper, so H−1(0) is proper and hence so is
ML(r, d)

C∗

. �

Proposition 5.7. Suppose that r and d are coprime. Suppose the line bundle L is such that
deg(L) > 2g − 2. Then the moduli space ML(r, d) is a smooth complex semiprojective variety.

Proof. By Lemma 2.2 the moduli spaceML(r, d) is a smooth complex variety. Then Lemmas 5.5
and 5.6 prove that the action t · (E,ϕ) = (E, tϕ) satisfies the semiprojectivity conditions. �

5.3. Semiprojectivity of the moduli space of Λred
L -modules. Our aim in this section is to

prove that the L-Hodge moduli spaceMΛred
L

(r, d) is also a smooth semiprojective variety, whenever

rk(L) = 1, deg(L) < 2− 2g and r and d are coprime. This is going to take considerably more effort
than the case of Higgs bundles from the previous section. In particular, we will need to explicitly
use both interpretations, provided by Theorem 3.10, of the points parameterized by MΛred

L

(r, d),

namely semistable Λred
L -modules and semistable (λ,L)-connections (which are automatically flat

since rk(L) = 1). For instance, the proof that condition (1) of Definition 5.1 is goint to be proved
by closely following an argument by Simpson, via Λ-modules, but all the arguments required to
prove smoothness of the moduli will be carried out by taking the L-connections point of view,
because the deformation theory of such objects has been developed, contrary to the deformation
theory of Λ-modules.

Recall the C∗-action (3.19) on the L-Hodge moduli spaceMΛred
L

(r, d) by sending

t · (E,∇L, λ) 7→ (E, t∇L, tλ).

We will show that with this C∗-actionMΛred
L

(r, d) becomes a smooth semiprojective variety. Recall

also the surjective map π :MΛred
L

(r, d) → C defined in (3.16).

Lemma 5.8. Let L be any Lie algebroid on X. Let (E,∇L, λ) ∈ MΛred
L

(r, d) be any (λ,L)-

connection. Then the limit limt→0(E, t∇L, tλ) exists in π−1(0) ⊂MΛred
L

(r, d).

Proof. The proof is analogous to [Sim97, Corollary 10.2]. We will use (3.13) to consider the ΛLλ
-

module (E,∇ΛL
, λ), with ∇ΛL

: ΛLλ
⊗E → E, instead of the (λ,L)-connection (i.e. Lλ-connection)

(E,∇L, λ).
Consider the C∗-flat family of relative Λred

L |X×C∗-modules over πC : X×C→ C, where πC(x, t) =
tλ, given by (

E ,∇Λred
L

)
= (π∗XE, tπ

∗
X∇ΛL

) ,

where πX : X×C∗ → X is the projection. For t 6= 0, the generic fibre of the family is semistable, as
for any t 6= 0 we clearly have that the corresponding (tλ,L)-connection (E, t∇L, tλ) is semistable
if and only if (E,∇L, λ) is semistable. By [Sim97, Theorem 10.1], there exists a family (E ,∇Λred

L

)

of Λred
L -modules over πC : X × C → C, flat over C, such that (E ,∇Λred

L

)|X×C∗
∼= (π∗XE, t∇ΛL

) and

such that (E ,∇Λred
L

)|X×{0} is semistable. Thus, (E ,∇Λred
L

)|X×{0} ∈ π
−1(0) is the limit at t = 0 of

the C∗-orbit of (E,∇L, λ) inMΛred
L

(r, d). �
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Now we will focus on the regularity of the L-Hodge moduli space. Now we will use L-connections
in our study. We start with a simple lemma.

Lemma 5.9. Let L be any Lie algebroid on the curve X, and let (E,∇L) and (E′,∇′
L) be semistable

L-connections.

(1) If µ(E) > µ(E′) then Hom((E,∇L), (E
′,∇′

L)) = 0.
(2) Suppose (E,∇L) and (E′,∇′

L) are stable and µ(E) = µ(E′). Let ψ ∈ Hom((E,∇L), (E
′,∇′

L))
be a non-zero map. Then it is an isomorphism.

(3) If (E,∇L) is stable, then its the only endomorphisms are the scalars, i.e. End(E,∇L) ∼= C.

Proof. The proof is classical. (1) and (2) are completely analogous to [BGL11, Lemma 3.2]. To
prove (3), let α : (E,∇L) → (E,∇L) be any endomorphism. Choose any point x ∈ X. Then
α induces an endomorphism of the fiber Ex. Let λ ∈ C be an eigenvalue of such morphism. As
∇L is C-linear, then α − λ Id ∈ End(E,∇L). By (2), we know that this map is either zero or an
isomorphism. Nevertheless, we know that λ is an eigenvalue of αx, so α − λ Id has a nontrivial
kernel at the fiber over x and, therefore, it cannot be an isomorphism. Thus, α − λ Id = 0, so
α = λ Id. �

Given any Lie algebroid L, the deformation theory of flat L-connections was studied in Chapter 5
of [Tor11]. In particular, it follows from Theorem 47 of loc. cit. that that the Zariski tangent space
to the moduli space at an integrable L-connection (E,∇L) is isomorphic to H1(X,C•(E,∇L)),
where C•(E,∇L) is the complex

(5.9) C•(E,∇L) : End(E)
[−,∇L]
−→ End(E)⊗ Ω1

L
[−,∇L]
−→ . . .

[−,∇L]
−→ End(E)⊗ Ω

rk(L)
L

and that the obstruction for the deformation theory lies in H2(X,C•(E,∇L)).
In the next lemma we only consider rank 1 Lie algebroids.

Lemma 5.10. Let L be Lie algebroid of rank 1 on X and let (E,∇L) be a stable L-connection of
rank r and degree d. Then the dimension of the Zariski tangent space to MΛL

(r, d) at (E,∇L) is
given by

dimT(E,∇L)MΛL
(r, d) = 1− r2 deg(L) + dim

(
H2(C•(E,∇L))

)
.

Proof. Since rk(L) = 1, then the deformation complex (5.9) only has two terms,

C•(E,∇L) : End(E)
[−,∇L]
−→ End(E)⊗ Ω1

L,

thus the hypercohomology of the complex C•(E,∇L) fits in the following exact sequence

0 −→ H0(C•(E,∇L)) −→ H0(End(E)) −→ H0(End(E)⊗ Ω1
L) −→

H1(C•(E,∇L)) −→ H1(End(E)) −→ H1(End(E)⊗ Ω1
L) −→ H2(C•(E,∇L)) −→ 0.

Therefore,

dim(H1(C•(E,∇L))) = dim(H0(C•(E,∇L)))+dim(H2(C•(E,∇L)))+χ(End(E)⊗Ω1
L)−χ(End(E)).

We can compute each term in the previous expression working in an analogous way to [BGL11,
Proposition 3.3]. By construction, H0(C•(E,∇L)) corresponds to sections of End(E) belonging
to the kernel of the commutator [−,∇L], so H0(C•(E,∇L)) ∼= H0(End(E,∇L)). By stability of
(E,∇L), point (3) of Lemma 5.9 shows that dim(H0(C•(E,∇L))) = dim(H0(End(E,∇L))) = 1.
On the other hand, χ(End(E)) = r2(1− g) and χ(End(E)⊗Ω1

L) = −r
2 deg(L) + r2(1− g). Hence

dimT(E,∇L)MΛL
(r, d) = dim(H1(C•(E,∇L))) = 1− r2 deg(L) + dim

(
H2(C•(E,∇L))

)
,

as claimed. �
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Let L = (V, [· , ·], δ) be any Lie-algebroid on X, so no constrains on the algebraic vector bundle V .
Recall the associated Lie algebroid Lλ given by (3.14). Then L0 = (V, 0, 0) is the trivial algebroid
with underlying bundle V . Now we aim to study the first order deformations of a semistable
integrable L0-connection (E,∇L0) of rank r and degree d (i.e. a semistable V ∗-twisted Higgs
bundle) inside the not just of π−1(0) =MΛL0

(r, d) =MV ∗(r, d) but, rather insider the L-Hodge

moduli spaceMΛred
L

(r, d). So we allow deformations of (E,∇L0) not only along π−1(0) but also to

π−1(λ) for some λ 6= 0. Recall that here π :MΛred
L

(r, d)→ C is the projection (3.16).

Lemma 5.11. Let L = (V, [· , ·], δ) be any Lie algebroid. Then the Zariski tangent space to the
L-Hodge moduli space MΛred

L

(r, d) at a point (E,∇L, 0) lying over the 0 fiber is

T(E,∇L,0)MΛred
L

(r, d) ∼=



(c, C, λε) ∈

(
C1(U ,End(E))×
C0(U ,End(E)⊗ ΩL)× C

)∣∣∣∣∣∣

∂c = 0

∂C = ∇̃Lc+ λεω

∇̃LC = −λεdL(∇L)





{
(∂η, ∇̃Lη, 0)

∣∣∣ η ∈ C0(U ,End(E))
}

where U = {Uα} is an open cover of X such that E is trivial over each open subset Uα, where
ω ∈ C1(U ,End(E)⊗ΩL) is some 1-cocycle. Moreover, if π :MΛred

L

(r, d) −→ C is the map sending

(E,∇L, λ) to λ then its differential dπ : T(E,∇L,0)MΛred
L

(r, d) −→ C is just [(c, C, λε)] 7→ λε.

Proof. We will proceed analogously to [Tor11, §5.2]. Let (E,∇L, 0) ∈ π
−1
λ (0). Then, by definition,

(E,∇L) is a V
∗-twisted semistable Higgs bundle. Fix an open cover U = {Uα} of X such that E is

trivial over each open subset Uα. We will use the usual notation Uαβ := Uα∩Uβ, etc. to denote the
intersections of the open subsets. For each α and β, let gαβ : Uαβ −→ GL(r,C) be the transition
functions of E, and let Gα be the matrix valued function representing the Higgs field ∇L in the
local coordinates over Uα.

The first order deformations of (E,∇L) are given by families of Λred
L -module over each Spec(C[ε]/ε2) −→

Spec(C[λ]). The possible maps Spec(C[ε]/ε2) −→ Spec(C[λ]) are given by the choice of the image
of ε, which must be of the form λελ for some λε ∈ C. Fix the value λε. Then a family over
Spec(C[ε]/ε2) −→ Spec(C[λ]) for that parameter λε is a triple (E′,∇′

L, λεε) such that E′ is a vector
bundle over X ×Spec(C[ε]/ε2) and ∇′

L is a (λεε,L)-connection over E′. Relative to the open cover
{Uα × Spec(C[ε]/ε2)}, we can write the transition functions of E′ as

g′αβ = gαβ + εg1αβ ,

where g1αβ ∈ OX(Uαβ)× glr. Similarly, we can write locally ∇′
L over Uα as

∇′
L,α = λεεdL +Gα + εG1

α,

where G1
α ∈ ΩL(Uα)⊗ glr.

Moreover, define the 1-cocycle c ∈ C1(U ,End(E)) in the following way. Given an isomorphism
For each Uαβ, let

(5.10) (cαβ)
(α) = g1αβgβα,

where we use the notation (−)(α) to denote the matrix with respect to the basis given by the
trivialization over Uα.

Since E and E′ are vector bundles, the following equations must be satisfied:

gαβgβα = 1, g′αβg
′
βα = 1, gαβgβγgγα = 1 and g′αβg

′
βγg

′
γα = 1.

A direct computation with the first two equations yields g1βα = −gβαg
1
αβgβα, thus

(5.11) c
(α)
βα = gαβc

(β)
βα gβα = gαβg

1
βα = −g1αβgβα = −c

(α)
αβ .
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On the other hand, the last couple of equations imply g1αβgβγgγα+ gαβg
1
βγgγα+ gαβgβγg

1
γα = 0. We

can rewrite each summand of the last equation in terms of the cocycle c as follows

g1αβgβγgγα = g1αβgβα = c
(α)
αβ , gαβg

1
βγgγα = gαβg

1
βγgγβgβα = c

(α)
βγ and gαβgβγg

1
γα = gαγg

1
γα = c(α)γα .

Thus, we obtain

(5.12) c
(α)
αβ + c

(α)
βγ + c(α)γα = 0,

so c ∈ C1(U ,End(E)) in (5.10) is a closed 1-cocycle.
On the other hand, as (E,∇L) is a V ∗-twisted Higgs bundle and (E′,∇′

L, λεε) is a (λεε,L)-
connection, then, on Uαβ , we must have ∇L,β = gβα∇L,αgαβ and ∇′

L,β = gβα∇
′
L,αgαβ . Expanding

each side of the last expression and taking into account that ε2 = 0 we obtain

λεεdL +Gβ + εG1
β = g′βα(λεεdL +Gα + εG1

α)g
′
αβ

= λεεdL + λεεgβαdLgαβ + gβαGαgαβ + ε
(
g1βαGαgαβ + gβαG

1
αgαβ + gβαGαg

1
αβ

)
,

hence we conclude that

(5.13) G1
β = g1βαGαgαβ + gβαG

1
αgαβ + gβαGαg

1
αβ + λεgβαdLgαβ .

Define the 0-cocycle C ∈ C0(U ,End(E)⊗ ΩL) by taking

C(α)
α = G1

α,

for each α. Then, the equality (5.13) written in terms of the cocycles c and C, reads as

C
(α)
β = gαβG

1
βgβα

= gαβg
1
βαGα +G1

α +Gαg
1
αβgβα + λε(dLgαβ)gβα

= −c
(α)
αβGα + C(α)

α +Gαc
(α)
αβ + λε(dLgαβ)gβα

= C(α)
α +

[
Gα, c

(α)
αβ

]
+ λε(dLgαβ)gβα.

Let us finally consider the 1-cocycle ω ∈ C1(U ,End(E)⊗ ΩL) defined as

(5.14) ω
(α)
αβ = (dLgαβ)gβα,

for each α, β. Observe that

(dLgαβ)gβα + gαβ(dLgβα) = dL(gαβgβα) = dL(1) = 0

so dLgβα = −gβα(dLgαβ)gβα, and we get

ω
(α)
βα = gαβ(dLgβα)gαβgβα = gαβ(dLgβα) = −(dLgαβ)gβα = −ω

(α)
αβ ,

thus

(5.15) C
(α)
β − C(α)

α = [Gα, c
(α)
αβ ] + λεω

(α)
αβ .

On the other hand

0 = dL(1)

= dL(gαβgβγgγα)

= (dLgαβ)gβγgγα + gαβ(dLgβγ)gγα + gαβgβγ(dLgγα)

= (dLgαβ)gβα + gαβ(dLgβγ)gγβgβα + gαγ(dLgγα)gαγgγα

= ω
(α)
αβ + ω

(α)
βγ + ω(α)

γα .

ω is hence a closed 1-cocycle.
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Finally, flatness of ∇L and ∇′
L implies that for each α we have 0 = ∇2

L,α = Gα ∧Gα and

0 = (∇′
L,α)

2 = (λεεdL +Gα + εG1
α)

2 = λεεdL(Gα) +Gα ∧Gα + εGα ∧G
1
α + εG1

α ∧Gα.

Denote by dL(∇L) ∈ C
0(U ,End(E) ⊗ Ω2

L) the 0-cocycle defined locally as dL(∇L)
(α) = dL(Gα).

Then, we can write the previous equation in terms of C and dL(∇L) as follows. The flatness
equations yield Gα ∧G

1
α +G1

α ∧Gα = −λεdL(Gα), so

(5.16) ∇̃LC
(α)
α = −λεdL(∇L)

(α).

where ∇̃L = [−,∇L] : End(E) → End(E) ⊗ ΩL is the induced map on End(E) by ∇L. We
can express equations (5.11), (5.12), (5.15) and (5.16) globally as follows. Each deformation of
(E,∇L, 0) is given by a triple

(c, C, λε),

with c ∈ C1(U ,End(E)), C ∈ C0(U ,End(E)⊗ ΩL) and λε ∈ C, such that

(5.17)





∂c = 0

∂C = ∇̃Lc+ λεω

∇̃LC = −λεdL(∇L).

On the other hand, two such triples (c, C, λε) and (c̄, C̄, λ̄ε) give rise to equivalent deformations

(E′,∇′
L, λε) and (E

′
,∇

′
L, λ̄ε) of (E,∇L, 0) if and only if λε = λ̄ε and there exists a 0-cocycle of

local automorphisms ξα : Uα × Spec(C[ε]/ε2)→ GLr of the form ξα = Id+εηα with ηα : Uα → glr
such that

(5.18) g′αβ(g
′
αβ)

−1 = ξβξ
−1
α

and

(5.19) ∇
′
L,α = ξ−1

α ∇
′
L,αξα.

Here, following the previous notation, we write E
′
and∇

′
L locally in the corresponding trivialization

over U as

g′αβ = gαβ + εg1αβ = gαβ + εg1αβ and ∇
′
L,α = λ̄εεdL +Gα + εG

1
α = λεεdL +Gα + εG

1
α.

We have that ξβξ
−1
α = (Id+εηβ)(Id−εηα) = Id+ε (ηβ − ηα) and

g′αβ(g
′
αβ)

−1 = (gαβ + εg1αβ)(gβα + εg1βα) = Id+ε(gαβg
1
βα + g1αβgβα) = Id+ε(cαβ − cαβ).

From (5.18), we obtain cαβ − cαβ = ηβ − ηα, so c− c = ∂η. On the other hand,

ξ−1
α ∇

′
L,αξα = λεεdL + λεε(Id−εηα)dL(Id+εηα) + (Id−εηα)Gα(Id+εηα) + ε(Id−εηα)G

1
α(Id+εηα)

= λεεdL +Gα + ε
(
Gαηα − ηαGα +G1

α

)
.

Hence, (5.19) yields G
1
α = [Gα, ηα] + G1

α or, equivalently, Cα − Cα = [Gα, ηα] = ∇̃Lηα, and thus,

C − C = ∇̃Lη. We finally conclude that the deformation space ofMΛred
L

(r, d) at (E,∇L, 0) is

T(E,∇L,0)MΛred
L

(r, d) ∼=



(c, C, λε) ∈

(
C1(U ,End(E))×
C0(U ,End(E)⊗ ΩL)× C

)∣∣∣∣∣∣

∂c = 0

∂C = ∇̃Lc+ λεω

∇̃LC = −λεdL(∇L)





{
(∂η, ∇̃Lη, 0)

∣∣∣ η ∈ C0(U ,End(E))
}

and the map dπ : T(E,∇L,0)MΛred
L

(r, d) −→ C is just [(c, C, λε)] 7→ λε. �
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Remark 5.12. While the deformation theory of MΛL
(r, d) is governed by a nice deformation

complex (as expectable for this type of deformation problems), we have not been able to provide, in
general, a natural cohomological interpretation for the deformation theory of MΛred

L

(r, d).

This can, however, be achieved in certain cases. For instance, suppose rk(L) = 1 and suppose
E is a stable vector bundle over X. By Corollary 3.14, E admits an integrable L-connection
∇L,0 : E → E ⊗ ΩL. Let us consider the family (π∗XE,λπ

∗
X∇L,0, λ) over X × C, where πX :

X × C → X is the projection, and consider the infinitesimal family over Spec(C[ε]/ε2) around 0
given by (π∗XE, επ

∗
X∇L,0, ε). We can now express the family locally in a similar way to the previous

Lemma. Given an open cover {Uα × Spec(C[ε]/ε2), let gαβ : Uαβ → GL(r,C) be the transition
functions of E. As ε∇L,0 is an (ε,L)-connection, we can express it locally over Uα as

ε∇L,0,α = εdL + εG1
α

for some G1
α ∈ ΩL(Uα)⊗ glr. As G1

α comes from an actual L-connection, we must have

ε∇L,0,β = gβαε∇L,0,αgαβ

on the overlaps Uαβ . Plugging in the local representation of ∇L yields

εdL + εG1
β = εdL + εgβαdLgαβ + εgβαG

1
αgαβ .

Thus,

gαβG
1
βgβα = dLgαβgβα +G1

α = ω
(α)
αβ +G1

α.

Let Ω ∈ C0(U ,End(E) ⊗ ΩL) be the 0-cocycle defined as Ω
(α)
α = G1

α. Then ω
(α)
αβ = Ω

(α)
β − Ω

(α)
α ,

hence
ω = ∂Ω.

Now, since L has rank 1, the integrability condition is automatic and so

T(E,∇L,0)MΛred
L

(r, d) ∼=

{
(c, C, λε) ∈

(
C1(U ,End(E))×
C0(U ,End(E)⊗ ΩL)× C

)∣∣∣∣
∂c = 0

∂C = ∇̃Lc+ λε∂Ω

}

{
(∂η, ∇̃Lη, 0)

∣∣∣ η ∈ C0(U ,End(E))
} .

Then, the map (c, C, λε) 7→ (c, C − λεΩ, λε) induces an isomorphism

T(E,∇L,0)MΛred
L

(r, d) ∼=

{
(c,D, λε) ∈

(
C1(U ,End(E))×
C0(U ,End(E)⊗ ΩL)× C

)∣∣∣∣
∂c = 0

∂D = ∇̃Lc

}

{
(∂η, ∇̃Lη, 0)

∣∣∣ η ∈ C0(U ,End(E))
}

∼= H1(C•(E,∇L))× C,

yielding the desired cohomological interpretation of the deformation space. It is clear in this case
that H1(C•(E,∇L)) parameterizes the deformations along the fiber p−1

λ (0) of the projection pλ :
MΛred

L

(r, d) → C from (3.16), and C parameterizes the deformations of λ i.e. along the target of
pλ.

However, a vector bundle E need not admit an integrable L-connection and, therefore, the as-
sociated cocycle ω in (5.14) may not be exact. Moreover, for higher rank L, the presence of the
integrability condition breaks the previous trivialization of the deformation theory and the corre-
sponding cohomological description.

We believe that the somehow unnatural presentation of the deformation theory of Lemma 5.11 is
a reflection of the fact that the moduli space of Higgs bundles admits a broader range of deformations
than the ones considered in this section, as suggested in [Tor11, Section 7.3]. More precisely, for
each family of Lie algebroid structures over V , L −→ X × T on T , we obtain a moduli space
MΛL

(r, d) −→ T over T . Each family going through the trivial Lie algebroid (V, 0, 0) gives rise
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to a deformation of the moduli space MV ∗(r, d). More generally, the infinitesimal deformations
of the trivial algebroid structure give rise to deformations of MV ∗(r, d). We expect that if we
considered the whole space of such infinitesimal deformations, then that space would get indeed a
natural cohomological interpretation.

In Lemma 5.11 we are only considering “radial sections” of such deformation space, correspond-
ing to families over C of the form (3.14), therefore obtaining “sections” or “cuts” of the whole
deformation space, and these deformations do not seem to exhibit a cohomological description any-
more.

The preceding Lemmas 5.10 and 5.11 now allow us to show that the L-Hodge moduli space under
the following conditions.

Lemma 5.13. Let r ≥ 1 and d be coprime and L = (L, [· , ·], δ) be a Lie algebroid such that
rk(L) = 1 and deg(L) < 2− 2g. Then:

(1) MΛL
(r, d) is a smooth variety, whose connected components have all dimension 1−r2 deg(L);

(2) MΛred
L

(r, d) is a smooth variety, whose connected components have all dimension 2−r2 deg(L).

Moreover, the map π :MΛred
L

(r, d) → C from (3.16) is a smooth submersion.

Proof. Let us start by proving thatMΛL
(r, d) is a smooth variety of dimension 1− r2 deg(L). Let

(E,∇L) ∈ MΛL
(r, d). Consider the map C∗ → MΛred

L

(r, d) given by t 7→ (E, t∇L, t). By Lemma

5.8, the limit of the C∗-action at zero exists, so this map extends to a curve γ : C →MΛred
L

(r, d),

which is a section of the map π :MΛred
L

(r, d)→ C. Let (E0,∇L,0, 0) := γ(0).

Consider the map ρ : C→ Z given by

ρ(λ) = dim
(
γ∗TMΛred

L

(r, d)
)∣∣∣
λ
.

We know from (3.17) that the C∗-action produces an isomorphism between any nonzero fiber of π
and π−1(1), yielding an isomorphism

π−1(C∗) ∼=MΛL
(r, d) × C∗.

Therefore, for every λ 6= 0 we have

ρ(λ) = dim
(
γ∗TMΛred

L

(r, d)
)∣∣∣
λ
= dimT(E,∇L)MΛL

(r, d) + 1

The map ρ is upper semicontinuous, so applying Lemma 5.10, we get

(5.20) ρ(0) ≥ dimT(E,∇L)MΛL
(r, d) + 1 = 2− r2 deg(L) + dim

(
H2(C•(E,∇L))

)
≥ 2− r2 deg(L).

Note that this is where we used the fact that r and d are coprime, because in such a case every
semistable L-connection is actually stable, so Lemma 5.10 applies at every point ofMΛL

(r, d).
On the other hand, we have that

dimT(E0,∇L,0,0)MΛred
L

(r, d) = dimker dπ + dim Im dπ ≤ dimker dπ + 1.
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The kernel of dπ|(E0,∇L,0,0) can be computed explicitly through our formula for the Zariski tangent
space given in Lemma 5.11

ker dπ|(E0,∇L,0,0)
∼=



(c, C, 0) ∈

(
C1(U ,End(E0))×
C0(U ,End(E0)⊗ ΩL)× C

)∣∣∣∣∣∣

∂c = 0

∂C = ∇̃L,0c

∇̃L0C = 0





{
(∂η, ∇̃L,0η, 0)

∣∣∣ η ∈ C0(U ,End(E0))
}

∼= H1

(
End(E0)

[−,∇L,0]
−→ End(E0)⊗Ω1

L

)

∼= T(E0,∇L,0)ML−1(r, d).

Using Lemma 2.2, we know thatML−1(r, d) is smooth of dimension 1− r2 deg(L), so

dimker dπ|(E0,∇L,0,0) = 1− r2 deg(L)

and, therefore,

(5.21) ρ(0) = dimT(E0,∇L,0,0)MΛred
L

(r, d) ≤ dimker dπ|(E0,∇L,0,0) + 1 ≤ 2− r2 deg(L).

From (5.20) and (5.21), we conclude that

ρ(0) = 2− r2 deg(L),

that is, H2(C•(E,∇L)) = 0 for all (E,∇L) ∈ MΛL
(r, d).

The upshot is that the deformation theory at (E,∇L) is unobstructed and the dimension of the
Zariski tangent space T(E,∇L)MΛL

(r, d) is 1 − r2 deg(L) for each (E,∇L). As a consequence, by

[FM98] the moduli spaceMΛL
(r, d) is a smooth variety of dimension 1− r2 deg(L), completing the

proof of (1).
Let us now consider point (2), i.e. the regularity of the L-Hodge moduli space and the map π.

First note that we have the isomorphism

π−1(C∗) ∼=MΛL
(r, d) × C∗,

and by (1),MΛL
(r, d) is smooth, so π−1(C∗) is also smooth and the map π|π−1(C∗) : π

−1(C∗)→ C∗

is clearly a smooth submersion. Therefore, it is enough to study the deformation of the elements in
the zero fiber of π and then check that the dimension of the corresponding Zariski tangent spaces
coincides with the expected one and that the differential of the map π is surjective at those points.

Let us consider the subvariety

π−1(C∗) ⊂MΛred
L

(r, d)

given by the closure of π−1(C∗) in the L-Hodge moduli. The C∗-flow through any point of
MΛred

L

(r, d) has a limit at 0 in π−1(0), due to Lemma 5.8, so

π−1(0) ∩ π−1(C∗) 6= ∅.

By (1) and (3.17), we have dimπ−1(λ) = 1− r2 deg(L) for every λ 6= 0. Hence, by semicontinuity,

each component of π−1(0) ∩ π−1(C∗) has dimension at least 1 − r2 deg(L). By Lemma 2.2 the
variety π−1(0) =ML−1(r, d) is smooth and connected of dimension 1 − r2 deg(L), so we conclude
that

π−1(0) ∩ π−1(C∗) = π−1(0)

and thus π−1(C∗) =MΛred
L

(r, d).

As π−1(C∗) ∼=MΛL
(r, d) × C∗, then we know that for any (E′,∇′

L, λ
′) ∈ π−1(C∗) we have

dimT(E′,∇′
L
,λ′)MΛred

L

(r, d) = dimT(E′,∇′
L
/λ)MΛL

(r, d) + 1 = 2− r2 deg(L)
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so, by semicontinuity, for each (E,∇L, 0) ∈ π
−1(0) ∩ π−1(C∗) = π−1(0) we have

2− r2 deg(L) ≤ dimT(E,∇L,0)MΛred
L

(r, d) = 1− r2 deg(L) + dim Im dπ ≤ 2− r2 deg(L).

Hence, we have

dimT(E,∇L,0)MΛred
L

(r, d) = 2− r2 deg(L) and dim Im dπ|(E,∇L,0) = 1,

for each (E,∇L, 0) ∈ π
−1(0). So the map π is a smooth submersion with equidimensional fibers

and the dimension of the Zariski tangent space of the moduli space MΛred
L

(r, d) at any point is

constant and coincides with the dimension of the scheme which is therefore smooth. �

Remark 5.14. We will see in Theorem 7.2 below that, under the stated conditions, MΛL
(r, d) is

actually connected, hence so isMΛred
L

(r, d).

Combining the previous result yields the desired semiprojectivity and regularity of the L-Hodge
moduli space.

Theorem 5.15. Let X be a smooth projective curve of genus g ≥ 2. Let L = (L, [· , ·], δ) be a rank
Lie algebroid on X such that rk(L) = 1 and deg(L) < 2− 2g. Then the moduli space MΛred

L

(r, d),

with the C∗-action t · (E,∇L, λ) = (E, t∇L, tλ), is a semiprojective variety.
If, moreover, r and d are coprime and r ≥ 1, then it is a smooth semiprojective variety and

the map π : MΛred
L

(r, d) → C from (3.16) is a surjective C∗-equivariant submersion covering the

standard action on C.

Proof. By the GIT construction of [Sim94], MΛred
L

(r, d) is a complex quasi-projective variety.

Lemma 5.8 ensures that for every (E,∇L, λ) ∈ MΛred
L

(r, d) the limit limt→0(E, t∇L, tλ) exists.

Moreover, the fixed-point set corresponds to the fixed-point set of the C∗-action in π−1(0), which
coincides with the moduli space of L−1-twisted Higgs bundles. Then Lemma 5.6 implies that
MΛred

L

(r, d)C
∗

is proper. So the MΛred
L

(r, d) is a semiprojective variety. In the coprime case, the

smoothness claim follows from Lemma 5.13. �

Remark 5.16. We expect that the above results still hold true for higher rank Lie algebroids L =
(V, [· , ·], δ) with V polystable such that µ(V ) < 2 − 2g. Indeed most of the above arguments go
through immediately in this situation, except in two related steps. First, Lemma 5.10 really requires
rank 1 Lie algebroids, because it is only in that setting that the deformation complex (5.9) has only
two terms. If rk(L) = n, then (5.9) has n terms, and it is not clear how to proceed to compute
the dimension of MΛL

(r, d). Similarly, Lemma 2.2 also requires the twisting to be a line bundle,
and the corresponding result for higher rank twistings is not yet known, by similar reasons (notice
that the infinitesimal study carried out in [BR94] is done for any twisting, but it does not take into
account the integrability condition on the Higgs field).

5.4. Invariance of the motive and E-polynomial with respect to the algebroid structure.

We continue with our fixed base curve X, of genus g ≥ 2. Now that we have established the required
regularity conditions and the semiprojectivity of the L-Hodge moduli space, for L = (L, [· , ·], δ) of
rank 1 and degree less than 2− 2g, we can address the invariance of the motive with respect to the
algebroid structure of L by keeping L fixed, and when we vary λ in C. Hence the variation on the
Lie algebroid structure we are considering is the one given by (3.14). By (3.17), this is clearly true
if one changes the Lie algebroid structure by varying from λ ∈ C∗ to λ′ ∈ C∗, so the main point is
that the motivic class remains unchanged when we go to the trivial algebroid structure, thus λ = 0.
This is one of the contents of the next theorem.
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Theorem 5.17. Let L = (L, [· , ·], δ) be Lie algebroid on X such that L is a line bundle with

deg(L) < 2− 2g. If r and d are coprime, then the following equalities hold in K̂(VarC)

[MΛL
(r, d)] = [ML−1(r, d)], [MΛred

L

(r, d)] = L[ML−1(r, d)]

and we have an isomorphism of Hodge structures

H•(MΛL
(r, d)) ∼= H•(ML−1(r, d))

In particular,

E(MΛL
(r, d)) = E(ML−1(r, d)), E(MΛred

L

(r, d)) = uvE(ML−1(r, d)).

Moreover, both MΛL
(r, d) andMΛred

L

(r, d) have pure mixed Hodge structures.

Proof. By Theorem 5.15, the moduli spaceMΛred
L

(r, d) is a smooth semiprojective variety for the C∗-

action (3.19). Moreover, the map π from (3.16) is a surjective C∗-equivariant submersion covering
the standard C∗-action on C. Then Proposition 5.4 gives the desired motivic equalities,

[ML−1(r, d)] = [π−1(0)] = [π−1(1)] = [MΛL
(r, d)] and [MΛred

L

(r, d)] = L[π−1(0)] = L[ML−1(r, d)],

which yield the corresponding equalities of E-polynomials,

E(MΛL
(r, d)) = E(ML−1(r, d)) and E(MΛred

L

(r, d)) = uvE(ML−1(r, d)).

Moreover, by [HRV15, Corollary 1.3.3], the fibers ML−1(r, d) = π−1(0) and MΛL
(r, d) = π−1(1)

have isomorphic cohomology supporting pure mixed Hodge structures. Finally, as MΛred
L

(r, d) is

also smooth and semiprojective, its cohomology is also pure by [HRV15, Corollary 1.3.2]. �

6. Motives of moduli spaces of twisted Higgs bundles

Continuing with the plan outlined in Section 4, after proving that we can reduce the computation
of the motivic classes of the moduli spaces of L-connections to the computation of the motivic classes
of moduli spaces of twisted Higgs bundles, the next step is to analyze the structure of the motive
of the latter moduli space.

In this section we will prove that, under certain assumptions, such motive is independent on
the twisting line bundle, up to its degree, and we will provide tools to decompose the motive of
the moduli space that will be useful later on, in section 7, to compute explicitly the motives and
E-polynomials of the moduli spaces in low ranks. In order to do this, it will be useful to introduce
the notion of variation of Hodge structure.

6.1. Variations of Hodge structure and chains. Let L be a line bundle over the curve X. An
L-twisted variation of Hodge structure of type r = (r1, . . . , rk) and multidegree d = (d1, . . . , dk) is
an L-twisted Higgs bundle (E,ϕ) of the form

(6.1) (E•, ϕ•) =




k⊕

i=1

Ei,




0 0 ··· 0 0
ϕ1 0 ··· 0 0
0 ϕ2 ··· 0 0

...
...
. . .

. . .
...

0 0 ··· ϕk−1 0





 ,

where Ei are vector bundles on X, with rk(Ei) = ri and deg(Ei) = di, and ϕi : Ei → Ei+1 ⊗ L for
each i = 1, . . . , k, with ϕk = 0.

Let r =
∑k

i=1 ri and d =
∑k

i=1 di and denote by

VHSL(r, d) ⊂ML(r, d)

the subscheme of the moduli space of L-twisted Higgs bundles corresponding to semistable varia-
tions of Hodge structure of type r and multi-degree d.
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On the other hand, recall that an algebraic chain on X is a quiver bundle of type A, hence a
sequence of algebraic vector bundles (E1, . . . , Ek), together with maps ϕi : Ei → Ei+1. We denote

a chain by the symbol (Ẽ•, ϕ̃•).

Given real numbers α = (α1, . . . , αk), we define the α-degree of the chain (Ẽi, ϕ̃i) as

(6.2) degα(Ẽ•, ϕ̃•) =

k∑

i=1

(deg(Ei) + rk(Ei)αi)

and the α-slope as

µα(Ẽ•, ϕ̃•) =
degα(Ẽ•, ϕ̃•)∑k

i=1 rk(Ei)
.

We say that (Ẽ•, ϕ̃•) is of type r = (r1, . . . , rk) if rk(Ei) = ri for each i = 1, . . . , k and we call
d = (deg(E1), . . . ,deg(Ek)) its multidegree.

A subchain (F̃•, ϕ̃•) of (Ẽ•, ϕ̃•) is a collection (F1, . . . , Fk) of subbundles of (E1, . . . , Ek), i.e.

Fi ⊂ Ei, such that ϕi(Fi) ⊂ Fi+1, so that (F̃•, ϕ̃•|F•
) is itself a chain. An algebraic chain (Ẽ•, ϕ̃•)

is (semi)stable if for any subchain (F̃•, ϕ̃•|F•
) ⊂ (Ẽ•, ϕ̃•), we have

µα(F̃•, ϕ̃•|F•
) < µα(Ẽ•, ϕ̃•) (resp. ≤).

Denote by
HCα(r, d)

the moduli space of α-semistable algebraic chains on X of type r and multidegree d.
Now, given a variation of Hodge structure (E•, ϕ•) of type r = (r1, . . . , rk) and multidegree

d = (d1, . . . , dk), an algebraic chain (Ẽ•, ϕ̃•) can be constructed as follows. Take

Ẽi = Ei ⊗ L
i−k.

Then ϕi induces a map

ϕ̃i = ϕi ⊗ IdLi−k : Ẽi −→ Ẽi+1,

thus (Ẽ•, ϕ̃•) is a chain of type r and multidegree dL = (d1 + r1(1 − k) deg(L), . . . , dk). This
construction is reversible, giving a variation of Hodge structure from an algebraic chain, and hence
giving a bijection between these two kinds of objects.

It turns out that their (semi)stability conditions also match, if one chooses a particular set of
real numbers α. Indeed, if αL = ((k − 1) deg(L), . . . ,deg(L), 0), then the αL-degree (6.2) of any

chain (Ẽ•, ϕ̃•), is

degαL
(Ẽ•, ϕ̃•) =

k∑

i=1

(
deg(Ei ⊗ L

i−k) + rk(Ei)(k − i) deg(L)
)
=

k∑

i=1

deg(Ei)

so
µα(Ẽ•, ϕ̃•) = µ(E•, ϕ•),

where (E•, ϕ•) is the corresponding variation of Hodge structure.

The proof of the next lemma follows by the exact same argument as in [ÁCGP01, Proposition
3.5], by replacing the canonical line bundle KX by L.

Proposition 6.1. A variation of Hodge structure (E•, ϕ•) is (semi)stable (as an L-twisted Higgs
bundle) if and only if for every choice of subbundles Fi ⊂ Ei with ϕi(Fi) ⊂ Fi+1 we have

µ(F•, ϕ•|F•
) < µ(E•, ϕ•) (resp. ≤).

Hence (E•, ϕ•) is (semi)stable if and only if the corresponding chain (Ẽ•, ϕ̃•) is αL-(semi)stable.

So the following corollary is immediate.
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Corollary 6.2. Fix an algebraic line bundle L over X. Let r = (r1, . . . , rk), d = (d1, . . . , dk) and
dL = (d1+ r1(1−k) deg(L), d2 + r2(2−k) deg(L), . . . , dk). The previously described correspondence
between chains and L-twisted variations of Hodge structure induces an isomorphism,

VHSL(r, d) ∼= HCαL(r, dL),

for αL = ((k − 1) deg(L), . . . ,deg(L), 0).

6.2. Independence of the motives of Higgs moduli on the twisting line bundle. We will
use Corollary 6.2 to show that the motivic class of the moduli spaces of L-twisted Higgs bundles
for coprime rank and degree only depend on the degree of the twisting line bundle L, whenever it
is big enough.

Recall from (5.8) that the moduli spaceML(r, d) has a natural C∗-action given by scalling the
Higgs field. Suppose that d is coprime with r ≥ 2 and that L is a line bundle with deg(L) >
2g − 2. Then by Proposition 5.7, the moduli space ML(r, d) is a smooth semiprojective variety.
Accordingly, it admits a Bialynicki-Birula stratification

ML(r, d) =
⋃

µ∈I

U+
µ ,

which, by Lemma 5.3, induces the decomposition

(6.3) [ML(r, d)] =
∑

µ∈I

LN
+
µ [Fµ]

of its motivic class, where N+
µ = dim(U+

µ ) − dim(Fµ) is the rank of the affine bundle U+
µ → Fµ,

corresponding to those Higgs bundles (E,ϕ) ∈ ML(r, d) such that limt→0(E, tϕ) lies in the C∗-fixed
point set Fµ. The characterization of the fixed points under the C∗-action carried out by Simpson
in [Sim92, §4] also applies to the L-twisted case, obtaining the following lemma.

Lemma 6.3. Let (E,ϕ) be any L-twisted Higgs bundle such that (E,ϕ) ∼= (E, tϕ) for some t ∈ C∗

which is not a root of unity. Then E has the structure of an L-twisted variation of Hodge structure
(6.1). Reciprocally, any L-twisted variation of Hodge structure is a fixed point of the C∗-action.

Given any multirank r = (r1, . . . , rk) and multidegree d = (d1, . . . , dk), define

(6.4) |r| =
k∑

j=1

rj, |d| =
k∑

j=1

dj and ∆L = {(r, d) | VHSL(r, d) 6= ∅}.

The previous lemma says that the semistable C∗-fixed points are precisely those in VHSL(r, d) ⊂
ML(r, d) for each suitable choice of r and d. Thus, we rewrite (6.3) as

(6.5) [ML(r, d)] =
∑

(r,d)∈∆L

|r|=r, |d|=d

L
N+

L,r,d [VHSL(r, d)],

where N+
L,r,d

is the notation for N+
µ in this case. We will also use the notations N−

L,r,d
for N−

µ and

N0
L,r,d

for N0
µ; see (5.1).

Next, we will focus on the computation and invariance with respect to L of the ranks N±
L,r,d

in

(6.5). Suppose that r and d are coprime, so that the moduli spaceML(r, d) is smooth. Following
[Hit87, Kir84] and working as in [BGL11], we will proceed by analyzing the Bialynicki-Birula strat-
ification from a Morse-theoretic point of view. The moduli spaceML(r, d) has a Kähler structure
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which is preserved by the action of S1 ⊂ C∗. Therefore, the C∗-action induces a Hamiltonian action
of S1, with moment map

µ :ML(r, d) −→ R, µ(E,ϕ) =
1

2
‖ϕ‖2,

where the L2-norm is given with respect to the (harmonic) metric solving the Hitchin equations
corresponding to the stable Higgs bundle (E,ϕ) under the Hitchin-Kobayashi correspondence; cf.
[Hit87].

By [Fra59] the map µ becomes a perfect Morse-Bott function in ML(r, d) and we have the
following lemma.

Lemma 6.4. Suppose that r and d are coprime and that deg(L) > 2g− 2. Let r = (r1, . . . , rk) and
d = (d1, . . . , dk) be such that r = r1 + · · · + rk, d = d1 + · · · + dk and VHSL(r, d) is non-empty.
Then VHSL(r, d) is a component of the critical point set of µ and if ML,r,d is its Morse index, then

ML,r,d = 2N−
L,r,d

. In particular,

N+
L,r,d

+N0
L,r,d

+ML,r,d/2 = dim(ML(r, d)) = 1 + r2 deg(L).

Proof. ML(r, d) is smooth by Lemma 2.2. Then, by [Kir84, Theorem 6.18, Example 9.4 and
Corollary 13.2], we conclude that, for each (r, d) in the given conditions, the component VHSL(r, d)
of the fixed-point locus ML(r, d)

C is a component the critical point set of µ and that the affine
bundle U−

r,d
−→ VHSL(r, d) coincides with the downwards Morse flow of µ. Then, for each point

p ∈ VHSL(r, d), we have

N−
L,r,d

= dim
(
Tp

(
U−
r,d
|p
))

=
1

2
dimR

(
U−
r,d
|p
)
=

1

2
ML,r,d.

The last statement follows from (5.2) and again Lemma 2.2. �

Lemma 6.5. Let L and L′ be line bundles on X such that deg(L) = deg(L′) > 2g − 2. Suppose
that r and d are coprime. Then the Morse index ML,r,d of VHSL(r, d) ⊂ ML(r, d) is the same as

the Morse index ML′,r,d of VHSL′(r, d) ⊂ML′(r, d).

Proof. Either by [BR94, Theorem 2.3] or by [Tor11, Theorem 47], the tangent space to the moduli
space ML(r, d) of L-Higgs bundles at a point (E,ϕ) is isomorphic to H1(X,C•(E,ϕ)), where
C•(E,ϕ) is the following complex

C•(E,ϕ) : End(E)
[−,ϕ]
−→ End(E)⊗ L.

At a variation of Hodge structure (E•, ϕ•) ∈ VHSL(r, d), this deformation complex decomposes as

(6.6) C•(E,ϕ) =

k−1⊕

l=−k+1

C•
l (E,ϕ)

where

C•
l (E,ϕ) :

⊕

j−i=l

Hom(Ei, Ej)
[−,ϕ]
−→

⊕

j−i=l+1

Hom(Ei, Ej)⊗ L

and, thus, the tangent space decomposes as

H1(C•(E,ϕ)) =

k−1⊕

l=−k+1

H1(C•
l (E•, ϕ•)).
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Then, the computations in [BGL11, §5] show that if r and d are coprime and deg(L) > 2g − 2,
then the Morse index of VHSL(r, d) ⊂ML(r, d) is

(6.7) ML,r,d = 2

k−1∑

l=1

dim(H1(C•
l (E•, ϕ•))) = −2

k−1∑

l=1

χ(C•
l (E•, ϕ•)),

where, for each l = 1, . . . , k − 1,

−χ(C•
l (E•, ϕ•)) =

k−l−1∑

i=1

χ(Hom(Ei, Ei+l+1)⊗ L)−
k−l∑

i=1

χ(Hom(Ei, Ei+l))

=

k−l−1∑

i=1

(−ri+l+1di + ridi+l+1 + riri+l deg(L) + riri+l+1(1− g))

−
k−l∑

i=1

(−ri+ldi + ridi+l + riri+l(1− g)).

(6.8)

Thus χ(C•
l (E•, ϕ•)) depends on the degree of L, but not on L itself, and hence the same is true for

the Morse index. �

Theorem 6.6. Let X be a smooth complex projective curve of genus g ≥ 2. Let L and L′ be line
bundles over X such that deg(L) = deg(L′) > 2g − 2. Assume that the rank r and degree d are
coprime. Then the virtual motives of the corresponding moduli spaces [ML(r, d)] and [ML′(r, d)] are
equal inK(VarC). Moreover, if d′ is any integer coprime with r, then E(ML(r, d)) = E(ML′(r, d′)).
Finally, if L = L′ = K(D) for some effective divisor D, then there is an actual isomorphism of
pure mixed Hodge structures H•(ML(r, d)) ∼= H•(ML′(r, d′)).

Proof. By Corollary 6.2, for each k = 1, . . . , r and each r = (r1, . . . , rk) and d = (d1, . . . , dk) with
|r| = r and |d| = d (recall (6.4)), we have

VHSL(r, d) ∼= HCαL(r, dL),

where αL = ((k − 1) deg(L), . . . ,deg(L), 0) and dL = (dL,i) with dL,i = di + ri(i − k) deg(L). As

deg(L) = deg(L′) we have αL = αL′ and dL = d
′
L, so we obtain an isomorphism

(6.9) VHSL(r, d) ∼= HCαL(r, dL) = HCαL′ (r, dL′) ∼= VHSL′(r, d).

In particular, we have ∆L = ∆L′ ; cf. (6.4).
On the other hand, as ML(r, d) is smooth of dimension 1 + r2 deg(L), then for each (r, d) ∈

∆L = ∆L′ , we have, using Lemma 6.4,

(6.10) N+
L,r,d

= 1 + r2 deg(L)− dim(VHSL(r, d))−ML,r,d/2.

By Lemma 6.5 and (6.9) we have N+
L,r,d

= N+
L′,r,d

.

Therefore, using (6.5), we conclude that

[ML(r, d)] =
r∑

k=1

∑

(r,d)∈∆L

|r|=r, |d|=d

L
N+

L,r,d [VHSL(r, d)] =
r∑

k=1

∑

(r,d)∈∆L′

|r|=r, |d|=d

L
N+

L′,r,d [VHSL′(r, d)] = [ML′(r, d)].

Then

(6.11) E(ML(r, d)) = E(ML′(r, d))

is direct from (4.1).
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Take now any d′ also coprime with r. To prove that ML(r, d) and ML′(r, d′) have the same
E-polynomial, we proceed as follows. By [MS20a, Theorem 0.1] (see also [GWZ20, Theorem 7.15]),

(6.12) E(MKX(D)(r, d)) = E(MKX (D)(r, d
′)),

where KX denotes the canonical bundle of X and D is an effective divisor. To prove it for any
twisting line bundles L,L′ of the same degree (greater than 2g− 2), take any point x0 ∈ X and let
m = deg(L)+ 2− 2g > 0. Then deg(KX(mx0)) = deg(L) = deg(L′) so, applying (6.11) and (6.12),
yields

E(ML(r, d)) = E(MKX(mx0)(r, d)) = E(MKX(mx0)(r, d
′)) = E(ML′(r, d′)),

as claimed.
Finally, if L = L′ = K(D) with D effective, the isomorphism H•(ML(r, d)) ∼= H•(ML′(r, d′)) of

Hodge structures follows immediately from [MS20a, Theorem 0.1]. �

6.3. Independence of motives and E-polynomials from the Lie algebroid structure. We
can combine all the previous invariance results to prove our main theorem. Given a Lie algebroid,
L on the curve X, recall that MΛL

(r, d) denotes the moduli space of semistable integrable L-
connections of rank r and degree d or, equivalently, of semistable ΛL-modules, where ΛL is the split
almost polynomial sheaf of rings of differential operators associated to L, under the equivalence
provided by Theorem 3.9. If rk(L) = 1, then every L-connection is automatically integrable, so in
that caseMΛL

(r, d) is the moduli space of all semistable L-connections of rank r and degree d.

Theorem 6.7. Let X be a smooth projective curve of genus g ≥ 2 and let L and L′ be any two
Lie algebroids on X such that rk(L) = rk(L′) = 1 and deg(L) = deg(L′) < 2 − 2g. Suppose

that r and d are coprime. Then [MΛL
(r, d)] = [MΛL′ (r, d)] in K̂(VarC). Moreover, if d′ is any

integer coprime with r, then E(MΛL
(r, d)) = E(MΛL′ (r, d

′)). Finally, if L = L′ = K(D) for
some effective divisor D, then there is an actual isomorphism of pure mixed Hodge structures
H•(MΛL

(r, d)) ∼= H•(MΛL′ (r, d
′)).

Proof. This follows directly from Theorems 5.17 and 6.6, and by (4.1). �

Hence to compute the motivic class or the E-polynomial ofMΛL
(r, d), it is enough to do it for

the moduli spaceMKX(D)(r, 1) of KX(D)-twisted Higgs bundles of rank r and degree 1, for some
divisor D of the appropriate (positive) degree.

7. Applications

Now, let us analyze some consequences of the preceding results. In the next section we deduce
some topological properties of the moduli spaces of L-connections. These properties are not ob-
tained by using the motivic results proved before, but rather the Bialynicki-Birula stratification of
the L-Hodge moduli space. In the subsequent sections, we will give a direct application of Theorem
6.7 related to the moduli spaces of logarithmic and irregular connections on X, and we will also
provide explicit formulas for the motivic classs and E-polynomials, of Theorem 6.7, for r = 2, 3.

7.1. Topological properties of moduli spaces of Lie algebroid connections. Similarly to
how we used the smoothness of the moduli space of twisted Higgs bundles to prove the smoothness
of the moduli space of L-connections back in section 5.3, we can also use the regularity properties
and the Bialynicki-Birula stratification of MΛred

L

(r, d) to transfer other known properties of the

moduli spaces of twisted Higgs bundles to moduli spaces of L-connections. As an example, in this
section we prove that, under certain conditions, the moduli space of L-connections is irreducible
and compute some its homotopy groups, by showing that they are isomorphic to the ones of the
moduli space of vector bundles.
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Let M(r, d) denote the moduli space of semistable vector bundles of rank r and degree d on the
curve X.

Lemma 7.1. Let X be a smooth projective curve of genus g ≥ 2 and let L be a rank 1 Lie algebroid
on X such that deg(L) < 2 − 2g. Suppose that r ≥ 2 and d are coprime. Then the loci in
MΛL

(r, d) corresponding to semistable L-connections whose underlying vector bundle is not stable
has codimension at least (g − 1)(r − 1). In particular, with the given bounds on g and r it has
codimension at least 1.

Proof. Let L = (L, [· , ·].δ). By Proposition 5.7 and Theorem 5.15 we know that the moduli spaces
MΛred

L

(r, d) and π−1(0) = ML−1(r, d) ⊂ MΛred
L

(r, d) are smooth semiprojective varieties for the

C∗-action (3.19) and its restriction (5.8) toML−1(r, d) respectively. Recall that here π is the map
(3.16).

The fixed-point locus of this action is concentrated inML−1(r, d) and, by Lemma 6.3, it corre-
sponds to the subset of variations of Hodge structure (recall (6.4)),

ML−1(r, d)C
∗

=MΛred
L

(r, d)C
∗

=
⋃

(r,d)∈∆
L−1

|r|=r, |d|=d

VHSL−1(r, d).

In this decomposition there is a distinguished component, namely the one for which r = {r} and
d = {d}. It parameterizes points of the form (E, 0, 0) with E stable (because (r, d) = 1), and it is
therefore isomorphic to the moduli space M(r, d). Let

ML−1(r, d) =
⋃

(r,d)∈∆
L−1

|r|=r, |d|=d

U+
L−1,r,d

and MΛred
L

(r, d) =
⋃

(r,d)∈∆
L−1

|r|=r, |d|=d

Ũ+
L−1,r,d

be the corresponding Bialynicki-Birula decompositions, hence where

U+
L−1,r,d

=
{
(E,∇L, 0) ∈ ML−1(r, d)

∣∣∣ lim
t→0

(E, t∇L) ∈ VHSL−1(r, d)
}
,

Ũ+
L−1,r,d

=
{
(E,∇L, λ) ∈ MΛred

L

(r, d)
∣∣∣ lim
t→0

(E, t∇L, tλ) ∈ VHSL−1(r, d)
}

are affine bundles over VHSL−1(r, d) of rank N+
L−1,r,d

and Ñ+
L−1,r,d

respectively.

Let us write U+ = U+
L−1,{r},{d}

and Ũ+ = Ũ+
L−1,{r},{d}

the affine bundles lying over M(r, d). Let

S and S̃ denote the subsets of ML−1(r, d) and MΛred
L

(r, d) respectively corresponding to triples

(E,∇L, λ) with E not stable. If E is a stable vector bundle then for every (E,∇L, λ) ∈ MΛred
L

(r, d)

we have
lim
t→0

(E, t∇L, tλ) = (E, 0, 0) ∈M(r, d) ⊂MΛred
L

(r, d)C
∗

,

so S ⊂ ML−1(r, d)\U and S̃ ⊂ MΛred
L

(r, d)\Ũ . Actually, by [BGL11, Proposition 5.1], S =

ML−1(r, d)\U (the proof is given for the moduli space with fixed determinant, but the proof also
works for fixed degree) and in [BGL11, Proposition 5.4] it is proven that codim(S) ≥ (g− 1)(r− 1)
by showing that, if U+

L−1,r,d
6= U+, then

codim(U+
L−1,r,d

) ≥ (g − 1)(r − 1).

On the other hand, we know ÑL−1,r,d = NL−1,r,d+1 (see (5.6)), hence dim Ũ+
L−1,r,d

= dimU+
L−1,r,d

+1.

By Lemma 5.13, dimMΛred
L

(r, d) = dim(ML−1(r, d)) + 1 so we conclude that

codim(Ũ+
L−1,r,d

) = codim(U+
L−1,r,d

) ≥ (g − 1)(r − 1).
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Finally, define S′ = S̃ ∩ π−1(1). As C∗ preserves the stability of the underlying bundle, then S̃ is

C∗-invariant and the restriction of this action to S̃ gives an isomorphism

S̃ ∩ π−1(C∗) ∼= S′ × C∗.

Therefore,
dim(S′) = dim(S̃ ∩ π−1(C∗))− 1 ≤ dim(S̃)− 1.

Finally, as dimMΛL
(r, d) = dimMΛred

L

(r, d) − 1, we conclude that

codim(S′) ≥ codim(S̃) ≥ (g − 1)(r − 1),

completing the proof. �

Consider an L-connection (E,∇L) of rank r and degree d on X. Let E be the C∞ vector bundle
on X underlying the algebraic vector bundle E. Note that E is independent of the choice of the
L-connection, as long as the rank and degree are still r and d. Let G(E) be the unitary gauge group
for a fixed Hermitian metric on E. In other words, G(E) = Ω0(u(E)), where Ω0(u(E)) stands for
the space of C∞-sections of the C∞-bundle of unitary endomorphisms of E.

Theorem 7.2. Let X be a smooth complex curve of genus g ≥ 2 and let L be a algebroid on X
such that rk(L) = 1 and deg(L) < 2− 2g. Suppose that r and d are coprime and that r ≥ 2. Then,
MΛL

(r, d) is connected, hence irreducible. If, moreover, (r, g) 6= (2, 2), then its higher homotopy
groups are given as follows:

• π1(MΛL
(r, d)) ∼= H1(X,Z) ∼= Z2g;

• π2(MΛL
(r, d)) ∼= Z;

• πk(MΛL
(r, d)) ∼= πk−1(G(E)), for every k = 3, . . . , 2(g − 1)(r − 1)− 2.

Proof. Let L = (L, [· , ·].δ). By Lemma 5.13 we know that the moduli spaceMΛL
(r, d) is a smooth

variety whose components are all of the same dimension 1− r2 deg(L). Let S′ ⊂MΛL
(r, d) be the

subspace of L-connections (E,∇L) with E not stable. Define U ′ =MΛL
(r, d)\S′.

It turns out that the C∗-flow provides a deformation retraction from U ′ to M(r, d). To be precise,
consider the forgetful map πM : U ′ −→M(r, d), given by πM(E,∇L) = E. By Corollary 3.14 the
map is surjective and we have the following explicit description of each fiber

π−1
M

(E) = {∇L : E → E ⊗ L∗ |∇L(fs) = f∇L(s) + s⊗ dL(f), ∀s ∈ E, ∀f ∈ OX} .

Observe that if ∇L,∇
′
L ∈ π

−1
E (E), then ∇L−∇

′
L ∈ H

0(End(E)⊗L∗), so π−1
M

(E) is an affine space
on H0(End(E)⊗ L∗). Moreover,

H1(End(E)⊗ L∗) ∼= H0(End(E) ⊗K ⊗ L)∗ = 0

because, since E is stable, End(E) is semistable and so End(E) ⊗ KX ⊗ L is a semistable vector
bundle with deg(End(E) ⊗KX ⊗ L) = r2(deg(KX) + deg(L)) < 0. Thus, by Riemann-Roch, for
each E ∈M(r, d),

dim(π−1
M

(E)) = dimH0(End(E) ⊗ L∗) = 1− r2 deg(L)− g

is constant and thus the map πM is equidimensional. Let E → X×M(r, d) be the universal bundle
over M(r, d) (i.e., the bundle whose fiber over X×{E} is isomorphic to E); it exists since (r, d) = 1.
Let πX : X ×M(r, d) → X be the projection. Then we conclude that U ′ is a torsor for the vector
bundle

R(πX)∗(End(E)⊗ π
∗
XL

∗) −→M(r, d).

It follows that, the homotopy groups of U ′ verify πk(U
′) ∼= πk(M(r, d)), for every k ≥ 0.

By Lemma 7.1, codim(S′) ≥ (g − 1)(r − 1). SinceMΛL
(r, d) is smooth, this implies that

πk(MΛL
(r, d)) ∼= πk(U

′) ∼= πk(M(r, d)),
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for every k = 0, . . . , 2(g − 1)(r − 1) − 2. The moduli M(r, d) is connected, hence so is MΛL
(r, d),

and thus irreducible because it is smooth. As for the higher homotopy groups, the results follow
from [DU95, Theorem 3.1]. �

Remark 7.3. By taking the trivial Lie algebroid L = (L, 0, 0) in the above theorem, one gets
the results for the moduli space of ML−1(r, d) of L−1-twisted Higgs bundles. The irreducibility
conclusion was proved in [BGL11] by the same arguments, and actually the higher homotopy groups
of ML−1(r, d) would also follow directly from [BGL11] by the same argument as above.

On the other hand, improvements on the bound of k for which the isomorphism πk(MΛL
(r, d)) ∼=

πk−1(G(E)) holds have been achieved, for twisted Higgs bundles, in certain particular situations (cf.
[Hau98] and [ZnR18]), hence we might expect that such isomorphism also holds, in this generality,
for higher values of k.

7.2. Chow motives and Voevodsky motives. Theorem 6.7 shows that, under the stated con-
ditions, there is an equality of motives

[MΛL
(r, d)] = [MΛL′ (r, d)] ∈ K̂(VarC)

in the (completed) Grothendieck ring of varieties.
Nevertheless, the techniques that we use to prove this equality (namely, semiprojectivity of the

L-Hodge moduli space and the exposed relations between the Bialynicki-Birula decompositions of
the corresponding moduli spaces of twisted Higgs bundles) also allow us to obtain isomorphisms for
other types of invariants. Given a complex scheme X and a ring R, let us consider the following.

• Let M(X) ∈ DMeff(C, R) denote the Voevodsky motive of X, where DMeff(C, R) is the
category of effective geometric motives as defined by Voevodsky in [Voe00].

• Let h(X) ∈ Choweff(C, R) be the Chow motive of X, where Choweff(C, R) is the category
of effective Chow motives; see for example [Man68, Sch94, dBn01].
• Let CH•(X,R) denote the chow ring of X with coefficients in R.

Moreover, recall that we say that X has a pure Voevodsky motive if M(X) belongs to the heart

of DMeff(C, R) which is equivalent to Choweff(C, R) through Voevodsky’s embedding (c.f. [HL19,
Section 6.3]).

Theorem 7.4. Let X be a smooth projective curve of genus g ≥ 2 and let L and L′ be any two
Lie algebroids on X such that rk(L) = rk(L′) = 1 and deg(L) = deg(L′) < 2− 2g. Suppose that r
and d are coprime. Then, for every ring R, the Voevodsky motive of the moduli spaceMΛL

(r, d) is
pure and we have

M(MΛL
(r, d)) ∼=M(MΛL′ (r, d)) ∈ DMeff(C, R),

h(MΛL
(r, d)) ∼= h(MΛL′ (r, d)) ∈ Choweff(C, R),

CH•(MΛL
(r, d)) ∼= CH•(MΛL′ (r, d)).

Proof. The proof is analogous to the one in Theorem 5.17 and Theorem 6.7, but we now use the
technical theorems from Appendices A and B of [HL19] to perform the necessary computations in

DMeff(C, R) instead of K̂(VarC). By Theorem 5.15, for every rank one algebroid L = (L, [· , ·], δ)
satisfying the hypothesis of the theorem the moduli space MΛL

(r, d) is a smooth quasiprojective
semiprojective variety with a C∗-equivariant submersion π :MΛL

(r, d) −→ C such that π−1(0) =
ML∗(r, d) and π−1(1) =MΛL

(r, d). Then [HL19, Theorem B.1] and [HL19, Corollary B.2] yield
isomorphisms

M(ML−1(r, d)) =M(π−1(0)) ∼=M(MΛred
L

(r, d)) ∼=M(π−1(1)) =M(MΛL
(r, d))

CH•(ML−1(r, d)) = CH•(π−1(0)) ∼= CH•(MΛred
L

(r, d)) ∼= CH•(π−1(1)) = CH•(MΛL
(r, d))
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AsML−1(r, d) is also smooth and semiprojective by Proposition 5.7, its motive is pure by [HL19,
Corollary A.5], so the motive of MΛL

(r, d) is also pure and, therefore, the above isomorphism of
Voevodsky motives induces an isomorphism of the Chow motives. Thus, we can assume without
loss of generality that the algebroid structures for L and L′ are trivial (i.e., that we have moduli
spaces of Higgs bundles). Furthermore, purity of the Voevodsky motives and representability of
the Chow groups as certain spaces of morphisms in DMeff(C, R) (c.f. [HL19, Corollary B.2]) imply
that it is enough to prove that the Voevodsky motives are isomorphic to conclude the desired
isomorphisms between Chow motives or Chow rings. The Bialynicki-Birula decomposition of the
moduli spaces of Higgs bundles yield the following motivic decompositions [HL19, Theorem A.4],
in which we follow the notation from Section 6.

M(ML−1(r, d)) ∼=

r⊕

k=1

⊕

(r,d)∈∆
L−1

|r|=r, |d|=d

M(VHSL−1(r, d)){N−
L−1,r,d

}

M(M(L′)−1(r, d)) ∼=

r⊕

k=1

⊕

(r,d)∈∆(L′)−1

|r|=r, |d|=d

M(VHS(L′)−1(r, d)){N−
(L′)−1,r,d

}

By Corollary 6.2 we have ∆L−1 = ∆(L′)−1 . Calling this set ∆, then Corollary 6.2 and Lemma 6.5

imply that for each (r, d) ∈ ∆, we have VHSL−1(r, d) ∼= VHS(L′)−1(r, d) and N−
L−1,r,d

= N−
(L′)−1,r,d

,

so we obtain a term-by-term isomorphism of the previous Voevodsky motives. �

This result can be considered as an extension to moduli spaces of Lie algebroid connections (over
C) of [HL19, Theorem 4.2], in which it is proved that there exists an isomorphism between the
Voevodsky motives and Chow rings of the de Rham and K-twisted Higgs moduli spaces.

7.3. Motives of moduli spaces of irregular or logarithmic connections. Recall the canonical
Lie algebroid TX = (TX , [· , ·]Lie, Id) on our smooth projective curve X. Consider an effective divisor
D =

∑n
i=1 kixi on X, with ki ≥ 1. Let Mconn(D, r, d) be the moduli space of rank r and degree

d semistable singular (TX-)connections, with poles of order at most ki over each xi ∈ D. These
connections are irregular if ki > 1 for some i.

Take the Lie subalgebroid TX(−D) ⊂ TX , thus with underlying bundle TX(−D) ⊂ TX , the
induced Lie bracket of vector fields, and the inclusion anchor map. Then MΛTX (−D)

(r, d) =

Mconn(D, r, d), hence we have the following direct corollary of Theorem 6.7.

Corollary 7.5. If D and D′ are any two effective divisors on X with deg(D) = deg(D′) and r

and d are coprime, then [Mconn(D, r, d)] = [Mconn(D
′, r, d)] ∈ K̂(VarC) and E(Mconn(D, r, d)) =

E(Mconn(D
′, r, d)).

In particular, by taking D′ to be a simple divisor, we conclude the following.

Corollary 7.6. The motivic class and E-polynomial of any moduli space of irregular connections
on a smooth projective curve X of genus at least 2 equals that of any moduli space of logarithmic
connections X, with singular divisor of the same degree.

7.4. Explicit motives and E-polynomials for rank 2 and 3. Fix a rank 1 Lie algebroid L =
(L, [· , ·], δ) on the curve X, such that deg(L) < 2−2g. In this section, we provide explicit formulae
for the motivic classes and E-polynomials of the moduli spaces of L-connections of rank 2 and 3 and
coprime degree. Theorem 6.7 allows us to perform all computations by just considering the trivial
Lie algebroid (L, 0, 0), that is, the moduli space of L−1-twisted Higgs bundles of corresponding rank
and degree.
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7.4.1. Recollection of properties of motives. We first need to introduce some notation and recall,
without proof, some facts on the theory of motivic classes in K̂(VarC). For details, see for example
[Hei07, Kap00].

The symmetric product of a variety gives rise to the λ-operator defined, for each n ≥ 0, as

(7.1) λn : K̂(VarC)→ K̂(VarC), λn([Y ]) = [Symn(Y )].

For example λn(Lk) = Lnk. With these operators, K̂(VarC) acquires the structure of a λ-ring. In
particular, the relation

(7.2) λn([Y ] + [Z]) =
∑

i+j=n

λi([Y ])λj([Z]),

holds.
The motive of our fixed genus g ≥ 2 curve X splits as [X] = 1 + h1(X) + L, where h1(X) ∈

K̂(VarC) is such that the motive of the Jacobian of X is given by

(7.3) [Jac(X)] =

2g∑

i=0

λi(h1(X)).

Define the K̂(VarC)-valued polynomial

(7.4) PX(x) =

2g∑

i=0

λi(h1(X))xi ∈ K̂(VarC)[[x]]

and note that PX(1) = [Jac(X)]. Consider also the zeta function of X, defined as

Z(X,x) =
∑

k≥0

λk([X])xk ∈ K̂(VarC)[[x]].

Using that λn(h1(X)) = Ln−gλ2g−n(h1(X)), if n = 0, . . . , 2g, and that λn(h1(X)) = 0 if n > 2g,
it follows that

λn([X]) = coeff
x0

Z(X,x)

xn
= coeff

x0

PX(x)

(1− x)(1− Lx)xn
.

7.4.2. Motives of MΛL
(r, d) for r = 2, 3. Now we move on to the motives of moduli spaces. We

want to compute the motive of ML−1(r, d), for r = 2, 3 and d coprime with r. This will be done
by using the formula (6.5), and so we will need to consider the moduli space of rank r and degree
d vector bundles (which we think of consisting of Higgs bundles which are variations of Hodge
structure of type (r)) and then variations of Hodge structure of type (1, 1) for r = 2 and type (1, 2),
(2, 1) and (1, 1, 1) for r = 3. We will not fill the full details of the computations, and leave them to
the reader.

In this section, we use the notation dL for the degree of the line bundle L, so that dL < 2− 2g.
Recall that M(r, d) denotes the moduli space of stable vector bundles of rank r and degree d

over the curve X.
Let us start with rank 2 case. Let d be odd. By Example 3.4 of [GPHS14] or equation (3.9),

page 41 of [Sán14], the motivic class of M(2, d) is given by

(7.5) [M(2, d)] =
[Jac(X)]PX (L)− Lg[Jac(X)]2

(L− 1)(L2 − 1)
,

where PX is the polynomial given in (7.4). Notice that this formula is obtained by the one in
[GPHS14] by multiplying by L − 1 because in loc. cit., the stated formula stands for the stack of
stable vector bundles, which is is C∗-gerbe over M(2, d).



LIE ALGEBROID CONNECTIONS, TWISTED HIGGS BUNDLES AND MOTIVES OF MODULI SPACES 41

We move on the motivic class of subvarieties ofML−1(2, d) corresponding to variations of Hodge
structure of type (1, 1). An L−1-twisted-Higgs bundle (E,ϕ) lies in VHSL−1((1, 1), (d1, d − d1)) if
it is stable and

(7.6) E = E1 ⊕ E2, ϕ =
(

0 0
ϕ1 0

)
,

with E1, E2 line bundles of degree d1 and d−d1 respectively and ϕ1 : E1 → E2⊗L
−1 nonzero. The

fact that ϕ1 6= 0 and stability (E2 is ϕ-invariant) impose conditions on the degree d1 and, indeed,

VHSL−1((1, 1), (d1 , d− d1)) 6= ∅ ⇐⇒ d/2 < d1 ≤ (d− dL)/2.

In such a case, the map
(
E1 ⊕ E2,

(
0 0
ϕ1 0

))
7→ (div(ϕ1), E2), where div(ϕ1) denotes the divisor of

the section ϕ1 ∈ H
0(E−1

1 E2L
−1), yields the isomorphism

(7.7) VHSL−1((1, 1), (d1 , d− d1)) ∼= Symd−2d1−dL(X)× Jacd−d1(X).

Hence, since the ‘Jacobian’ of degree d−d1 line bundles on X is isomorphic to the Jacobian Jac(X)
of (degree 0 line bundles on) X,

(7.8) [VHSL−1((1, 1), (d1 , d− d1))] = λd−2d1−dL([X])[Jac(X)],

where we are using the λ-operations defined in (7.1).
Now we consider the rank 3 case. Fix d coprime with 3, so that every semistable L−1-twisted

Higgs bundle is stable. We have

[M(3, d)] =
[Jac(X)]

(L− 1)(L2 − 1)2(L3 − 1)

(
L3g−1(1 + L+ L2)[Jac(X)]2

− L2g−1(1 + L)2[Jac(X)]PX (L) + PX(L)PX(L
2)
)
.

(7.9)

by [GPHS14, Remark 3.5] or [Sán14, Theorem 4.7]. As in the r = 2 case, this is obtained by the
stated formula in [GPHS14] by multiplying by L− 1.

Consider now variations of Hodge structure of type (1, 2) in ML−1(3, d). A stable L−1-twisted
Higgs bundle (E,ϕ) lies in VHSL−1((1, 2), (d1 , d − d1)) if it is of the form (7.6), with the only
difference that now E2 has rank 2. Let I ⊂ E2 be the line bundle such that the saturation of the
image of ϕ1 equals IL−1. Then both E2 and E1⊕ I are ϕ-invariant subbundles of E. Checking the
stability for them imposes conditions of d1, and actually we have that

(7.10) VHSL−1((1, 2), (d1 , d− d1)) 6= ∅ ⇐⇒ d/3 < d1 < d/3− dL/2.

Moreover, by Corollary 6.2, there is an isomorphism with the moduli space of αL−1 = (−dL, 0)-
stable chains

(7.11) VHSL−1((1, 2), (d1, d− d1)) ∼= HCαL−1 ((1, 2), (d1 + dL, d− d1)).

Since d is coprime with 3, then αL−1 is not a critical value (i.e. a value of the stability parameter
where semistability changes), so the motive of HCαL−1 ((1, 2), (d1 +dL, d−d1)) can be read off from
[GPHS14, Example 6.4], by adapting the computation to the L−1-twisting setting, or, perhaps more
directly, from Theorem 3.2 of [Sán14], where the author considers the moduli space of −dL-stable
triples of type ((2, 1)(d − d1 − 2dL, d1)) (cf. [BGPG04]), which is isomorphic to the moduli space
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of αL−1-stable chains. From this, we conclude that

[VHSL−1((1, 2), (d1 , d− d1))] =
[Jac(X)]2

L− 1

(
L2⌊d/3⌋−d+d1+g+1λd−⌊d/3⌋−2d1−dL−1([X] + L2)

− λd−⌊d/3⌋−2d1−dL−1([X]L + 1)

)

=
[Jac(X)]2

L− 1

(
L2⌊d/3⌋−d+d1+g+1

×

d−⌊d/3⌋−2d1−dL−1∑

i=0

λi([X])(L2d−2⌊d/3⌋−4d1−2dL−2−2i − Li)

)
.

(7.12)

The motives of the subvarieties ofML−1(3, d) corresponding to variations of Hodge structure of
type (2, 1) are directly obtained from the ones of type (1, 2) by making use of the isomorphism

(7.13) VHSL−1((2, 1), (d1 , d− d1)) ∼= VHSL−1((1, 2), (d1 − d,−d1))

arising from duality.
Finally, we deal with variations of Hodge structure of type (1, 1, 1) inML−1(3, d). Similarly to

the previous cases, it follows that

VHSL−1((1, 1, 1), (d1 , d2, d− d1 − d2)) 6= ∅ ⇐⇒ (d1, d2) ∈ ∆−dL(d),

where

(7.14) ∆−dL(d) =
{
(a, b) ∈ Z2 | a− b ≤ −dL, a+ 2b− d ≤ −dL, a > d/3, a+ b > 2d/3

}
,

and in that case, we have the following isomorphism
(7.15)

VHSL−1((1, 1, 1), (d1 , d2, d−d1−d2)) ∼= Sym−d1+d2−dL(X)×Symd−d1−2d2−dL(X)×Jacd−d1−d2(X).

Thus,

(7.16) [VHSL−1((1, 1, 1), (d1 , d2, d− d1 − d2))] = λ−d1+d2−dL([X])λd−d1−2d2−dL([X])[Jac(X)].

Now we have the promised corollary of Theorem 6.7.

Corollary 7.7. Let X be a smooth projective curve of genus g ≥ 2 and let L be a rank 1 Lie
algebroid on X. Write dL = deg(L) and suppose that dL < 2− 2g. Then,

(1) if (2, d) = 1,

[MΛL
(2, d)] =

L−4dL+4−4g
(
[Jac(X)]PX (L)− Lg[Jac(X)]2

)

(L− 1)(L2 − 1)

+ L−3dL+2−2g[Jac(X)]

⌊
d−dL

2
⌋∑

d1=⌊d/2⌋+1

λd−2d1−dL([X]).



LIE ALGEBROID CONNECTIONS, TWISTED HIGGS BUNDLES AND MOTIVES OF MODULI SPACES 43

(2) if (3, d) = 1,

[MΛL
(3, d)] =

L−9dL+9−9g[Jac(X)]

(L− 1)(L2 − 1)2(L3 − 1)

(
L3g−1(1 + L+ L2)[Jac(X)]2

− L2g−1(1 + L)2[Jac(X)]PX (L) + PX(L)PX(L
2)
)

+
L−7dL+5−5g[Jac(X)]2

L− 1

⌊ d
3
−

dL
2
⌋∑

d1=⌊d/3⌋+1

(
L2⌊d/3⌋−d+d1+g+1λd−⌊d/3⌋−2d1−dL−1([X] + L2)

− λd−⌊d/3⌋−2d1−dL−1([X]L + 1)

)

+
L−7dL+5−5g[Jac(X)]2

L− 1

⌊ 2d
3
−

dL
2
⌋∑

d1=⌊2d/3⌋+1

(
L2⌊−d/3⌋+d1+g+1λd−⌊−d/3⌋−2d1−dL−1([X] + L2)

− λd−⌊−d/3⌋−2d1−dL−1([X]L + 1)

)

+ L−6dL+3−3g[Jac(X)]
∑

(d1 ,d2)∈∆−dL
(d)

λ−d1+d2−dL([X])λd−d1−2d2−dL([X]),

with ∆−dL(d) defined in (7.14).

Remark 7.8. It is easy to see that the motivic class [MΛL
(3, d)] is indeed the same by replacing

d for −d (for the last sum, one should use the bijection between ∆−dL(d) and ∆−dL(−d) given
by (a, b) 7→ (−d + a + b,−b)). Of course, this had to occur since duality yields an isomorphism
between the moduli spaces MΛL

(3, d) and MΛL
(3,−d) (and, of course, the mentioned bijection

∆−dL(d) ≃ ∆−dL(−d) is provided by duality).

Proof. As we are considering cases in which the rank and the degree are coprime, we can apply
Theorem refthm:equalMotive, and assume without loss of generality that L has the trivial Lie
algebroid structure (L, 0, 0). Therefore, ML(r, d) corresponds to the moduli space of L−1-twisted
Higgs bundles of rank r and degree d.

Then, everything follows from the decomposition (6.5), using the formula (6.10) (with L replaced
by L−1),

N+
L−1,r,d

= 1− r2 deg(L)− dim(VHSL−1(r, d))−ML−1,r,d/2

for the exponents of L in each summand. All of them are straightforward, using (6.7) and (6.8).
We leave the details of the computations for the reader. In rank 2, use (7.7) followed by (7.5) and
(7.8).

In rank 3, use (7.11) and (7.15), knowing that, in the (1, 2)-type,

dim(VHSL−1(X, (1, 2), (d1 , d− d1))) = dim(HCαL−1−ss((1, 2), (d1 + dL, d− d1)))

= 3g − 2− 3d1 + d− 2dL



44 D. ALFAYA AND A. OLIVEIRA

by Theorem A (2) of [BGPG04] and that the dimension of dim(VHSL−1(X, (1, 2), (d1 , d − d1))) is
computed similarly using (7.13). Then, (6.5) becomes

[MΛL
(3, d)] = L−9dL+9−9g[M(3, d)]

+ L−7dL+5−5g

⌊ d
3
−

dL
2
⌋∑

d1=⌊ d
3
⌋+1

[VHSL−1((1, 2), (d1, d− d1))]

+ L−7dL+5−5g

⌊ 2d
3
−

dL
2
⌋∑

d1=⌊ 2d
3
⌋+1

[VHSL−1((2, 1), (d1 , d− d1))]

+ L−6dL+3−3g
∑

(d1,d2)∈∆−dL
(d)

[VHSL−1((1, 1, 1), (d1 , d2, d− d1 − d2))],

and we obtain the result from (7.9)–(7.16). �

7.4.3. E-polynomials of MΛL
(r, d) for r = 2, 3. We now apply the E-polynomial map (4.1) to the

formulas of the preceding result.
If X is again our smooth projective curve of genus g, it is well-known that E(Jac(X)) = (1 +

u)g(1 + v)g, thus

E(λn([X])) = coeff
x0

(1 + ux)g(1 + vx)g

(1− x)(1− uvx)xn
.

In addition, from (7.3) and (7.4), we have that, for any k,

E(PX(L
k)) =

2g∑

i=0

E(λi(h1(X)))(ukvk)i =

2g∑

i=0

∑

p+q=i

hp,q(Jac(X))upvq(ukvk)i

=

2g∑

i=0

∑

p+q=i

hp,q(Jac(X))(uk+1vk)p(ukvk+1)q

= E(Jac(X))(uk+1vk, ukvk+1) = (1 + uk+1vk)g(ukvk+1)g.

In particular,

(7.17) E(PX(L)) = (1 + u2v)g(1 + uv2)g and E(PX(L
2)) = (1 + u3v2)g(1 + u2v3)g,

Corollary 7.9. Let X be smooth projective curve of genus g and let L be a rank 1 Lie algebroid
on X. Write dL = deg(L) and suppose that dL < 2− 2g.

(1) Let d be odd. Then,

E(MΛL
(2, 1)) = (uv)−4dL+4−4gE(M(2, d))

+ (uv)−3dL+2−2g(1 + u)g(1 + v)g coeffx0

(
(1 + ux)g(1 + vx)gxdL+1

(1− x2)(1− x)(1− uvx)

)
,

where

E(M(2, d)) =
(1 + u)g(1 + v)g(1 + u2v)g(1 + uv2)g − (uv)g(1 + u)2g(1 + v)2g

(uv − 1)((uv)2 − 1)
.
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(2) Let d be coprime with 3. Then,

E(MΛL
(3, 1)) = (uv)−9dL+9−9gE(M(3, d))

+
(1 + u)2g(1 + v)2g(uv)−7dL+6−4g

uv − 1
· coeff

x0

(1 + ux)g(1 + vx)gxdL+2

(1− x)(1− uvx)(1 − (uv)2x)(1− uvx2)

−
(1 + u)2g(1 + v)2g(uv)−8dL+6−5g

uv − 1
· coeff

x0

(1 + ux)g(1 + vx)gxdL+2

(1− x)(1− uvx)(uv − x)((uv)2 − x2)

+
(1 + u)2g(1 + v)2g(uv)−7dL+5−4g

uv − 1
· coeff

x0

(1 + ux)g(1 + vx)gxdL+1

(1− x)(1− uvx)(1 − (uv)2x)(1− uvx2)

−
(1 + u)2g(1 + v)2g(uv)−8dL+7−5g

uv − 1
· coeff

x0

(1 + ux)g(1 + vx)gxdL+1

(1− x)(1− uvx)(uv − x)((uv)2 − x2)

+ (1 + u)g(1 + v)g(uv)−6dL+3−3g·

· coeff
x0y0

(1 + ux)g(1 + vx)g(1 + uy)g(1 + vy)gx2dL+2y2dL+1(x−2dL − y−dL)(y−2dL − x−dL)

(1− x)(1 − uvx)(1 − y)(1− uvy)(x− y2)(y − x2)
,

where

E(M(3, d)) =
(1 + u)g(1 + v)g

(uv − 1)((uv)2 − 1)2((uv)3 − 1)

(
(uv)3g−1(1 + uv + (uv)2)(1 + u)2g(1 + v)2g

− (uv)2g−1(1 + uv)2(1 + u)g(1 + v)g(1 + u2v)g(1 + uv2)g

+ (1 + u2v)g(1 + uv2)g(1 + u2v3)g(1 + u3v2)g
)
.

Proof. This follows from Corollary 7.7 and from computations which are now standard. We leave the
details for the reader, who may see for example [Got94], [GPHS14], [Ben10] (especially Theorems
3.1.4 and 3.5.7) and [Sán14] for techniques on these computations. Note however that the ones in
[Ben10] contain some slight inaccuracies (so that the final results stated there, in Theorems 3.1.4
and 3.5.7, are not correct). The formulas for the E-polynomials of the appropriate powers of the
λ-operations of [X] +L2 and of [X]L+1, which appear in Corollary 7.7, may be found in equation
(3.3) of page 39 of [Sán14] and the ones concerning PX(L) and PX(L

2) are given in (7.17). �

Remark 7.10. The E-polynomials of the moduli space of vector bundles of rank 2 and 3 and
coprime degree d were first computed recursively in [EK00, Theorem 1]. The one for rank 3 was
also explicitly obtained“ with different techniques, in Theorem 1.2 of [Muñ08] (even though the
formula there has a minor inaccuracy on a sign and the one on Theorem 7.1 – not in Theorem 1.2
– has an extra (1 + u)g(1 + v)g term which should not be there).

8. Motives of moduli spaces of L-connections with fixed determinant

So far we have considered moduli spaces of flat L-connections (or Λ-modules) with fixed rank and
degree, but the techniques presented in the previous sections also allow us to obtain analogues of the
previous results for moduli spaces of flat L-connections with fixed determinant. In this section we
will define the moduli space of flat L-connections with fixed determinant and show several results
proving the invariance of its motivic class and E-polynomial regarding the Lie algebroid structure,
providing the necessary changes in the previously exposed arguments to treat the fixed determinant
scenario.

8.1. Twisted Higgs bundles with fixed determinant. Let ξ be an algebraic line bundle over
X of degree d coprime with r. LetML(r, ξ) ⊂ML(r, d) be the moduli space of traceless L-twisted
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Higgs bundles with fixed determinant ξ, i.e., the moduli space of pairs (E,ϕ) with deg(E) ∼= ξ and
ϕ ∈ H0(End0(E)⊗ L), where End0(E) denotes the endomorphisms of E with trace 0.

By [BGL11, Theorem 1.2], if g ≥ 2 and deg(L) > 2g − 2, ML(r, ξ) is a smooth irreducible
C∗-invariant closed subvariety of ML(r, d), so it is a smooth semiprojective variety. Hence the
digression held about the structure of the Bialynicki-Birula stratification of ML(r, d) applies to
ML(r, ξ) as well. The fixed-point locus of the C∗-action on ML(r, ξ) clearly corresponds to the
intersection of the fixed-point locus of the C∗-action on ML(r, d) with ML(r, ξ). In section 6 we
described a decomposition of the fixed-point locus as

ML(r, d)
C∗

=
⋃

(r,d)∈∆L

|r|=r, |d|=d

VHSL(r, d),

thus we have a decomposition

ML(r, ξ)
C∗

=
⋃

(r,d)∈∆L

|r|=r, |d|=d

VHSL(r, d, ξ),

where VHSL(r, d, ξ) = VHSL(r, d) ∩ML(r, ξ). By construction all variations of Hodge structure
have traceless Higgs fields, so

VHSL(r, d, ξ) =

{
(E•, ϕ•) ∈ VHSL(r, d)

∣∣∣∣∣

k⊗

i=1

det(Ei) ∼= ξ

}
.

On the other hand, we can consider algebraic chains with fixed “total determinant” in the following
sense. For r and d such that |r| = r and |d| = d, define

HCα(r, d, ξ) =

{
(E•, ϕ•) ∈ HCα(r, d)

∣∣∣∣∣

k⊗

i=1

det(Ei) ∼= ξ

}
.

Lemma 8.1. Given r = (r1, . . . , rk) and a degree d line bundle ξ, consider the line bundle

ξL = ξ ⊗ L⊗(
∑k

i=1(i−k)ri).

Then the isomorphism described in Corollary 6.2 induces an isomorphism

VHSL(r, d, ξ) ∼= HCαL(r, dL, ξL).

Proof. Given (E•, ϕ•) ∈ VHSL(r, d), the underlying bundles of its corresponding algebraic chain

are Ẽi = Ei ⊗ L
i−k. So if (E•, ϕ•) ∈ VHSL(r, d, ξ), then

k⊗

i=1

det(Ẽi) =
k⊗

i=1

(
det(Ei)⊗ L

(i−k)ri
)
=

(
k⊗

i=1

det(Ei)

)
⊗ L⊗(

∑k
i=1(i−k)ri) ∼= ξL.

The converse is analogous. �

Lemma 8.2. Fix r = (r1, . . . , rk) and d = (d1, . . . , dk). Let ξ and ξ′ be two line bundles over X of

degree
∑k

i=1 di. Then

HCα(r, d, ξ) ∼= HCα(r, d, ξ′).

Proof. Let r =
∑k

i=1 ri. As ξ an ξ′ have the same degree, ξ′⊗ ξ−1 has degree zero, so there exists a

line bundle ψ such that ψ⊗r ∼= ξ′⊗ ξ−1. Given (E•, ϕ•) ∈ HCα(r, d, ξ), consider the algebraic chain

(E• ⊗ ψ,ϕ• ⊗ Idψ).
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As ψ has degree zero, tensoring by ψ gives an α-slope-preserving correspondence between subchains
of (E•, ϕ•) and those of (E• ⊗ ψ,ϕ• ⊗ Idψ). Thus, (E• ⊗ ψ,ϕ• ⊗ Idψ) is α-(semi)stable and clearly

k⊗

i=1

det(E• ⊗ ψ) =
k⊗

i=1

(det(Ei)⊗ ψ
ri) =

(
k⊗

i=1

det(Ei)

)
⊗ ψ

∑r
i=1 ri ∼= ξ ⊗ ψr ∼= ξ′,

and then tensorization by ψ yields the desired isomorphism. �

Corollary 8.3. Let ξ and ξ′ be line bundles on X of degree d. Let L and L′ be line bundles with
deg(L) = deg(L′). Then

VHSL(r, d, ξ) ∼= VHSL′(r, d, ξ′)

Proof. This follows from Lemmas 8.1 and 8.2, using the fact that αL = αL′ , dL = dL′ . �

Finally, consider the Bialynicki-Birula docomposition ofML(r, ξ)

ML(r, ξ) =
⋃

(r,d)∈∆L

|r|=r, |d|=d

U+
r,d,ξ

where, clearly, U+
r,d,ξ

= Ur,d,ξ ∩ML(r, ξ). We know that U+
r,d,ξ
→ VHSL(r, d, ξ) is an affine bundle

of rank N+
L,r,d,ξ

and, therefore, we have the analogue of equation (6.5),

(8.1) [ML(r, ξ)] =
∑

(r,d)∈∆L

|r|=r, |d|=d

L
N+

L,r,d,ξ [VHSL(r, d, ξ)],

which can be used in an analogous way to prove the following invariance property of the motivic
class of the moduli space of L-twisted Higgs bundles with fixed determinant.

Theorem 8.4. Let X be a smooth projective curve of genus g ≥ 2. Let L and L′ be line bundles
over X such that deg(L) = deg(L′) > 2g − 2. Assume that ξ and ξ′ are line bundles of degree
d coprime with the rank r. Then the motives of the corresponding moduli spaces [ML(r, ξ)] and
[ML′(r, ξ′)] are equal in K(VarC). Moreover, if d′′ is any integer coprime with r, and ξ′′ is any
line bundle of degree d′′, then E(ML(r, ξ)) = E(ML′(r, ξ′′)).

Proof. The argument is completely analogous to the one which lead to Theorem 6.7. One just
has to use the corresponding fixed determinant versions of the objects involved. Note that the

appropriate deformation complex is C•
0 (E,ϕ) : End0(E)

[−,ϕ]
−→ End0(E) ⊗ L, which decomposes

as C•
0(E,ϕ) =

⊕k−1
l=−k+1C

•
0,l(E,ϕ), just like C•(E,ϕ) in (6.6), but C•

0,l(E,ϕ) = C•
l (E,ϕ), so the

Morse index for the fixed determinant case equals the non-fixed determinant case. Moreover, the
equality of the E-polynomials is also precisely the same argument, but here one has to refer to
[MS20b, Theorem 0.5] (see also [GWZ20, Corollary 7.17]), instead of the references stated in the
proof of Theorem 6.7. The details are left to the reader.

�

8.2. Moduli spaces of L-connections with fixed determinant. Let L be any Lie algebroid.
Let E be a rank r vector bundle with determinant ξ = det(E) = ΛrE and let ∇L : E → E ⊗ Ω1

L
be an integrable L-connection on E. Then ∇L induces a map

tr(∇L) : ξ −→ ξ ⊗ Ω1
L,
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defined as follows. For local sections s1, . . . , sr of E,

tr(∇L)(s1 ∧ . . . ∧ sr) =
r∑

i=1

s1 ∧ . . . ∧ ∇L(si) ∧ . . . ∧ sr.

Observe that if v1, . . . , vr is a local trivializing basis of E over some open subset of X, then if we
write ∇L in that basis as ∇L = dL +G with G = (gij), we get

tr(∇L)(v1 ∧ . . .∧ vr) =
r∑

i=1

v1∧ . . .∧Gvi∧ . . .∧ vr =
r∑

i=1

v1∧ . . .∧ giivi∧ . . .∧ vr = tr(G)v1 ∧ . . .∧ vr,

justifying the notation “tr(∇L)”.

Lemma 8.5. Let X be a smooth projective curve and let L be a Lie algebroid on X. Let (E,∇L)
be an integrable L-connection with det(E) ∼= ξ. Then tr(∇L) is an integrable L-connection on ξ.

Proof. It is clear by construction that tr(∇L) is C-linear, so we need to prove that it satisfies the
Leibniz rule and that it is integrable. Let s1, . . . sr be local sections E and f a local algebraic
function on X. Then, for each j = 1, . . . , r, we have

tr(∇L)(s1 ∧ . . . ∧ fsj ∧ . . . ∧ sr) =
∑

i 6=j

s1 ∧ . . . ∧ ∇L(si) ∧ . . . ∧ fsj ∧ . . . ∧ sr

+ s1 ∧ . . . ∧ f∇L(sj) ∧ . . . ∧ sr + s1 ∧ . . . ∧ sj ⊗ dL(f) ∧ . . . ∧ sr

= f

r∑

i=1

s1 ∧ . . . ∧ ∇L(si) ∧ . . . ∧ sr + s1 ∧ . . . ∧ sr ⊗ dL(f)

= f tr(∇L)(s1 ∧ . . . ∧ sr) + s1 ∧ . . . ∧ sr ⊗ dL(f),

so (ξ, tr(∇L)) is an L-connection.
Let us now prove that it is integrable. Suppose L = (V, [· , ·], δ), with rk(V ) = k. We will prove

it via a local representation of tr(∇L). Let U ⊂ X be an open subset such that E and V are trivial
bundles over U . Write ∇L locally over U as ∇L = dL +G, where G is an V ∗-valued r × r matrix.
Let w1, . . . , wk be a trivializing basis of V ∗ over U . Then we can write

G =
k∑

i=1

Gi ⊗ wi

where Gi is an OX(U)-valued matrix. Now, we have that, over U , translates into

(8.2) ∇2
L = dL +G ∧G = dL(G) +

k∑

i,j=1

GiGj ⊗ wi ∧ wj = dL(G) +
∑

i<j

[Gi, Gj ]⊗ wi ∧wj ,

and, since tr(∇L) = dL + tr(G) = dL +
∑k

i=1 tr(Gi)⊗ wi,

tr(∇L)
2 = dL(tr(G)) +

∑

i<j

(tr(Gi) tr(Gj)− tr(Gj) tr(Gi))⊗wi ∧ wj = dL(tr(G)) = tr(dL(G)).

From the integrability of ∇L, it follows from (8.2) that dL(G) = −
∑

i<j[Gi, Gj ]⊗ wi ∧ wj, hence

tr(dL(G)) = −
∑

i<j

tr([Gi, Gj ])⊗wi ∧ wj = 0,

proving that (ξ, tr(∇L)) is integrable. �
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Let (E,∇L) ∈MΛL
(r, d). As ξ is a line bundle, (ξ, tr(∇L)) is automatically stable, so (ξ, tr(∇L)) ∈

MΛL
(1, d). As the determinant construction can be clearly done in families, then it defines the

following map,

det :MΛL
(r, d) −→MΛL

(1, d), det(E,∇L) = (det(E), tr(∇L)).

Let (ξ, δ) ∈ MΛ,L(1, d) be an integrable L-connection of rank 1 and degree d. Define

MΛL
(r, ξ, δ) = det−1(ξ, δ) ⊂MΛL

(r, d)

as the moduli space of L-connections with fixed determinant (ξ, δ).
For example, if L = (L, 0, 0)is trivial, with L a line bundle, then

MΛ(L,0,0)
(r, ξ, 0) =ML−1(r, ξ).

If TX is the canonical Lie algebroid on X, then MΛTX
(r,OX , 0) is the moduli space of SL(r,C)-

connections on X.
The determinant map extends to the L-Hodge moduli space, obtaining a map

det :MΛred
L

(r, d) −→MΛred
L

(1, d),

over C, by taking det(E,∇L, λ) = (det(E), tr(∇L), λ). Moreover, this map is C∗-equivariant for
action (3.19). For each (ξ, δ, λ) ∈ MΛred

L

(1, d), define

MΛred
L

(r, ξ, δ) = det−1(C · (ξ, δ, λ))

as the L-Hodge moduli space with fixed determinant (ξ, δ). Here C · (ξ, δ, λ) denotes the closure of
the C∗-orbit of (ξ, δ, λ) inMΛred

L

(1, d) which, since ξ is a line bundle, is just the set of elements of

the form (ξ, tδ, tλ), with t ∈ C. Then MΛred
L

(r, ξ, δ) is clearly a C∗-invariant closed subvariety of

the L-Hodge moduli space MΛred
L

(r, d) and if π :MΛred
L

(r, ξ, δ) → C is the restriction of the map

(3.16), we have

• π−1(0) ∼=ML−1(r, ξ);
• π−1(1) ∼=MΛL

(r, ξ, δ);
• π−1(C∗) ∼=MΛL

(r, ξ, δ) × C∗.

The deformation theory for this moduli space is very similar to the deformation for the moduli
space of L-connections with fixed degree computed in [Tor11, Theorem 47].

Lemma 8.6. The Zariski tangent space to the moduli space MΛL
(r, ξ, δ) at a point (E,∇L) is

isomorphic to H1(C•
0 (E,∇L)), where C

•
0 (E,∇L) is the complex

C•
0 (E,∇L) : End0(E)

[−,∇L]
−→ End0(E) ⊗Ω1

L
[−,∇L]
−→ . . .

[−,∇L]
−→ End0(E)⊗ Ω

rk(L)
L ,

and the obstruction for the deformation theory lies in H2(C•
0 (E,∇L)).

Proof. The deformations ofMΛL
(r, ξ, δ) are precisely the deformations ofMΛL

(r, d) which preserve
the determinant and trace. Following the same notation as the one used in Lemma 5.11, let
U = {Uα} be a covering of X such that E is trivial over Uα. Fix a trivialization of E over U and for
each α and β, let gαβ : Uαβ → GL(r,C) be the transition functions for E and let ∇L,α = dL +Gα
be the local representation of ∇L over Uα.

Let (E′,∇′
L) be a deformation of (E,∇L) over X × Spec(C[ε]/ε2) such that the transition func-

tions of E′ are
g′αβ = gαβ + εg1αβ and ∇′

L,α = εdL +Gα + εG1
α.

By [Tor11, Theorem 47], g′αβ and G1
α correspond to a deformation of (E,∇L) inMΛL

(r, d) if and

only if the cocycles c ∈ C1(U ,End(E)) and C ∈ C0(U ,End(E)⊗Ω1
L) defined by c

(α)
αβ = g1αβgβα and

C
(α)
α = G1

α satisfy ∂c = 0, ∂C = ∇̃Lc and ∇̃LC = 0.
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We will prove that (c, C) defines a deformation of (E,∇L) inMΛL
(r, ξ, δ) if and only if (c, C) ∈

C1(U ,End0(E)) ×C0(U ,End0(E) ⊗Ω1
L). We have tr(∇′

L) = δ = tr(∇L) if and only if

tr(Gα) = tr(G1
α) = tr(Gα) + ε tr(G1

α),

so tr(G1
α) = 0 and, therefore, C ∈ C1(U ,End0(E) ⊗ Ω1

L). On the other hand, det(E′) = ξ if and
only if

det(gαβ) = det(g1αβ) = det(gαβ + εg1αβ) = det(gαβ) + ε
r∑

i=1

det
(
(gαβ)1| · · · |(g

1
αβ)i| · · · |(gαβ)r

)
,

since ε2 = 0. Here, ((gαβ)1| · · · |(g
1
αβ)i| · · · |(gαβ)r) denotes the r×r matrix whose i-th column equals

the i-th column of g1αβ and the other columns are the corresponding ones of gαβ . Set

Di = det
(
(gαβ)1| · · · |(g

1
αβ)i| · · · (gαβ)r

)

so that det(E′) = ξ if and only if
∑r

i=1Di = 0. Let A be such that gαβA = g1αβ . By Cramer’s rule,

Di = Aii det(gαβ), thus

r∑

i=1

Di = det(gαβ) tr(A) = det(gαβ) tr(g
−1
αβ g

1
αβ) = det(gαβ) tr(c

(α)
αβ ),

and so det(E′) = ξ if and only if tr(c) = 0, i.e., if c ∈ C1(U ,End0(E)).
The rest of the proof is exactly the same as the one of [Tor11, Theorem 47]. �

Proposition 8.7. Let X be a smooth projective curve of genus g ≥ 2. Let L be a Lie algebroid
with rk(L) = 1 and deg(L) < 2− 2g. Take r and d is coprime. Then, for each (ξ, δ) ∈ MΛL

(1, d),
the moduli spaceMΛred

L

(r, ξ, δ) is a smooth semiprojective variety for the C∗-action t · (E,∇L, λ) =

(E, t∇L, tλ). Furthermore, the map π : MΛred
L

(r, ξ, δ) → C, π(E,∇L, λ) = λ is a surjective sub-

mersion andMΛL
(r, ξ, δ) is a smooth variety of dimension deg(L)(1− r2).

Proof. The argument is exactly the same as the one carried on in section 5.3. The only difference
is that the computation of the dimension of the tangent bundle done in Lemma 5.10 now becomes

dimT(E,∇L)MΛL
(r, ξ, δ) = deg(L)(1 − r2) + dim

(
H2(C•

0 (E,∇L))
)
.

Notice that here we have to take trace-free endomorphisms, hence by point (3) of Lemma 5.9,
H0(C•

0 (E,∇L)) = 0. Taking into account Lemma 8.6, the deformation theory computed in Lemma
5.11 becomes now

T(E,∇L,0)MΛred
L

(r, ξ, δ) ∼=




(c, C, λε) ∈

(
C1(U ,End(E))×
C0(U ,End(E) ⊗ ΩL)× C

)
∣∣∣∣∣∣∣∣∣∣

∂c = 0

∂C = ∇̃Lc+ λεω

∇̃LC = −λεdL(∇L)
tr(c) = 0
tr(C) = λεδ





{
(∂η, ∇̃Lη, 0)

∣∣∣ η ∈ C0(U ,End0(E))
}

with dπ([(c, C, λε)]) = λε. Then, clearly

ker dπ ∼=



(c, C, 0) ∈

(
C1(U ,End0(E))×
C0(U ,End0(E)⊗ ΩL)× C

)∣∣∣∣∣∣

∂c = 0

∂C = ∇̃Lc+ λεω

∇̃LC = −λεdL(∇L)





{
(∂η, ∇̃Lη, 0)

∣∣∣ η ∈ C0(U ,End0(E))
} ∼= T(E,∇L)ML−1(r, ξ)

and the proof proceeds exactly as in Lemma 5.13 and Theorem 5.15. �
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Theorem 8.8. Let L = (L, [· , ·], δ) be Lie algebroid on X such that L is a line bundle with
deg(L) < 2− 2g. If r and d are coprime, then, for each (ξ, δ) ∈ MΛL

(1, d), we have

[MΛL
(r, ξ, δ)] = [ML−1(r, ξ, δ)], [MΛred

L

(r, ξ, δ)] = L[ML−1(r, ξ, δ)]

and we have an isomorphism of Hodge structures

H•(MΛL
(r, ξ, δ)) ∼= H•(ML−1(r, ξ, δ))

In particular,

E(MΛL
(r, ξ, δ)) = E(ML−1(r, ξ, δ)), E(MΛred

L

(r, ξ, δ)) = uvE(ML−1(r, ξ, δ)).

Moreover, both MΛL
(r, ξ, δ) andMΛred

L

(r, ξ, δ) have pure mixed Hodge structures.

Proof. The proof is completely analogous to that of Theorem 5.17. The details are left to the
reader. �

Finally, combining this result with Theorem 8.4 and working analogously to Theorem 7.4, yields
the fixed-determinant version of Theorems 6.7 and 7.4.

Theorem 8.9. Let X be a smooth projective curve of genus g ≥ 2 and let L and L′ be any Lie
algebroids on X such that rk(L) = rk(L′) = 1 and deg(L) = deg(L′) < 2− 2g. Suppose that r and
d are coprime. Let (ξ, δ) ∈MΛL

(1, d) and (ξ′, δ′) ∈ MΛL′ (1, d). Then

I(MΛL
(r, ξ, δ)) = I(MΛL′ (r, ξ

′, δ′))

where I(X) denotes one of the following

(1) The virtual motive [X] ∈ K̂(VarC);
(2) The Voevodsky motive M(X) ∈ DMeff(C, R) for any ring R. In this case, moreover, the

motives are pure;
(3) The Chow motive h(X) ∈ Choweff(C, R) for any ring R;
(4) The Chow ring CH•(X,R) for any ring R.

Moreover, the mixed Hodge structures of the moduli spaces are pure and if d′′ is any integer coprime
with r and (ξ′′, δ′′) ∈ MΛL′ (1, d

′′), then

E(MΛL
(r, ξ, δ)) = E(MΛL′ (r, ξ

′′, δ′′)).

Finally, if L = L′ = K(D) for some effective divisor D, then we have an actual isomorphism of
pure mixed Hodge structures

H•(MΛL
(r, ξ, δ)) ∼= H•(MΛL′ (r, ξ

′′, δ′′)).
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