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Z/2-Godeaux surfaces
Eduardo Dias, Carlos Rito

Abstract

We compute explicit equations for all (universal coverings of) Godeaux
surfaces with torsion group Z/2. We show that their moduli space is irre-
ducible and rational of dimension 8.

2020 MSC: 14J29

1 Introduction

Let S be a smooth minimal complex algebraic surface. Its topological invariants
are the geometric genus pg, the irregularity ¢ and the self-intersection K2 of a
canonical divisor. The holomorphic Euler characteristic is x = 1 + py — q.
Gieseker [Gie77] has shown that for each pair (x, K?) and S of general type,
there exists a coarse moduli space M, g2 that is a quasi-projective variey.
Naturally geometers want to understand which of these families are non-empty,
and then if possible to classify them. It is frustrating that this has not been
achieved even for the first case in the list, the one with y = K2 = 1.

For these surfaces p; = ¢ = 0, and they are known to exist since Godeaux’
construction in 1931 [God31]. Nowadays surfaces of general type with p, =
g =0,K? =1 are called numerical Godeaux surfaces. Miyaoka showed
that the order of their torsion group is at most 5, and Reid [Rei78] excluded
the case (Z/2)?, so their possible torsion groups are Z/n with 1 < n < 5. Reid
constructed the moduli space for the cases n = 5,4, 3, and it follows from his
work that the topological fundamental group coincides with the torsion group
for n = 5,4. Coughlan and Urzta [CUIg| showed that the same happens for
n = 3. In those three cases the moduli space is irreducible of dimension 8.

Coughlan [Coul6] has obtained a family of Z/2-Godeaux surfaces (i.e. with
torsion group Z/2) depending on 8 parameters. More recently, we have studied
with Urztia [DRU20] all possible degenerations of Z/2-Godeaux surfaces into
stable surfaces with one Wahl singularity, which produces many boundary divi-
sors of dimension 7 in the KSBA compactification of the moduli space of these
surfaces. This is done by means of abstract constructions (i.e. showing the
existence of particular singular surfaces with no obstructions in deformations),
and computational constructions based on Coughlan’s family. We have ended
up proving in [DRU2(] that Coughlan’s family is at most 7 dimensional. For
the case of Godeaux surfaces with trivial torsion, we know the examples due to
Barlow [Bar85)], Craighero-Gattazzo [CG94] (see also [RTULT]), and Lee-Park
type of constructions (cf. [LP07]).

Besides the work of several other authors, these cases n = 2,1 are still open
(at the time of submitting this paper, Schreyer and Stenger put out a preprint
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[SS20] claiming the construction of an 8-dimensional family of simply connected
Godeaux surfaces, but without obtaining a full classification).

Catanese and Debarre [CD89] showed that the étale double covers of Z/2-
Godeaux surfaces have hyperelliptic canonical curve and birational bicanonical
map onto an octic in P2, and they did a general study of its canonical ring.
That octic is given by the determinant of a certain matrix a.

In this paper we continue their work. Using an idea from Miles Reid [Rei90],
we get more precise information about « by looking first to its restriction to
the case of the canonical curve, then extending to the surface. Then we give
an algorithm for the computation of all such matrices, from which we obtain
equations for the étale double covers of all Z/2-Godeaux surfaces. We show
that their moduli space is irreducible of dimension 8, which implies that the
topological fundamental group of Z/2-Godeaux surfaces is also Z/2.

We note that our method is not brute force computation: for the main
algorithm, the calculations used only 32 MB of RAM memory, and took 85
seconds on a low-end computer.

Recently two special Z/2-Godeaux surfaces have appeared in the literature: a
(Z/3)%-quotient of a fake projective plane, constructed by Borisov and Fatighenti
[BF20], which has 4 cusp singularities; a degree 6 quotient of the so-called
Cartwright-Steger surface, given by Borisov-Yeung [BY20], which has 3 cusp
singularities and a certain configuration of rational curves. As an exercise, we
give the coordinates of these surfaces in our family.

All computations are implemented with Magma [BCP97], and can be found
in some arXiv ancillary files. In particular, using the files
5_Verifications_alpha_i_c_j.txt one can choose any surface in the family

and compute its invariants and singular set.
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2 Results from Catanese-Debarre

We collect here some results from the paper [CD89| that will be used throughout
the text.

Let S be the étale double cover of a numerical Godeaux surface with torsion
group Z/2, and denote the corresponding involution by o. The invariants of S
are K* =2, p, =1, ¢ = 0. Define the canonical ring of S as

R =P H"(S,nKs),

n=0

and let A = C[z,y1, Y2, y3] be the C-graded algebra with

deg(z) =1, deg(y;) = 2.



The involution o acts on R, the canonical ring of S, splitting it into eigenspaces
R = R* @ R~. Denoting the Godeaux surface by 7', we have

RY =P H (T nkr), R =PH(T.nkr +1n),
n>0 n>0

where 7 € Pic(T) is a 2-torsion element. Furthermore, by Riemann-Roch,
dimR} =dimR, =1+ (Z), for m > 2.

Throughout the paper we denote the set of generators of R by

r€Ry
2% ys € RS Y1,Y3 € Ry
Ty1,1Ys, 23,24 € Ry | 3,2y, 21,22 € Ry
teRy.

Notice that the vector space R is 7 dimensional and contains

4 2 2 2 2
{2%, 2%y2, ¥, v1Y3, Y3, Y3, 21, T23}.

Then from [CD89, Lemma 4.5], and possibly doing a change of variables, there
is a (unique) relation that can be written as

Q1 (y1,v2,y3) + Awzy.

For the next 5 items see Proposition 1.1 and Theorem 6.1, Proposition 4.2
and Theorem 4.3, Theorem 4.6, and the proof of Theorem 4.6 of [CDg9].

(1) The bicanonical map of S is a birational morphism and its canonical curve
is hyperelliptic.

(2) R is a Cohen-Macaulay A-module, which implies that R admits a length
one free resolution of A-modules that can be written as

R« A® A(-3)* @ A(—4) <& A(-4) @ A(-5)* @ A(—8) + 0,
where « is a matrix with homogeneous entries in A.

(3) The matrix « can be chosen symmetric of the form

G g1 T2 43  Xqq
rq1 | a1 G122 a3z Q4
g2 | ai2 G222 G23 A24
Iqs | a1z A2z Aaz3z AaA34
Tdq | Q14 Q24 A34 Q44

Q |z 0 0 0

olo o o 80

where G, g;, a;; are of degrees 3,2,1 in (yo = x2,y1,y2,y3), respectively.
The 3 x 3-minors of (a;;) are in the ideal (z,Q), and det(a;;) is in (z, Q?).



(4) The matrix « satisfies the following rank condition:

(RC) For each cofactor §;; of a there exist lfj € A such that

6
Bij = > 15 Bk
k=1

(5) Conversely, for any matrix a belonging to an open subset of the set of
matrices as in (3) and (4), it is possible to define a ring structure on the
A-module R which « defines. The surface X = Proj(R) is the canonical
model of a minimal surface S with K2 = 2, p, = 1, ¢ = 0 for which the
bicanonical map is birational onto an octic in P? with equation det(c).

Furthermore, from [Cat84]:

(6) The equations of S are given by

6
— k P
vivjfg Livg, 1,5 =2,...,6,
k=1

6
E Q;5V5, ’izl,...,6,
j=1

with
v = 1,’1}2 = Z1,V3 = 22,V4 = 23,VU5 = 24,V — t.
3 The matrix «
Proposition 1. The matriz o can be written in the form

22G™ | xq7 wq;, wai xqf | QF

= = — + +
Tqy ayy  Gpg af’ a%
xqs Q1o Ggp Qg3  Qgy

+ ¥ ¥ = -
zqi af’ agrs @33 Q34
T4y | Q14 Qpq Q34 Oy
QT x 0 0 0

S| o OoOrR

with
Q =yt —y3 — d°y3,
and where the superscript signs mean o-invariant (+) or o-anti-invariant (—).

Proof. The bicanonical map of S sends its (hyperelliptic) canonical curve C
onto the plane conic @ = 0, which is contained in the octic surface det(a) = 0
in P3. Suppose that this conic is a double line. Then C' = 2D + Z, where Z is
supported on a union of (—2)-curves. These curves must be preserved by the
Godeaux involution o, giving rise to curves C' = 2D’ + Z’, with Z' also a union
of (—2)-curves. This contradicts the fact C"? = 1. Therefore there is a change
of variables that allow us to write Q = y# — y3 — d?y3, for some constant d.
Using Riemann-Roch and the local basis of R, one sees that there are two
o-invariant relations of degree 5 and two anti-invariant ones. Since z, z1, 22, t



are anti-invariant, z3, z4 are invariant, and we are assuming ¢ invariant, the
relations

a-(1,21,...,24,6) T =0
from Section 2] (6) imply that the superscript signs must be as claimed. O

Lemma 2. The matriz al,—o cannot be of the type

0 0 0 0 0 Q
0 | y1 +dys 0 Y2 0 0
0 0 y1 + dys 0 Y2 0
0 Y2 0 y1 — dys 0 0
0 0 Y2 0 y1—dys | 0
ol 0 0 0 0 [0

with Q = y3 — y3 — d*y3.

Proof. Recall that the cofactors §;;],=0 of the matrix satisfy the rank condition
(RC). Since Biglz=0 = 0 for k = 1,...,5, it is not difficult to compute the
polynomials lfj|$:o, and then the equations of the effective canonical divisor
of the corresponding surface S. We get that this curve is a double conic (the
detailed computations are available in the arXiv ancillary file Lemma2.txt). As
in the proof of Proposition [ this gives a contradiction.

O

Proposition 3. The matriz «|,—o can be written as

0 0 0 0 0 Q

0 d2 Y3 Y1 Y2 0 0

O v1 ys O Yo 0
M :=

0| vy 0 -—y3 Y1 0

0| 0 wywo w1 —d’s |0

Ql 0 0 o0 0 |0

with @ = yi — y3 — d*y3.

Proof. From Proposition[Il the matrix a|,—¢ can be written as

0 0 0 0 0 Q
0 mq mo Y2 T2Y2 0

M = 0 mo ms r3ya T4Y2 0
' 0 T1Y2 T3Y2 my ms 0

0 roya 74y2 my  mg 0

Q 0 0 0 0 0

with m; = a;y1 + b;y3. Denote its lines, columns by [;, ¢;, respectively.

If mo # 0, then we can assume mg3 # 0, by possibly doing the elementary
operations I3 — I3 + als, c3 — c3 + acs, for some constant . Now operations
of the type lo — ls + Bls, ca — co + Bes take us to one of the cases moy = 0,
ma = y1 Or Mgy = y3, where here the notation a = b means that a = 7b for some
constant 7 # 0.

Suppose that mg = y;. If m3 = y1, we can go to the case my = 0. If not, we
can take ms = ys. Analogously if ms = y3, we can take ms = 0 or m3 = y;.



Now by multiplying I3, c3 and Iz, co by constants, we can assume that me = 0,
me = y1 and mg = y3, or mo = y3 and ms = y1.

Let D be the determinant of the 4 x 4 central matrix of M. One can check
that the coefficient of y3 in D is (r174 —ra73)2. Since D is a multiple of @Q? (from
Section 2l (3)), we must have r174 — rorg # 0. Then elementary operations over
the lines l4,15 and the columns cg4, c5 allow us to assume that r;1 =r4 = 1 and
To =T3 = 0.

Summing up, we have three possible cases:

1) meo=y1,ma=y3, 11 =r4=1,1ry=r3=0;
2) mo=y3, m3=y1, 11 =r4=1,12 =13 =0;
3)7’712:0, 7“1:7“4:1,7“2:7“3:0.

Let N be the 4 x 4 central matrix of M. Notice that the rank condition (RC)
implies that each cofactor C;; of NV is divisible by the quadric Q). We show below
that this is enough to conclude the proof.

The computational details for the following three cases are available in the
arXiv ancillary file Proposition3.txt.

Case 1)
We have

—C13/y2 = asy; + (bs + ag)y1ys — y3 + bey3,
C1,4/y2 = asyi + (ba + as5)y1ys + bsy3,
Ca.3/ya = (a1as + ag)yi + (a1bs + bras + be)y1ys + bibsys.

The only possibility then is that the first one is equal to ), and the other two
are zero. This implies

ai :O,bl:d2,a4:0,b4:—1,a5:1,b5:0,a6:0,b6:7d2.

Case 2)
We have

—C13/y2 = agy; + (as + be)y1ys — y3 + bsys,
C1.4/y2 = asyi + (as + bs)y1ys + bays,
—Cs3/y2 = arasyi + (a1by + bras + as)y1ys — ya + (bbs + bs)y3.

The only possibility is that the second one is zero, and the other two are equal
to Q. This implies that d # 0 and

ay :d_2,b1 :0,a4:d2,b4:0,a5:0,b5:—d2,a6:1,b6:0.

Now let
P := Diag (1, 3 r3d=2, —rd=2, —r, 1)

with 7* 4+ d? = 0. The Product PM PT shows that we can send M to the matrix
M above by a change of variables, more precisely

PMPT =M (—r?ys,y2, —r*dy1) .



Case 3)
In this case we have

—Cia/y2 = ya(asyr + bsys),
—Ci3/y2 = (asaey; + (bsas + asbe)y1ys — y3 + babey3) ,
—Cas/y2 = (a1a4y; + (bras + a1ba)y1ys — y3 + bi1bay3) .

This implies a5 = b5 = bsag + asbg = bras + a1by = 0, asag = a1a4 = 1 and
bsbg = b1by = —d. Then aja3 # 0 and we can assume a; = a3 = 1. This way we
obtain 4 matrices which, by changing ys to —ys, reduce to

0 0 0 0 0 0
0 y1+dys 0 Y2 0 0
o= | 0 0 y1 — (—1)"dys 0 Y2 0
T 0 Y2 0 y1 — dys 0 0
0 0 Y2 0 y1+ (=1)'dys 0
o 0 0 0 0 0
with j = 1,2.

From Lemmal2 only the matrix My with d # 0 can correspond to a Godeaux
surface. Let

1 0 0 0 0 0

0 i d/2 0 0 0

po_ |0 —i/d 12 0 0 0
“lo o 0o —i/2 1/d 0]

0 0 0 id/2 1 0

o 0 o0 0 0 1

with i2 = —1. The product PM,PT shows that Ms is equivalent to a matrix of

the type M above.
O

Now we introduce a new degree 2 variable y4 negative for the involution o.

Theorem 4. The matriz o can be written as

wqi 0 Y2 Y1 —Y4
Q T 0 0 0

G~ | gy zqy xq;' zqf | Q

rq | Y4 Y1 Y2 0 |

a; = zqgl moys c®  ya |0
zqs y2  cx® —ys y1 |0

0

0

with
Q =yl — Y5 — Ysys,
G, q; polynomials of degree 3,2 in (yo = zQ,yl,yg,yg,y4) , respectively, and

1

ya=dys (G=1) or yp=-goy (j=2) or y=0 (=3

(As above the superscript signs mean o-invariant or o-anti-invariant.)
Moreover, we can assume ¢ =1 or ¢ = 0.



Proof. We want to extend the matrix M from Proposition Bl by adding polyno-
mials divisible by z. This must respect the signs given in Proposition [Il hence
concerning the entries of order 2, we can only add multiples of 2% to the o-
invariant ones. We get the matrix

22G~ rq, Tqy zq;' rq) Q

rqy d?ys Y1 Y2 + 1@’ cox? C5

o= gcq%_r U1 , y32 c3x? Y2 + cax?  cox
rq3 Y2 tcx C3x —Ys3 Y1 0

zqf cox® Y2 + cqx® (7 —d?y3 0

Q C5% Cex 0 0 0

We know that det(c) defines an irreducible surface in P3, thus c5 = ¢g = 0 is
impossible. If ¢g = 0, we can take ¢5 = 1 from the change of variable z — x/cs.
Then elementary operations using the last line and column give us ¢; = ¢4 and
co = 0. We can assume ¢4 = 0 by doing yo — yo — cax? and the result follows.

Now assume that cg # 0. We consider 3 cases. (The computational details
are available in the arXiv ancillary file Theoremd4.txt.)

Case 1: d? # (c5/c)?, ¢5 #0

Let
_ 2+ d*c b 2c5¢6
2 —d?c¥’ C2—d*cE
and
1 0 0 0 0 0
0 r —d?rcg/cs 0 0 0
0 —rcg/cs r 0 0 0
P = )
0 0 0 r reg/es 0
0 0 0 d*reg/cs r 0
0 0 0 0 0 1
with )
P2 = %
2 — a2t
The product PaPT is a matrix of the type
z? G Ty T g xq) Q
xq) d?Ys Y] Yo + cja? cha? chx
xqh Y; Y3 chr? yo +chz? 0
xqh Yo + 2’ cha? -Y; Yi 0 |’
xq, cha? Yo + cya? Y, —d?Y;3 0
Q chx 0 0 0 0

with
Yi© [ a —d?b Y1
Y3/ \-b o« ys) '
Notice that the determinant of this 2 x 2 matrix is a? — d?b? = 1.
Since ¢f = ¢5/7 # 0, we can proceed as before to get ¢ = 1,¢f =y, = ¢}, = 0.

Finally from
YP—us = dPYE =t —yi — dPy3



we see that the matrix PaPT is in the form of the matrix «; above.

Case 2: d? # (c5/c6)?, ¢5 =0
Let

SO OO O
—
OO OO O
Qu
O O O a o
O QOO OO
—
O OO OO
QL
_ o O o oo

o

The product PaPT gives us a matrix of the type a with cg = 0. We proceed as
above to get aj.

Case 3: d? = (c5/cg)?
Since ¢g # 0, we can take cg = 1, ¢5 = £d and, as above, ¢c; = ¢3 = ¢4 = 0. By
looking to PaPT with P := Diag(1,—1,1,—1,1,1), we see that we can consider

C5:d.
Let

10 0 0 0 O

00 1 000

p_ |01 —d 000

' 00 0 d10

00 O 1 0 O0

00 0 0 01

The product P'aP’" gives us a matrix of the type as if d # 0, or of the type
Qa3 ifd= 0.

Finally, if ¢ # 0, we can assume ¢ = 1 by taking the product PaP? with
P :=Diag(1l,¢,1/¢,1/c, ¢, 1), followed by the change z — x/c.
O

4 Computation of the equations

Denote by s, , s the sequence of monomials of degree n on the variables
(22,91, Y2,y3) which are anti-invariant, invariant for o, respectively. We write

10
G= 29153_ [Z]a
1

1 20
@ = Zbisg_[i]a s qa = Zbisg[i].
1 15

Our goal is to compute the set of parameters gi,...,g10 and by, ..., by such
that the matrices o; from Theorem H satisfy the rank condition (RC).

By doing elementary operations over the lines and columns of the matrix «;,
we can assume that 8 of the b; are zero. For instance in the case of a; :

e We remove multiples of y;,ys from g4, except the monomial y;ys;



e We remove multiples of y;,ys from gs;
e We remove multiples of x from ¢;.

The idea for the computations is the following: we write the polynomials lfj
depending on some parameters r,,, then we need to compute the parameters
Gps br, Ty such that the coefficients of the polynomials from (RC)

6
Bij — Z LB
k=1

vanish. After this the equations of the surfaces S follow from Section 2 (6).

The polynomials lfj depend on 371 parameters. We have a huge system of
876 coefficients depending on 23 + 371 = 394 parameters, but the parameters
rm appear linearly. We have developed an algorithm for this problem.

4.1 The algorithm

First we define a Magma function LinElim that will be used to solve the system
of polynomial equations:

Input: f asequence of polynomials, g a subset of f, var a sequence of variables,
and n € N.

Process: It checks the elements of g one-by-one and whenever it finds one that
is of the form r — h with r € var, h not depending on r, and containing
at most n variables that are in var, it substitutes by h in all elements of
f,g. It also adds the pair [r, h] to a list that we call dependencies.

Output: The new list f, and the dependencies.
We can now start.

(1) We work on R[z, y1, Y2, Y3, 21, 22, 23, 24, t] with R a polynomial ring with
394 variables (the parameters). Recall that the involution o is

[_:E) —Y1,Y2, —Y3, —21, —22, 23, %4, _t]

2) We define the matrix «,, with G, ¢; depending on some parameters g, b,.
J

(3) We define the polynomials lfj depending on parameters r,. Notice that
these must be chosen with the right degree and o sign.

(4) We write the polynomials that define the rank condition and a sequence
f containing their coefficients. Our goal is to compute the parameters
9m, bn, 7p such that these polynomial coefficients vanish.

(5) We now use the Magma function LinElim defined above to solve the system
of equations f = 0. We expect to eliminate all variables except some of
the g; and b; (which are in the first 23 variables of the ring R). So, the
function is used for the remaining 371 variables.

10



(6) After this we see that there is a set ¢ C f of polynomials contain-
ing only variables g; or b;, and such that some of these variables can
also be eliminated. So we run LinElim(f,g,var,n) now with var =
[gl, e 7910;b1; e ,blg].

(7) This process is much more efficient if we do it for n = 1, then repeat for
n = 2, etc. The system is solved when the output f is empty.

(8) We can now compute the matrix «;, by evaluating its polynomial coefli-
cients at the dependencies. We do the same for the lfj

(9) We can finally compute the equations given by Section 2 (6), on the vari-
ables z,y1,y2, Y3, 21, 22, 23, 24, t.

More details can be found in the arXiv ancillary file
1_TheAlgorithm_alpha_1_c_1.pdf, which contains a Magma implementation
of this algorithm for the case oy with ¢ = 1 of Theorem[l The equations that we
get still depend on some variables R.i with ¢ > 23, except for the ones of degree
< 5 which depend on nine of the R.i with i < 23. We show that the coefficients
of the R.i with ¢ > 23 are contained in the ideal generated by the degree < 5
equations (see the arXiv ancillary file 3_RemovingTheRi_alpha_1_c_1.txt),so
we can consider R.i = 0 for ¢+ > 23. This gives the final equations.

These computations used only 32 MB of RAM memory, and took 85 seconds

on a low-end computer.
The matrix oy, c =1 is given by:

G =

(72b9b6d+ 2b9bgd+ 4b9d2 + 2b6b11 - 2b8b11 — 4db11)x4y1 + (*2b5b9d2 + b5db11 —
2()36[2 —bgodb11 + 256d2 +bgb12 + b%d—f— 2b8d2 +dgg +2db12 + b%1)$4y3 + (—2()5bgd—
2b3d — 2bgb11 + 2bgd + 299 + 4b12)l‘2y1y2 + (—2b5d2 — bsb1a — 2bgbgd + 2bgbgd —
bob12 + beb11 + 2dby — 2dby1)x%yays + (2bgd — 2b11)y3 + (bsbi1 + b3d + bob11 —
2b6d — go — 4b12)y3ys + (—2bsd — 4bgd + 4by — 2b11)y1y3 + (bsb12 — 2bod? + bob12 +
beb11)y1y3 + goysys + (—b3d? + 2b6d* + bbi2 + dgo + 2dbi2)y3,

@1 = bazy2ys,

g2 = (bg — bs — 2d)x3yy + (bsd + b11)23ys + bszy1y2 + bexyays,
g3 = (=bod + b11)x® + bgz®ys + boxy3,

qa = (bsd + d* + b12)x® + bi1zy1ys + biazy3,

Q=yi—y3—dy3.

The computations for the other cases a;,c = j are given in the files
1_The_Algorithm_alpha_i_c_j.txt.

5 The moduli space
Denote by M the moduli space of numerical Godeaux surfaces with torsion

group Z/2, and let ./\/lz be the subset of M corresponding to the matrix «; with
¢ = j of Theorem [

11



Theorem 5. The space M1 is isomorphic to an open dense subset of the 8-
dimensional weighted projective space P(1,1,2,2,2,3,3,4,4).

We have MY = M3 = 0. The spaces MY, M} and M} are at most 7-
dimensional, and are contained in the closure of M.

Proof. The computations of Section 1] give a matrix «1,c = 1 whose entries
are polynomials on the variables (yo = 22,91, y2, y3) With coefficients depending
on 9 parameters (p1,...,p9). Each determinant D := det(ay) gives an octic
surface in P? which, for general values of the parameters, is the image of Y
by its (degree 1) bicanonical map, where Y is the surface that has also been
computed by the algorithm. We check that, for any nonzero constant u, we have

D= D(yO/ua Y1,Y2, y3/ua up1, up2, ’U,ng, u2p47 u2p5a u3p67 u3p77 u4p85 U4p9)

(see the arXiv ancillary file 7_ItIsWeightedProjSpace_alpha_1_c_1.txt).
Therefore, the octics corresponding to (p1,...,pg) and

2 2 2 3 3 4 4
(Upl,UPQ,U D3, U P4, U P5,U P6, U P7,U P8, U pQ)

are identified by the change of variables (yo/u, y1, Y2, ys/u). This implies that the
above family of octic surfaces is parametrized by P(1,1,2,2,2, 3, 3,4, 4). Denote
it by S1.

In order to check that its dimension is 8, we wrote an algorithm that, given
an element of S, computes all other elements that are projectively equivalent
to it. We then use it to show that there are octics in S} which are not equivalent
to any other octic in S}. See the file 8_Dimension_alpha_1_c_1.txt.

It is easy to check that for ¢ = 0 the determinant of the matrix az is a
square, hence M$ = (). The computations for the case ag,c = 0 give equations
that contain the point (0: 0:0:1:0:0:0:0:0). Since this point would
be fixed by the tricanonical map, this is not possible for surfaces with py = 1,
q=0, K2 =2 Thus M9 = 0.

For the remaining cases, we run the above algorithm, obtaining again families
parametrized by some weighted projective space of dimension 8 (for MY, M3)
or 7 (for M}). For the first two families, we find that there are octics for
which there exists an irreducible 1-dimensional set of octics that are projectively
equivalent to it. For each general octic, we give the expression of a 1-dimensional
family of variable changes sending it to another octic in the same family. Thus
the dimensions are at most 7. See the corresponding arXiv ancillary files.

Finally, by the results of Kuranishi [Kur65] and Wavrik [Wav69] (as ex-
plained in [Cat83]), the number of moduli of each Z/2-Godeaux surface is at
least 8. Since only the space M1 is of dimension 8, the spaces M{, M3 and
M3 must be contained in the closure of M.

O

Corollary 6. The moduli space of numerical Godeauzr surfaces with torsion
group 7,/2 is irreducible and rational of dimension 8. The topological funda-
mental group of these surfaces is also Z/2.

Proof. The first part is immediate from Theorem Bl For the second part it suf-
fices to note that there exist Z/2-Godeaux surfaces with topological fundamental
group Z/2, see [Bar84]. O
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6 Two special surfaces

Borisov and Fatighenti [BF20] give the equations of a surface X with an action
of Z/3 such that the surface Y := X/(Z/3) is an étale double covering of a
7./2-Godeaux surface with 4 cusps, which in turn is a (Z/3)?-quotient of a fake
projective plane.

The surface X is embedded in P? by its bicanonical map, and the action of
Z/3 is

(xo:@y 1 X2 @3 :Xq:T5: X6 T7) — (To : Tt Ty : X1 1 Ts @ Xp : Ty @ 7).

The map given by (zo : 1 + 22 + 23 : x4 + x5 + 6 : x7) sends X to the
bicanonical image of Y, an octic surface in P3. Magma gives the equation of this
surface, and with computations similar to the ones in the arXiv ancillary file
8_Dimension_alpha_1_c_1.txt, we get its coordinates in our family (case a1,
c=1):

(bs, b9, bg, bs, d, bz, b11, go, b12) =

(367 + 36,64, —360r + 1752, 360r + 4392, —30r — 366, —10176r — 45504,
209761 + 78960, 238008r + 1635576, —383328r + 867744),

with r = +/—15.
Now with computations analogous to the ones in the file
5_Verifications_alpha_1_c_1.txt,one can see that the surface Y is as claimed.

Borisov and Yeung [BY20] give the equations of a Z/3-quotient Z of the
Cartwright-Steger surface, and they show that Z is an étale double covering of
a Z/2-Godeaux surface. The surface Z has 6 cusp singularities and contains
3 disjoint (—3)-curves. Proceeding as above, we find the image of Z by its
bicanonical map, and then we compute its coordinates in our family (case aq,
c=1):

(bs, b, bg, bs, d, by, bi1, go, br2) = (—60,40, —120, —302, 9, 252, 360, 15903, 648) .

Again with computations analogous to the ones in the file
8_Dimension_alpha_1_c_1.txt, one can check the invariants of Z and its sin-
gularities.
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