
DETERMINISTIC WALKS IN RANDOM ENVIRONMENT

ROMAIN AIMINO AND CARLANGELO LIVERANI

Abstract. Motivated by the random Lorentz gas, we study deterministic

walks in random environment and show that (in simple, yet relevant, cases)

they can be reduced to a class of random walks in random environment where
the jump probability depends (weakly) on the past. In addition, we prove few

basic results (hopefully the germ of a general theory) on the latter, purely

probabilistic, model.

1. Introduction

The motion of a point particle among periodically distributed elastically reflect-
ing convex bodies has been intensively studied for many years, both in the case
of diluted obstacles and in the opposite case of high density. Diluted obstacles
(the Boltzmann-Grad limit) can be treated by kinetic theory and lattice dynam-
ics ideas (see [23] and related work). The high density case has required more
specific dynamical systems tools, starting with the seminal work of Bunimovich,
Sinai and Chernov [2] until the recent and much more precise results obtained in
[8]. In particular, the latter result uses the new standard pairs and martingale
problem techniques introduced in the field by Dolgopyat (see [7] for an elementary
introduction to such ideas and references to the original works).

All the above deal with the periodic case, yet any material is expected to have de-
fects. Hence, the study of obstacles distributed according to a random, translation
invariant process is of paramount importance.

Unfortunately very few results are available in the non periodic case with the
notable exception of the low density regime (Boltzmann-Grad limit), see [22] and
reference therein. For high obstacle density the only results are [13, 14], where
recurrence is proven for special examples, and [9], where the Central Limit Theorem

2000 Mathematics Subject Classification. 60J15, 37A25, 37C30.
Key words and phrases. Random Lorentz gas, Random walk in random environment, decay of

correlations.
L.C. thanks Dmitry Dolgopyat and Marco Lenci for several discussions on random walks

through the years. Also we would like to thank Serge Troubetzkoy for pointing out the possi-
bility that, in our setting, the ergodicity of the process as seen from the particle might hold under
very weak extra assumptions. We also thank the anonymous referee for several helpful sugges-
tions. This work was partially supported by the European Advanced Grant Macroscopic Laws and

Dynamical Systems (MALADY) (ERC AdG 246953). L.C. acknowledges the MIUR Excellence
Department Project awarded to the Department of Mathematics, University of Rome Tor Ver-

gata, CUP E83C18000100006. This work started while R.A. was affiliated to Università di Roma
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is proven when the periodicity is broken only in a finite region (hence translation
invariance is violated).

However some basic results hold in full generality: [4, 26] establish a criteria for
recurrence and [13] shows that recurrent systems are ergodic. For example, by the
criteria in [4, 26], the problems of recurrence and ergodicity are reduced, in the
two dimensional case, to establishing a CLT, see [14] for details. Also, establishing
recurrence in the case of a one dimensional array of obstacles (tubes) is substantially
simpler and has been obtained in [6, 5, 28, 16]. Nevertheless, even in the simpler
one dimensional situation, the study of rate of mixing and CLT is wide open.

Part of the difficulty in studying the above problems stems from the fact that,
on the one hand, one needs non trivial results for the dynamical system and, on
the other hand, one has to overcome the same obstacles that exist in analysing
the problems of random walks in random environment (see [33] for a review on the
subject). In particular, on the dynamical system side it seems necessary to establish
some type of memory loss. In other words, one must show that the deterministic
dynamics is akin to a random process.

In this article we aim at separating the above two difficulties, so that they can be
(hopefully) solved independently. To this end we investigate more general models:
a) deterministic random walks in random environment (see section 3); b) random
walks (with memory) in random environment (see section 4). The former include
the random Lorentz gases; the latter include persistent random walks but allows for
infinite memory.

These two classes of models are connected by the following conjecture: relevant
classes of deterministic walks in random environment are equivalent to the above
purely probabilistic models. Hence, e.g., establishing the CLT for the probabilistic
model implies the CLT for the deterministic walk.

1.1. Results and structure of the paper. The paper is organised as follows: in
the next section we discuss briefly the Lorentz gases establishing, in the process,
several notations needed in the following. In Section 3 we describe a general class
of deterministic walks in random environment which encompass both the Lorentz
gas and the example with a simpler dynamics that we will consider later.

In Section 4 we describe the class of random systems. We establish properties
under which one can prove the ergodicity of the random process as seen from the
particle. In particular, if one would succeed in reducing the Lorentz gas to such
a probabilistic model, then one would automatically recover all the known results.
Of course, we believe that much more would follow form such a reduction. As a
first step, in Section 5, we prove the reversibility of the associated probabilistic
model. In the same section we show that if one restricts the dynamics to a Markov
one dimensional expanding map, then the dynamical part of the problem can be
completely obliterated and one is led to known purely probabilistic models.

Next, in Section 6, we explore more realistic (but still one dimensional) models.
We explain under which conditions the deterministic dynamics can be obliterated
yielding a probabilistic model as in Section 4. In Section 7 we verify such conditions
for a class of one dimensional non-Markov expanding maps. In the following sections
we prove the statements of Section 6.

Notation. In the following we will use C# to designate a generic constant that
depends only on the parameters or the assumptions of the considered model. The
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actual value of C# is immaterial. In particular, the value of C# can change from
one occurrence to the next.

2. The Random Lorentz gas

The random Lorentz gas consists of a distribution of convex, non overlapping,
obstacles in Rd, d ≥ 2 and independent point particles that move of free motion
and collides elastically with the obstacles. If one describes the particle density by a
distribution, then the problem is reduced to studying the motion of one particle with
an initial distribution given by a measure. If the obstacle distribution is described
by some probability measure, then the goal is to study the dynamics of the particle
for almost all obstacle distributions.

Of course, the problem depends heavily on the obstacle distribution. Two rea-
sonable assumptions are that the distribution enjoys some type of stationarity and
ergodicity with respect to some subgroup of the space translations. Also a key is-
sue is the existence or not of trajectories that can spend an unboundedly long time
without experiencing any collision. Given the many possibilities, let us restrict to
small perturbations of a periodic array of discs on Z2. Note however that similar
examples can be considered for d = 1 (Lorentz tubes [6, 5, 28]) and d > 2 .

Following [14] we start with an exactly periodic distribution of discs of radius R
centred on the square lattice Z2, such a periodic array divides naturally R2 in cells.
We assume that R < 1/2, which implies that the obstacles do not overlap. We
require that trajectories that are non horizontal nor vertical will eventually collide
with one of the obstacle.

Lemma 2.1. In a periodic Lorentz gas with obstacles made by discs of radius R
centred on the square lattice Z2 if R > 1

2
√

2
, then the only trajectories that never

experience a collision are either horizontal or vertical.

Proof. By periodicity, we can reduce the motion to a motion on the torus R2/Z2

with just one obstacle of radius R at its center. Also we can limit ourselves to
trajectories of the type ξ + (1, ω)t mod 1 with ω ∈ (0, 1] since the other cases can
be obtained by symmetry. Note that a flow on the torus in the direction vω := (1, ω)
induces the rotation f(s) = s+ω mod 1 on the Poincaré section {(0, s)}s∈[0,1]. In
addition the shadow, in the direction vω, of the obstacle on the Poincaré section

is a segment of length 2R
√

1+ω2

ω . Accordingly, the trajectory can avoid collisions
only if the rotation on the section always avoids some interval of such a length. It
follows ω 6∈ Q. On the other hand if ω = p

q , p, q ∈ N relatively prime, then f has

all periodic orbits. Let us consider first the case p < q, then q = ap + b for some
a, b ∈ N, b < p. Accordingly,

1− fa(0) = 1− ap
q

=

b
p

a+ b
p

≤ 1

a+ 1
≤ 1

2
.

Thus the maximal gap in the trajectory of f is of length 1/2 and hence if 2R
√

1+ω2

ω >
1
2 all trajectories will collide with the center obstacle. This is implied by R > 1

4
√

2
.

We are left with the case ω = 1. In this case, if R > 1
2
√

2
, then the shadow of the

obstacle is larger than 1, thus it covers all the Poincaré section, hence the claim. �

In the following we assume R > 1
2
√

2
.
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Next, in each cell we assume that there is another disc of radius r with center in a
δ-neighborhood of the center of the cell. We assume that r+ δ+R < 1/

√
2, which

imply that the obstacles do not overlap. Moreover, we assume R > 1
2
√

2
which

implies that, in absence of the center obstacle, the only trajectories that never
collide are either horizontal or vertical. Note that the above implies r + δ < 1

2
√

2
.

It then suffices to ask r − δ + R > 1
2 to ensure that the horizontal and vertical

trajectories collide with the center obstacle, hence establishing that the array has
the finite horizon property. The locations of the central obstacle in different cells
is an i.i.d. random variable. See Figure 1.a for an illustration.

C2 C1

C3 C4

C5 B1B2

B3

B4

Fig 1.a Random obstacle configuration Fig 1.b Poincaré section (in bold)

The above is a reasonable model for a material with a periodic structure and
random impurities. Let ‖ωz‖ ≤ δ be the displacement of the center obstacle from
the center of the cell z ∈ Z2. The obstacles are distributed according to a product

measure P on Ω = {ω ∈ R2 : ‖ω‖ ≤ δ}Z2

. On Ω are defined the translations
τz : Ω→ Ω by z ∈ Z2: for all ω̄ ∈ Ω and w ∈ Z2

τz(ω̄)w = (ω̄)w+z.

Next, consider a particle with position q ∈ R2 and velocity p, ‖p‖ = 1, moving
among the obstacles with elastic collisions.

The dynamics is deterministic but we consider stochastic initial conditions: As-
sume w.l.o.g. that the particle starts from the zero cell with positions and velocity
described by a smooth distribution h0.

Let (q(t), p(t)) be the position and velocity at time t. Natural questions are:
does it exist an asymptotic velocity (Law of large numbers)

(2.1) V = lim
t→∞

t−1[q(t)− q(0)].

If so, does the Central Limit Theorem holds? That is, does

(2.2)
1√
t
[q(t)− q(0)− V t]

converge in law to a Gaussian Random Variable P a.s. (quenched CLT).

2.1. Poincaré section. Consider a single cell (see Figure 1.b) and let C = ∪4
i=1Ci.

Ci being one of the bold arcs centered at the corners of the box, and let G(0,0) =
C× [−π/2, π/2]; [−π/2, π/2] being the angle that the post-collisional velocity forms
with the external normal. Next, let {Bi}4i=1 be the segments constituting the
boundary of the box not contained in the obstacles (see Figure 1.b) and set G(1,0) =
B1 × [−π/2, π/2], G(−1,0) = B2 × [−π/2, π/2], G(0,1) = B3 × [−π/2, π/2] and
G(0,−1) = B4 × [−π/2, π/2]. Next, let W = {(0, 0), (±1, 0), (0,±1)}, B = ∪w∈WGw
and consider the phase space B = B × Z2. This is a Poincaré section.
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For each ω̄, given a particle at (x, z) ∈ B, we follow its motion till it hits B again,
this defines a map fω̄z (x). The Poincaré map Fω̄ : B→ B associated to the billiard
flow is then defined by

Fω̄(x, z) = (fω̄z+e(ω̄z,x)
(x), z + e(ω̄z, x))

e(ω̄z, x) =
∑
w∈W

1Gw(x)w,(2.3)

where 1B is the characteristic function of the set B.

2.2. The random process. For each initial density h0 and ω̄ ∈ Ω we have thus
defined the random variables1

(x(ω̄, n), z(ω̄, n)) = Fnω̄(x, z).

Let M = {(z(n)) ∈ (Z2)N : z(0) = 0, z(n + 1) − z(n) ∈ W} be the path space
and consider the random process on Ω? = Ω×M defined as follows. For each ω̄ ∈ Ω
define the conditional probability

(2.4) P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1Gw(k)
(x(ω̄, k))h0(x)dx,

where w(k) = z(k + 1)− z(k). While ω̄ is distributed according to P.
Next, we introduce the transfer operators2

Lω̄,z,wϕ(x) =
∑

{y : fω̄z+w (y)=x}

|det ∂yfω̄z+w(y)|−11Gw(y)ϕ(y).

Changing variable repeatedly, yields

(2.5) P?({z(1), . . . , z(n)} | ω̄) =

∫
B
Lω̄,z(n−1),w(n−1) · · · Lω̄,z(0),w(0)h0.

Thus the measure P? can be expressed as products of transfer operators. The
process P? is, in general, not Markov, however we conjecture:

Conjecture. Under some appropriate technical conditions on P and h0, there exist
ν ∈ (0, 1) and C# > 0 such that for all ω̄ ∈ Ω∣∣P?(z(n) | zn, ω̄)− P?(ẑm(n−m) | ẑn−m, τz(m)ω̄)

∣∣ ≤ C#ν
n−m,

where zk = z(1), . . . , z(k − 1), ẑk = ẑm(1), . . . , ẑm(k − 1) with ẑm(k) = z(m+ k)−
z(m).

If the above were true, then one could reduce the study of the dynamical system
to a purely probabilistic problem, albeit not an easy one. See however Section 4
for the beginning of a theory in some related cases.

Next, we introduce a large class of dynamical systems, generalising the Lorentz
models. Then, we will prove the above conjecture for simple, and not so simple,
dynamical systems, giving an idea of what some appropriate technical conditions
might mean (see Theorem 6.1).

1Using the probabilistic usage we will often suppress the ω̄ dependency, when this does not

create confusion.
2In the present case the set on which we take the sum consists of only one element and the

determinant of the Jacobian of the fω is always one.
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3. Deterministic walks in random environment

As already mentioned there is an extreme scarcity of results pertaining the high
density random Lorentz Gas. It is then sensible to consider simpler models in
which one can start to solve some of the outstanding difficulties. To this end,
following Lenci [14], it is convenient to see the Lorentz gas as a special case of a
more general class of models: deterministic walks in random environment. Even for
such models very few results exist. Exceptions are [17] in which a zero-one law for
systems with local dynamics which are markovian, but deterministic, is established
and [29] which considers statistical properties for a related (simplified) model with
local dynamics consisting of expanding linear maps of the circle or hyperbolic toral
automorphisms.

The model can be stated in rather general terms, for simplicity let us restrict
to the case of the Zd lattice with bounded jumps W ⊂ Zd, #W < ∞,3 and local
dynamics which live all on the same phase space M.

Consider the set A = {(fα,M,Gα)}α∈A, where (A,S) is a measurable space4,
fα : M → M are maps such that (α, x) ∈ A ×M 7→ fα(x) ∈ M is measurable,
and Gα = {Gα,w}w∈W are partitions of M such that, for each w ∈ W, the map
(α, x) 7→ 1Gα,w(x) is measurable. The environment is described by the probability

space Ω = AZd equipped with a translation invariant probability P. Also we assume
that all the maps fα : M → M are nonsingular with respect to some reference
measure m on M. Then, for each realisation ω̄ ∈ Ω we can define the dynamics
Fω̄(·, ·) :M× Zd →M× Zd:

Fω̄(x, z) = (fω̄z+e(ω̄z,x)
(x), z + e(ω̄z, x))

e(α, x) =
∑
w∈W

1Gα,w(x)w,

and (x(n), z(n)) = Fnω̄(x(0), z(0)). The randomness at fixed environment rests in the
initial condition: z(0) = z0 while x(0) is distributed according to some probability
measure µ absolutely continuous with respect tom. We will assume, w.l.o.g., z0 = 0.
Then the path (z(n))n∈N belongs to M = {(zn) ∈ (Zd)N : z0 = 0, zn+1− zn ∈ W},
which we call the space of admissible paths, and P? is the law of the resulting process
on Ω? = Ω×M.

Each fα admits a transfer operator Lfα : L1(m)→ L1(m) defined by

(3.1)

∫
M

(Lfαφ)ψdm =

∫
M
φ · ψ ◦ fαdm

for all φ ∈ L1(m) and ψ ∈ L∞(m).
Let h0 be the density of the initial condition (dµ = h0dm). Then, setting

w(n) = z(n+ 1)− z(n), a repeated use of (3.1) in (2.4) yields

(3.2) P?(z(1), . . . , z(n) | ω̄) =

∫
M
Lω̄,z(n−1),w(n−1) · · · Lω̄,z(0),w(0)h0dm

for each ω̄ ∈ Ω and each admissible path (z(n)) ∈M, and with

(3.3) Lω̄,z,w(φ) = Lfω̄z+w (1Gω̄z,wφ).

3That is, only jumps w ∈ W are allowed.
4For most of our concrete applications, (A,S) will simply be a finite set with the discrete

σ-algebra.
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3.1. The point of view of the particle. An important process associated to our
deterministic walk is the process of the environment as seen from the particle. This
is the dynamical system defined on Ω×M by

F(ω̄, x) = (τe(ω̄0,x)ω̄, fω̄e(ω̄0,x)
(x)).

This is known to be a fruitful point of view, in particular if one knows the invariant
measure. As noted by Lenci [13, 14], in an important subclass of deterministic
random walks the invariant measure can be trivially computed.

Lemma 3.1. If all the maps fα have the same invariant measure λ and the set
Gα is deterministic (i.e., it does not depend on α), then the probability measure
P0 = P× λ is invariant for the map F .

Proof. Let E0 be the expectation with respect to P0. Since the set Gα is determin-
istic, we can write e(α, x) = e(x) for all α ∈ A and x ∈ M. For each bounded
measurable function ϕ we have

E0(ϕ ◦ F) =

∫
ϕ(τe(x)ω̄, fω̄e(x)

(x))P(dω̄)λ(dx)

=

∫
ϕ(τe(x)ω̄, f(τe(x)ω̄)0

(x))P(dω̄)λ(dx)

=

∫
ϕ(ω̄, fω̄0

(x))P(dω̄)λ(dx)

=

∫
ϕ(ω̄, x)P(dω̄)λ(dx) = E0(ϕ),

where we have used first the invariance of P with respect to the translations and
then the invariance of λ with respect to the maps fα. �

We have obtained a dynamical system with a finite measure.

Lemma 3.2. In the hypotheses of Lemma 3.1 the limit

V = lim
n→∞

1

n
z(n)

exists P0 a.s.. Moreover, if (Ω×M,F ,P0) is ergodic, then V = λ(e).

Proof. Setting (ω̄(n), x(n)) = Fn(ω̄, x) yields 1
nz(n) = 1

n

∑n−1
k=0 e(x(k)). Hence

the existence of the limit follows from Birkhoff ergodic theorem for the dynamical
system (Ω × M,F ,P0) applied to ϕ(ω̄, x) = e(ω̄0, x) = e(x). If the system is
ergodic, then the limit equals the average of ϕ with respected to P0 which is equal
to E0(ϕ) = λ(e). �

As an application we have the following Lemma (which is implicit in [6]).

Lemma 3.3. For the Lorentz gas described in section 2, with r + R√
2
< 1

2 and δ

small enough, we have V = 0.5

5The conditions are certainly not optimal, however to obtain the result for a larger set of
parameters entails a more refined analysis of the geometry of the trajectories and such an analysis

exceeds our present goals.
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Proof. We apply [14, Theorem 5.4] to prove that (Ω×M,F ,P0) is ergodic. Then,
Lemma 3.2 implies that V = λ

(∑
w∈W wGw

)
which is zero due to the fact that λ

is invariant for the change p→ −p.
To verify the hypotheses of [14, Theorem 5.4] it suffices to prove that there are

non singular trajectories that go from the interior of any Bi to the interior of any
other Bj (here and in the following we use the notation of Figure 1.b) for δ = 0,
the result will then follow by the continuity of the non singular trajectories with
respect to the positions of the obstacles. Let us start with a trajectory connecting
B2 to B1.

Consider the trajectory `h starting from (0, h), h ≥ r, with direction (1, 0).6 If

h = 1/2−R/
√

2 =: h0 then the trajectory reflects on the obstacle C1 at the point

(1/2 − R/
√

2, 1/2 − R/
√

2) and, after reflection, has the direction (0,−1). Note
that if r + R√

2
< 1

2 , then such trajectory misses C5 and the next collision is with

C4 while the previous is with C2. Accordingly, if we increase h the velocity, after
the collision with C1, rotates clockwise till, for some h− > h0, the trajectory is
tangent to C5, let v− := v(θ−), with v(θ) = (cos θ, sin θ) and θ− ∈ (−π,−π/2),
be the velocity at tangency. On the other hand for h = 1/2 the trajectory is
periodic between C2 and C1 and if we decrease h the velocity, after reflection with
C1, rotates counterclockwise. Thus there exists h+ such that the trajectory, after
reflection with C1 is tangent to the upper side of C5, let v+ := v(θ+), θ+ ∈ (π, 3π/2),
be the velocity at tangency. It follows that the trajectories we are considering, for
h ∈ (h−, h+), will first collide with C1 and then with C5. In addition, the velocity
after collision will go continuously from v+ to v− while the collision point will belong
to an interval I on the boundary of C5 delimited by the points r(sin θ+,− cos θ+)
and r(sin θ−,− cos θ−). Moreover, in this open interval the velocity after colliding
with C5 cannot belong to {v+, v−} since v+ and v−, at the points in I, point
toward the interior of C5. Also, near v+, the post collisional velocity with C5

rotates clockwise. Hence there exists an interval (h̄−, h̄+) ⊂ (h−, h+) such that the
angle θ of the velocity v(θ), after colliding with C5, varies continuously from π/2
to −π/2. Thus, for h ∈ (h̄−, h̄+), the intersection of the trajectory with the line
{( 1

2 , t)}t∈R goes continuously from +∞ to −∞. Accordingly, there exists a value
for which the trajectory crosses the center of B1 without any further collision. By
symmetry such a trajectory connects the interiors of B2 to B1, and the same holds
for δ small enough.

Analogously there are trajectories connecting B3 and B4.
Let us now construct trajectories that connect B2 to B3. The diagonal trajectory

tangent to C5 is given by 1√
2
(−r, r) + t(1, 1). Such a line intersects the boundary

{(−1/2, s)}s∈[−1/2,1/2] of the box at the point (−1/2,−1/2 + r
√

2) hence either it

enters in B2, if R < r
√

2, or it collides with C3, if 1/2 > R > r
√

2.
In the latter case we can consider all the trajectories that collide at (−r, r)

symmetrically with respect to the diagonal. When the angle of the trajectory with
the normal to C5 goes from π/2 to 0 the trajectory goes from colliding with C3

to colliding with C2, hence for intermediate angles there must be trajectories that
enter B2. By symmetry such trajectories connect B2 and B3 and will survive
for small, but positive, δ. The same argument provides trajectories that connect

6Here we have chosen coordinates in which the center of C5 is (0, 0).
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B3, B1; B1, B4 and B4, B2. We have thus verified the hypothesis of [14, Theorem
5.4]. �

4. Gibbs random walks in random environment

We do not expect the process described by P? to be Markov, yet we expect that
the jump rates have a weak dependence of the past, provided the maps are strongly
chaotic. To be more precise, we conjecture that the process is a random walk in
random environment with weak memory. In the probabilistic literature random
walks with a finite memory are called persistent, here we expect the memory to
be infinite although depending weakly on the far past, like a potential of a Gibbs
measure. Let us specify exactly what we mean by this.

Let (A,S) be a measurable space andW ⊂ Zd, 2 ≤ ]W <∞. Consider the mea-

surable space Ω = AZd and a translation invariant, ergodic, probability distribution
P that describes the distribution of the environments ω̄ ∈ Ω. For each n ∈ N and
(w0, . . . , wn−1) ∈ Wn, assume that are given compatible probabilities p(ω̄, n, ·) on
Wn, i.e. ∑

(w0,...,wn−1)∈Wn

p(ω̄, n, w0 . . . wn−1) = 1,

and
p(ω̄, n, w0 . . . wn−1) =

∑
w∈W

p(ω̄, n+ 1, w0 . . . wn−1w)

for all ω̄ ∈ Ω, n ≥ 0 and (w0, . . . , wn−1) ∈ Wn. Assume also that all the maps
ω̄ 7→ p(ω̄, n, w0 . . . wn−1) are measurable. We have then for each ω̄ ∈ Ω a probability
measure Pω̄ on the spaceWN by Kolmogorov extension theorem. By the monotone
class theorem, the map G 7→ Pω̄(G) is measurable for any measurable set G ⊂ WN,
and we can thus define a probability measure P? on Ω×WN by

P?(dω̄, dw̄) = P(dω)Pω̄(dw̄).

Remark 4.1. The measure P? can be naturally identified with a measure on the
space Ω? = Ω×M, where M = {(zn) ∈ (Zd)N : z0 = 0, zn+1 − zn ∈ W, ∀n} is the
space of admissible paths starting at 0, since there is a 1-to-1 correspondence between
elements of Wn and admissible paths of length n, via the relations wk = zk+1− zk.

4.1. The weak memory requirement. We find convenient, although not strictly
necessary, to require the following assumption that ensures that all admissible paths
have positive probability:

(Pos): for P-a.e. ω̄ ∈ Ω, for all n ≥ 0 and all w̄ ∈ WN,

p(ω̄, n, w̄0 . . . w̄n−1) > 0.

Let Pω̄(w̄n | w̄0 . . . w̄n−1) be the conditional probability p(ω̄,n+1,w̄0...w̄n−1w̄n)
p(ω̄,n,w̄0...w̄n−1) .

The weak memory requirement is made precise by the following:

(Exp): there exist C∗ > 0 and ν ∈ (0, 1) such that for P-a.e. ω̄ ∈ Ω, all
n > m ≥ 0 and all w̄ ∈ WN

(4.1)
∣∣Pω̄(w̄n | w̄0 . . . w̄n−1)− Pτzm ω̄(w̄n | w̄m . . . w̄n−1)

∣∣ ≤ C∗νn−m,
where zm =

∑m−1
k=0 w̄k.

Remark 4.2. This is the property we have conjectured to be true for the random
Lorentz gas at the end of Section 2.
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Note that the above condition implies loss of memory:

Lemma 4.3. If P? satisfies (4.1), then (using the notation of Remark 4.1),

|P?(zn+1 | zn−m+1, . . . , zn, ω̄)− P?(zn+1 | z1, . . . , zn, ω̄)| ≤ C#ν
m.

Proof. Let P(zn−m+1) be the set of admissible paths (w0, . . . , wn−m) that arrive in

zn−m+1, i.e.
∑n−m
i=0 wi = zn−m+1, and set wi = zi+1 − zi for i = n−m+ 1, . . . , n.

Then we have, using (Exp):

P?(zn+1 | zn−m+1, . . . , zn, ω̄) =
∑

w∈P(zn−m+1)

p(ω̄, n+ 1, w0 . . . wn)

P?(zn−m+1, . . . , zn | ω̄)

=
∑

w∈P(zn−m+1)

Pω̄(wn | w0 . . . wn−1)
p(ω̄, n, w0 . . . wn−1)

P?(zn−m+1, . . . , zn | ω̄)

= Pτzn−m+1
ω̄(wn | wn−m+1 . . . wn−1) +O(νm),

and

P?(zn+1 | z1, . . . , zn, ω̄) = Pω̄(wn | w0 . . . wn−1)

= Pτzn−m+1
ω̄(wn | wn−m+1 . . . wn−1) +O(νm).

�

4.2. The point of view of the particle and three further assumptions. One
can define the process of the environment as seen from the particle. It is given by
the dynamical system on the space Ω? = Ω×WN defined by

F?(ω̄, w̄) = (τw̄0
ω̄, τ?w̄),

where τ? : WN → WN is the unilateral shift. Note that, in general, P? is not
invariant for F?. Next, let us show that some easy properties of the Markov case
persist in the present context, under reasonable extra conditions.

Remark 4.4. Note that in the probabilistic literature, see for instance [33], it is
more usual to consider the random process ω̄(n) = τz(n)ω̄ on Ω = ΩN, and its law

P when ω̄(0) is distributed according to P (as we did in Section 3.1). When the set
of periodic environments has probability 0, these two points of view are equivalent,
since the map which associates to each (ω̄, w̄) ∈ Ω? the corresponding sequence
(ω̄(n)) ∈ Ω is invertible almost everywhere and realizes a conjugacy between the
two dynamical systems (Ω?,F?,P?) and (Ω, τ̄ ,P), where τ̄ is the shift on Ω. The
same comments hold also for the definition given in Section 3.1. See also Remark
4.24 for further comments.

We are interested in the asymptotic properties for zn. Note that if we define
ϕ(ω̄, w̄) = w̄0, then we have zn =

∑n−1
k=0 ϕ ◦ Fk? .

The next assumption will imply the existence of a F?-invariant measure:

(Abs): There exists C0 > 0 such that for P-a.e. ω̄ ∈ Ω, all n ≥ 0, all k ≥ 1
and all w̄ ∈ WN,

C−1
0 ≤

∑
(w1,...,wk)∈Wk

p(τ−(w1+...+wk)ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)

p(ω̄, n, w̄0 . . . w̄n−1)
≤ C0.

To legitimate this assumption, we prove two relevant facts.
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Lemma 4.5. If there exists a probability measure Q? equivalent to P?, invariant
for F? and such that c−1 ≤ dQ?

dP? ≤ c for some c > 0, then (Abs) holds with C0 = c2.

In particular, (Abs) holds if P? is F?-invariant.

Proof. For all measurable set B ⊂ Ω and all cylinder [w̄0 . . . w̄n−1] ⊂ WN, the
preimage F−k? (B × [w̄0, . . . , w̄n−1]) is equal to the disjoint union⋃

(w1,...,wk)∈Wk

τ−(w1+...+wk)(B)× [w1 . . . wkw̄0 . . . w̄n−1].

Let B′ = B × [w̄0 . . . w̄n−1]. By definition of P?, we have

P?(B′) =

∫
B

p(ω̄, n, w̄0 . . . w̄n−1)P(dω̄)

and

P?(F−k? B′) =
∑

(w1,...,wk)∈Wk

∫
τ−(w1+...+wk)

B

p(ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄)

=

∫
B

∑
(w1,...,wk)∈Wk

p(τw1+...+wk ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄)

thanks to the translation invariance of P.
Since P?(B′) ≤ cQ?(B′) = cQ?(F−k? B′) ≤ c2P?(F−k? B′), we have∫
B

p(ω̄, n,w̄0 . . . w̄n−1)P(dω̄)

≤ c2
∫
B

∑
(w1,...,wk)∈Wk

p(τw1+...+wk ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄),

and similarly,∫
B

∑
(w1,...,wk)∈Wk

p(τw1+...+wk ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄)

≤ c2
∫
B

p(ω̄, n, w̄0 . . . w̄n−1)P(dω̄).

Since the set of cylinders is countable, this proves the lemma. �

We say that the process is reversible if W is symmetric (i.e. −w ∈ W for all
w ∈ W) and, for P-a.e. ω̄ ∈ Ω, all n ≥ 0 and all w̄ ∈ WN:

p(ω̄, n, w0 . . . wn−1) = p(τ(w0+···+wn−1)ω̄, n,−wn−1, . . . ,−w0).

Note that this definition of reversibility is more akin to the one used in Dynam-
ical Systems than the one used in Markov processes (the self-adjointness of the
generator). However it does have relevant implications.

Lemma 4.6. If the process is reversible, then P? is F?-invariant. In particular,
(Abs) is verified, by Lemma 4.5.
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Proof. It suffices to consider a measurable setB′ of the formB′ = B×[w̄0, . . . , w̄n−1].
We have:

P?(F−1
? B′) = P?

( ⋃
w∈W

τ−w(B)× [w, w̄0, . . . , w̄n−1]

)

=
∑
w∈W

∫
τ−w(B)

p(ω̄, n+ 1, w, w̄0, . . . , w̄n−1)P(dω̄)

=
∑
w∈W

∫
B

p(τ−wω̄, n+ 1, w, w̄0, . . . , w̄n−1)P(dω̄)

=
∑
w∈W

∫
B

p(τ(w̄0+...+w̄n−1)ω̄, n+ 1,−w̄n−1, . . . ,−w̄0,−w)P(dω̄)

=

∫
B

p(τ(w̄0+...+w̄n−1)ω̄, n,−w̄n−1, . . . ,−w̄0)P(dω̄)

=

∫
B

p(ω̄, n, w̄0 . . . w̄n−1)P(dω̄) = P?(B′).

�

Remark 4.7. Lemma 4.5 suggests that (Abs) may be too strong. Yet, there are
simple models (e.g. Sinai walk, see Example 1 in Section 5.2) for which there does
not exist an invariant probability measure absolutely continuous with respect to P?.
Hence some condition is necessary.

As common for random walks, we require an ellipticity assumption:

(Ell): There exist γ0 > 0 and n? ≥ 0 such that for P?-a.e. ω̄ ∈ Ω, all n ≥ n?
and all w̄ ∈ WN,

Pω̄(w̄n | w̄0 . . . w̄n−1) ≥ γ0.

Next, we state an ergodicity assumption on the probability measure P:

(Pro): Let V(W) = {z ∈ Zd : z = w0 + · · · + wn−1, n ∈ N, wi ∈ W}. We
assume that G = V(W) is an additive group and that P is ergodic with
respect to the action of G.

Remark 4.8. It might not be necessary to assume that V(W) is a group, but we
will not pursue this direction, as the examples we have in mind satisfies the above
assumption: e.g., V(W) is an additive group whenever W is symmetric. We leave
to the interested reader possible weakening of property (Pro). We nevertheless
mention that a closer look at the proof of Theorem 4.9 reveals that it remains valid
if P is ergodic for each translation τz, z ∈ Zd, z 6= 0 (for instance if P is mixing
when d = 1, or if P is i.i.d. when d > 1), without any extra assumption on W.

4.3. A few basic results.
The above assumptions are justified by the following Theorem. The rest of the
section is devoted to its proof.

Theorem 4.9. Suppose that the conditions (Pos), (Exp), (Abs), (Ell) and
(Pro) hold. Then there exists a unique F?-invariant probability measure Q? equiv-
alent to P? and the dynamical system (Ω?,F?,Q?) is ergodic. In particular, we
have

(4.2) lim
n→∞

zn
n

= V,
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P?-a.s., with V =
∫

Ω?
ϕdQ? ∈ Rd.7

Remark 4.10. If P? is invariant, then

V =

∫
Ω?

ϕdP? =
∑
w∈W

w

∫
Ω

p(ω̄, 1, w)P(dω̄).

As a simple but important consequence, we deduce the recurrence in 1-d:

Corollary 4.11. Under the conditions of the above theorem, if d = 1 and V = 0,
then the process (zn) is recurrent: zn = 0 infinitely often, P?-a.s..

Proof of Corollary 4.11. We refer to [27] for a nice survey on the recurrence of
cocycles. Since (Ω?,F?,Q?) is ergodic by Theorem 4.9 when d = 1, the walk is
recurrent if V = 0, see [1] or [27, Theorem 3]. Note that this result for recurrence
of cocycles is stated for invertible dynamical systems, but it can be extended to
non-invertible systems using the natural extension, see for instance [15, Appendix
B]. �

Remark 4.12. When d = 2 and V = 0, if (zn) satisfies an annealed central
limit theorem, i.e. if zn√

n
converges in law to a Gaussian distribution under the

probability measure Q?, then the process (zn) is recurrent by the results of Conze
[4] and Schmidt [26].

From now on and till the end of the section we will assume conditions (Pos),
(Exp), (Abs), (Ell) and (Pro) if not explicitly stated otherwise.

To prove Theorem 4.9, we will analyze the properties of the transfer operator L?
associated to F? with respect to P?. More precisely, we will show that the operator
L? enjoys some regularization properties on a space of Hölder functions. We first
define the usual separation time on WN by

s(w̄, w̄′) = inf{n ≥ 0 : w̄n 6= w̄′n},

and for 0 < ν < 1, the metric dν(w̄, w̄′) = νs(w̄,w̄
′) on WN.

For a measurable function f : Ω×WN → C, we set:

‖f‖∞ = ess sup
ω̄∈Ω

sup
w̄∈WN

|f(ω̄, w̄)|,

|f |ν = ess sup
ω̄∈Ω

sup
w̄ 6=w̄′

|f(ω̄, w̄)− f(ω̄, w̄′)|
dν(w̄, w̄′)

,

and define

H∞ = {f : Ω×WN → C : ‖f‖∞ <∞},

Hν = {f : Ω×WN → C : ‖f‖ν := ‖f‖∞ + |f |ν <∞}.
The space Hν is a Banach algebra. The following result about density of Hν is
based on very classical ideas, but we include it here for completeness:

Lemma 4.13. For any function ϕ ∈ L1(P?), there exists (ϕε)ε ⊂ Hν such that
ϕε → ϕ in L1(P?). Moreover, if ϕ is bounded, (ϕε)ε can be chosen such that
supε ‖ϕε‖∞ <∞.

7Recall that ϕ(ω̄, w̄) = w̄0.
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Proof. We first consider the case where ϕ = 1B is the indicator function of a
measurable set B ⊂ Ω?. We endow Ω? with the metric d?((ω̄, w̄), (ω̄′, w̄′)) =
dΩ(ω̄, ω̄′) + dν(w̄, w̄′), where dΩ is any metric defining the product topology on Ω.
The metric d? defines the product topology on Ω?. For any open set O ⊂ Ω?, we
define

ϕk,O(ω̄, w̄) = min{k d?((ω̄, w̄),Ω? \O), 1}.

We clearly have 0 ≤ ϕk,O ≤ ϕk+1,O ≤ 1O ≤ 1, and limk ϕk,O(ω̄, w̄) = 1O(ω̄, w̄) for
all (ω̄, w̄) ∈ Ω?. The function ϕk,O is clearly lipschitzian with respect to the metric
d?, which also implies that ϕk,O ∈ Hν . Since P? is a probability measure on the
compact metric space Ω?, it is outer regular, see [25, Theorem 2.17]: for any Borel
set B ⊂ Ω? and any ε > 0, there exists an open set Oε ⊂ Ω? such that B ⊂ Oε and
P?(Oε \B) ≤ ε. By the dominated convergence theorem

lim
k→∞

∫
Ω?

|ϕk,Oε − 1Oε | dP? = 0.

We choose kε ≥ 0 such that
∫

Ω?
|ϕk,Oε − 1Oε | dP? ≤ ε and set ϕε = ϕkε,Oε . By the

above arguments, we have ϕε ∈ Hν , ‖ϕε‖∞ ≤ 1, and

‖ϕε − 1B‖L1(P?) ≤ ‖ϕε − 1Oε‖L1(P?) + P?(Oε \B) ≤ 2ε,

which proves the convergence in L1(P?). Next, assume ϕ ∈ L∞. Without loss of
generality we can assume ϕ ≥ 0 and ‖ϕ‖∞ = 2. Let B1 = {ξ ∈ Ω? : ϕ(ξ) ≥ 1}
and

Bk =

ξ ∈ Ω? : ϕ(ξ) ≥ 2−k +

k−1∑
j=0

1Bj2
−j

 .

By construction ‖ϕ−
∑k−1
j=0 1Bj2

−j‖∞ ≤ 2−k, hence we can use the above approx-

imations of the characteristic functions to approximate ϕ in L1 with a sequence
with norm bounded by 2. The case ϕ ∈ L1 can be obtained by approximation by
bounded functions. �

Next, we state a useful technical lemma.

Lemma 4.14. Under assumptions (Pos), (Exp) and (Ell) there exists γ∗ ∈
L∞(Ω,P), γ? > 0 such that, for all n > n? and w̄ ∈ WN, we have

γ?(ω) ≤ p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

≤ γ?(ω)−1
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Proof. For all n > n?, we have

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)
=

p(ω̄, n, w̄0 . . . w̄n−1)

p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)

= Pω̄(w̄n−1 | w̄0 . . . w̄n−2)
p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

≥
[
Pτw̄0

ω̄(w̄n−1 | w̄1 . . . w̄n−2)− C#ν
n
] p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)

=

[
p(τw̄0

ω̄, n− 1, w̄1 . . . w̄n−1)

p(τw̄0
ω̄, n− 2, w̄1 . . . w̄n−2)

− C#ν
n

]
p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

=

[
1− C#ν

n p(τw̄0
ω̄, n− 2, w̄1 . . . w̄n−2)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)

]
p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0 ω̄, n− 2, w̄1 . . . w̄n−2)

≥ (1− C#γ
−1
0 νn)

p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0
ω̄, n− 2, w̄1 . . . w̄n−2)

≥
n∏

j=n?+1

(1− C#γ
−1
0 νj)

p(ω̄, n? + 1, w̄0 . . . w̄n?)

p(τw̄0
ω̄, n?, w̄1 . . . w̄n?)

,

where we have used (Exp) at the third line and (Ell) at the last line. The lower
bound follows then by (Pos), provided that C#γ

−1
0 νn? < 1, which we can always

ensure by eventually redefining n?. The upper bound can be established similarly.8

�

Remark 4.15. Note that a slight strengthening of (Pos) would imply that γ? can
be chosen to be constant.9 Then Lemma 4.14 would imply: for each k ∈ N, there
exists Ck > 0 such that for P-a.e. ω̄ ∈ Ω, all n ≥ 0 and all w̄ ∈ WN,

C−1
k ≤

∑
(w1,...,wk)∈Wk

p(τ−(w1+...+wk)ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)

p(ω̄, n, w̄0 . . . w̄n−1)
≤ Ck.

Hence the all point of (Abs) rests in the uniformity with respect to k.

We now define what will turn out to be the potential associated to L?:

Lemma 4.16. There exists a measurable function J : Ω×WN → R+ such that for
all n ≥ 0

(4.3) ess sup
ω̄∈Ω

sup
w̄∈WN

∣∣∣∣ p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

− J(ω̄, w̄)

∣∣∣∣ ≤ C#ν
n.

Moreover, J belongs to Hν and J(ω̄, w̄) > 0 for P-a.e ω̄ ∈ Ω and all w̄ ∈ WN.

8Note however that (Ell) is not needed to prove the upper bound.
9That is, one could ask, for all n > n?, infω∈Ω p(ω̄, n, w̄0 . . . w̄n−1) > 0, which holds in all the

example we have in mind.
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Proof. Let pn(ω̄, w̄) = p(ω̄,n,w̄0...w̄n−1)
p(τw̄0 ω̄,n−1,w̄1...w̄n−1) . Using (Exp), we have

|pn(ω̄, w̄)− pn+1(ω̄, w̄)| = p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n, w̄1 . . . w̄n)

×
∣∣∣∣ p(τw̄0

ω̄, n, w̄1 . . . w̄n)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

− p(ω̄, n+ 1, w̄0 . . . w̄n)

p(ω̄, n, w̄0 . . . w̄n−1)

∣∣∣∣
=

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n, w̄1 . . . w̄n)

∣∣Pτw̄0
ω̄(w̄n | w̄1 . . . w̄n−1)− Pω̄(w̄n | w̄0 . . . w̄n−1)

∣∣
≤ C#ν

n p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0 ω̄, n, w̄1 . . . w̄n)
.

From (Abs), substituting τw̄0
ω̄ to ω̄, we have

(4.4) p(ω̄, n, w̄0 . . . w̄n−1) ≤ C#p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1),

from which it follows, using (Ell), for all n ≥ n?,

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0 ω̄, n, w̄1 . . . w̄n)
≤ C#

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

p(τw̄0 ω̄, n, w̄1 . . . w̄n)
≤ C#γ

−1
0 .

We thus get for all n ≥ n?

|pn+1(ω̄, w̄)− pn(ω̄, w̄)| ≤ C#ν
n,

and so for any m ≥ 0,

(4.5) |pn+m(ω̄, w̄)− pn(ω̄, w̄)| ≤ C#

m−1∑
k=0

νn+k ≤ C#ν
n.

It follows that (pn(ω̄, w̄))n is a Cauchy sequence for P-a.e. ω̄ ∈ Ω and all w̄ ∈ WN,
and has thus a limit J(ω̄, w̄). Taking the limit m → ∞ in (4.5), we obtain (4.3)
for all n ≥ n?. From (4.4), it follows that ‖J‖∞ <∞, which also allows to deduce
(4.3) for all n ≥ 0. The fact that |J |ν <∞ is a direct consequence of (4.3).

The positivity of J follows then by Lemma 4.14. �

Accordingly, log J is Hölder with respect to the usual metric on the shift. Hence
it can be seen as a potential of a Gibbs measure. Of course, such a Gibbs mea-
sure is random, depending on ω̄, and non translation invariant, but it is a natural
generalisation of the usual random walk in random environment situation in which
one has a random Markov chain on WN.

The transfer operator L? has the following expression:

Lemma 4.17. For any f ∈ L1(P?), we have

(4.6) L?f(ω̄, w̄) =
∑
w∈W

J(τ−wω̄, ww̄)f(τ−wω̄, ww̄).

Proof. We have to prove that, for all f ∈ L1(P?) and g ∈ L∞(P?),

(4.7)

∫
Ω?

f g ◦ F? dP? =

∫
Ω?

L?f g dP?,
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where L?f is given by (4.6). We first assume that both f and g are bounded, and
depend only on (ω̄, w̄0, . . . , w̄k−1) for some k ≥ 1. For any n ≥ k, we have∫

Ω?

f g ◦ F? dP? =

∫
Ω

∫
WN

f(ω̄, w̄0, . . . , w̄k−1) g(τw̄0 ω̄, w̄1, . . . , w̄k)Pω̄(dw̄)P(dω̄)

=

∫
Ω

∑
w̄0,...,w̄n∈W

p(ω̄, n+ 1, w̄0 . . . w̄n)f(ω̄, w̄0, . . . , w̄k−1)g(τw̄0 ω̄, w̄1, . . . , w̄k)P(dω̄)

=
∑

w̄0,...,w̄n∈W

∫
Ω

p(τ−w̄0 ω̄, n+ 1, w̄0 . . . w̄n)f(τ−w̄0 ω̄, w̄0, . . . , w̄k−1)g(ω̄, w̄1, . . . , w̄k)P(dω̄)

=

∫
Ω

(∑
w∈W

p(τ−wω̄, n+ 1, ww̄0 . . . w̄n−1)

p(ω̄, n, w̄0 . . . w̄n−1)
f(τ−wω̄, w, w̄0, . . .)

)
g(ω̄, w̄)P?(dω̄, dw̄),

where we have used the translation invariance of P at the third line. Taking the
limit as n → ∞ and using Lemma 4.16, we obtain (4.7). The result for general f
and g is obtained by approximation. �

Define for each k ≥ 1,

Jk(ω̄, w̄) =

k−1∏
i=0

J(F i?(ω̄, w̄)) = lim
n→∞

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0+...w̄k−1
ω̄, n− k, w̄k . . . w̄n−1)

.

It is immediate to verify that, for any f ∈ L1(P?),

Lk?f(ω̄, w̄) =
∑

wk∈Wk

Jk(τ−wk ω̄, w
kw̄)f(τ−wk ω̄, w

kw̄)

where, for wk = (w0, . . . , wk−1), τ−wk = τ−(w0+···+wk−1).

We introduce, for wk = (w0, . . . , wk−1) ∈ Wk, the map

ψwk(ω̄, w̄) = (τ−wk ω̄, w
kw̄),

so that

Lk?f =
∑

wk∈Wk

Jk ◦ ψwkf ◦ ψwk .

Lemma 4.18. Jk belong to Hν for all k ≥ 1.

Proof. Recall the notation pn(ω̄, w̄) = p(ω̄,n,w̄0...w̄n−1)
p(τw̄0 ω̄,n−1,w̄1...w̄n−1) , and set

pn,k(ω̄, w̄) :=
p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0+...w̄k−1
ω̄, n− k, w̄k . . . w̄n−1)

=

k−1∏
i=0

pn−i(F i?(ω̄, w̄)).

By Lemma 4.16, we have∣∣J(F i?(ω̄, w̄))− pn−i(F i?(ω̄, w̄))
∣∣ ≤ C#ν

n−i,

and, consequently, using the inequality∣∣∣∣∣
k−1∏
i=0

ai −
k−1∏
i=0

bi

∣∣∣∣∣ ≤
k−1∑
i=0

|ai − bi|
∏
j 6=i

max{aj , bj},
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valid for all non-negative sequences (ai), (bi), we obtain

|Jk(ω̄, w̄)− pn,k(ω̄, w̄)| ≤ C#ν
n
k−1∑
i=0

ν−i
∏
j 6=i

max{‖J‖∞, ‖pn−i‖∞}

= Ckν
n.

where Ck depends only on k, since supn ‖pn‖∞ <∞ by (Abs) and ‖J‖∞ <∞ by
Lemma 4.16. The lemma follows immediately. �

Lemma 4.19. There exists C# > 0 such that C−1
# ≤ Lk?1(ω̄, w̄) ≤ C# for all

k ≥ 0, P-a.e. ω̄ ∈ Ω and all w̄ ∈ WN.

Proof. This is a simple reformulation of (Abs), as

Lk?1(ω̄, w̄) =
∑

(w0,...,wk−1)∈Wk

Jk(τ−(w0+...+wk−1)ω̄, w0 . . . wk−1w̄)

= lim
n→∞

∑
(w0,...,wk−1)∈Wk

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0+...w̄k−1
ω̄, n− k, w̄k . . . w̄n−1)

.

�

Lemma 4.20. There exist C# > 0 and ξ ∈ (0, 1) such that for all n ≥ 0 and all
f ∈ Hν ,

‖Ln?f‖∞ ≤ C#‖f‖∞,
‖Ln?f‖ν ≤ C#ξ

n‖f‖ν + C#‖f‖∞.

Proof. For f ∈ Hν , we have

|Ln?f | ≤
∑

wn∈Wn

Jn ◦ ψwn |f | ◦ ψwn ≤ ‖f‖∞Ln?1 ≤ C#‖f‖∞,

by Lemma 4.19. This proves that ‖Ln?f‖∞ ≤ C‖f‖∞. We also have, setting
η = ψwn(ω̄, w̄) and η′ = ψwn(ω̄, w̄′)

|Ln?f(ω̄, w̄)− Ln?f(ω̄, w̄′)| ≤
∑

wn∈Wn

Jn(η)|f(η)− f(η′)|+ |Jn(η)− Jn(η′)||f(η′)|

≤

( ∑
wn∈Wn

Jn(η)|f |ν +
∑

wn∈Wn

|Jn|ν‖f‖∞

)
dν(wnw̄, wnw̄′)

≤ (Ln?1(ω̄, w̄)|f |ν + (]W)n|Jn|ν‖f‖∞) νndν(w̄, w̄′).

By Lemma 4.19, this shows that, for all n ≥ 0 and f ∈ Hν ,

‖Ln?f‖ν ≤ C#ν
n|f |ν + (1 + (]W)nνn|Jn|ν)‖f‖∞

≤ C#ν
n‖f‖ν + Cn‖f‖∞.

In particular, L? : Hν → Hν is a continuous operator.
Take k ≥ 0 such that the term ν̃ := C#ν

k in front of ‖f‖ν is strictly less than

1 and set ξ = ν̃
1
k . Writing n = qk + r, with 0 ≤ r < k, we have, by iterating the

previous inequality,

‖Ln?f‖ν ≤ ν̃q‖Lr?f‖ν + C#Ck(1− ν̃−1)‖f‖∞
≤ ν̃q sup

r<k
‖Lr?‖Hν→Hν‖f‖ν + C#‖f‖∞

≤ C#ξ
n‖f‖ν + C#‖f‖∞.
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�

Lemma 4.21. There exists a continuous projection Π : L1(P?) → L1(P?) with
Π(L1(P?)) = ker(id− L?) such that

1

n

n−1∑
k=0

Lk? → Π

in the strong operator topology.

Proof. For h ∈ Hν , Lemma 4.20 implies that
{

1
n

∑n−1
k=0 Lk?h

}
n≥1

is bounded in

L∞(P?). By the Banach-Alaoglu theorem, since L∞(P?) is the dual of L1(P?),
the set

{
1
n

∑n−1
k=0 Lk?h

}
n≥1

is weakly relatively compact in L1(P?). This holds for

all h ∈ Hν , which is dense in L1(P?) by Lemma 4.13, and so by the Kakutani-

Yosida theorem [10, VIII.5.2, 5.3], the operators 1
n

∑n−1
k=0 Lk? converge in the strong

operator topology to the projection Π with range the set of fixed points of L? in
L1(P?) and kernel the closure of (id− L?)(L1(P?)). �

Define

h? = Π1 = lim
n→∞

1

n

n−1∑
k=0

Lk?1,

in L1(P?). By Lemma 4.21,we have L?h? = h?. We clearly have
∫

Ω?
h?dP? = 1,

and the fact that C−1
# ≤ h? ≤ C#, P?-a.e., is an immediate consequence of Lemma

4.19. Consequently, the probability measure Q? defined by

(4.8) dQ? = h?dP?
is F?-invariant and equivalent to P?.

Next, we show that Π(L1(P?)) is the one-dimensional subspace generated by h?.
Firstly, we prove a useful inclusion in Hν .

Lemma 4.22. If f ∈ L∞(P?) and L?f = f , then f ∈ Hν .10

Proof. Let (ϕε)ε ⊂ Hν be such that ‖f − ϕε‖L1(P?) = O(ε) and ‖ϕε‖∞ = O(1),
such a sequence exists by Lemma 4.13. We have

f = Ln?f = Ln?ϕε + Ln? (f − ϕε)

=: ϕ̂(n)
ε + γ(n)

ε .

This decomposition satisfies

‖γ(n)
ε ‖L1(P?) = ‖Ln? (f − ϕε)‖L1(P?) ≤ ‖f − ϕε‖L1(P?) = O(ε),

and
‖ϕ̂(n)

ε ‖ν = ‖Ln?ϕε‖ν ≤ C#ξ
n‖ϕε‖ν + C#‖ϕε‖∞ = O(ξn‖ϕε‖ν + 1),

using Lemma 4.20. If we choose nε such that ξnε‖ϕε‖ν = O(1) and set ϕ̂ε = ϕ̂
(nε)
ε

and γε = γ
(nε)
ε , we then have f = ϕ̂ε+γε with ‖γε‖L1(P?) = O(ε) and ‖ϕ̂ε‖ν = O(1).

For δ > 0, we define

Bε,δ = {|f − ϕ̂ε| > δ} = {|γε| > δ},
which satisfies P?(Bε,δ) ≤ δ−1‖γε‖L1(P?) by Markov’s inequality.

10That is, there exists an element in the equivalence class of f that belongs to Hν .
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For P-a.e. ω̄ ∈ Ω and all w̄, w̄′ ∈ WN such that both (ω̄, w̄) and (ω̄, w̄′) do not
belong to Bε,δ, we have

|f(ω̄, w̄)− f(ω̄, w̄′)| ≤ |ϕ̂ε(ω̄, w̄)− ϕ̂ε(ω̄, w̄′)|+ |γε(ω̄, w̄)− γε(ω̄, w̄′)|
≤ |ϕ̂ε|νdν(w̄, w̄′) + |γε(ω̄, w̄)|+ |γε(ω̄, w̄′)|
≤ Cdν(w̄, w̄′) + 2δ.

We set Bδ =
⋂
k≥0

⋃
j≥k B2−j ,δ, which satisfies P?(Bδ) = 0, since

P?

⋃
j≥k

B2−j ,δ

 = O

∑
j≥k

‖γ2−j‖L1(P?)

 = O

∑
j≥k

2−j

 = o(1).

Thus, B = ∪n∈NB1/n is also of zero measure and, eventually changing f on the
zero measure set B, we have f ∈ Hν . �

We can now prove the main theorem:

Proof of Theorem 4.9. The probability measure Q? defined by (4.8) is F?-invariant
and equivalent to P?. If B ⊂ Ω? is a F?-invariant set, we have

L?(1Bh?) = L?((1B ◦ F?)h?) = 1BL?(h?) = 1Bh?,

and so 1Bh? is a fixed point of L? in L∞(P?). By Lemma 4.22, we have 1Bh? ∈ Hν ,
and so 1B = h−1

? (h?1B) ∈ Hν .11 This implies that there exists NB > 0 such that
1B(ω̄, w̄) = 1B(ω̄, w0, . . . , wNB−1).

By the invariance of B it follows, for each m ≥ NB ,

1B(ω̄, w0, . . . , wNB−1) = 1B ◦ Fm? (ω̄, w0, . . . , wNB−1)

= 1B(τw0+···+wm−1 ω̄, wm, . . . , wNB+m−1).
(4.9)

By (Pro) we can choose m and wNB , . . . , wm−1 such that w0 + · · ·wm−1 = 0. It
follows that 1B(ω̄, w̄) = 1B(ω̄). Then (4.9) implies τw0+···+wm−1

B ⊂ B for all
(w0, . . . , wm−1) ∈ Wm. Accordingly, B is invariant for the group generated by W
and, by (Pro) again, it is either of zero or full measure due to ergodicity of P,
which concludes the proof. �

Lemma 4.23. For all f ∈ L1(P?), we have

Πf =

(∫
Ω?

f dP?
)
h?.

Proof. For each ϕ ∈ L∞ we have∫
Ω?

ϕΠfdP∗ = lim
n→∞

1

n

n−1∑
k=0

∫
Ω?

ϕLk?fdP∗ =

∫
Ω?

lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ Fk? · fdP?

=

[∫
Ω?

ϕh?dP?
] [∫

Ω?

fdP?
]

where, in the second equality, we have used Lebesgue dominated convergence The-
orem and, in the second line, we have used the Birkhoff theorem and the ergodicity
of Q? (and hence of P?) established in Theorem 4.9. �

11Since h? belongs to Hν by Lemma 4.22 and so does h−1
? since inf h? > 0.
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4.4. Application to deterministic walks in random environment. Deter-
ministic walks in random environment, as presented in Section 3, naturally de-
fine random processes as described in the previous subsections. Indeed, if A =
{(fα,M,Gα)}α∈A is a deterministic walk in random environment, where all maps
fα are non-singular with respect to some reference measure m on M, and the ini-
tial condition is given by an absolutely continuous probability measure dµ = h0dm,
then the probabilities p(ω̄, n, w0 . . . wn−1) are given by

(4.10) p(ω̄, n, w0 . . . wn−1) =

∫
M
Lω̄,zn−1,wn−1 . . .Lω̄,z0,w0h0dm,

as we have seen in Section 3. Recall that wn = e(ω̄zn , xn), where (xn, zn) =
Fnω̄(x0, z0).

Remark 4.24. Note that we have a priori defined two different notions of envi-
ronment as seen from the particle, in subsections 3.1 and 4.2, but the map Φ :
Ω×M→ Ω×WN defined by Φ(ω̄, x) = (ω̄, w̄) with w̄ = (wn)n, is a semi-conjugacy
between (Ω ×M,F) and (Ω × WN,F?), and if the maps fα are expansive, it is
invertible a.e.

If we are able to check the assumptions (Pos), (Exp), (Abs), (Ell) and (Pro),
then Theorem 4.9 applies, and we deduce the existence of a deterministic drift V .

An particular situation, which we have already encountered in Lemma 3.1, occurs
when all maps fα preserve the same invariant measure dλ = h0dm, and the set Gα is
deterministic, i.e. Gα,w = Gw does not depend on α ∈ A. In this case, the measure
P? on Ω ×WN is invariant under F?, since it is the push-forward of P0 = P × λ,
which is F-invariant and the condition (Abs) is automatically satisfied by Lemma
4.5.

Remark 4.25. Lemma 3.2 and Remark 4.10 agree, since∑
w∈W

w

∫
Ω

p(ω̄, 1, w)P(dω̄) =
∑
w∈W

w

∫
Ω

∫
M
Lω̄,0,wh0 dmP(dω̄)

=
∑
w∈W

w

∫
Ω

∫
M
Lfω̄w1Gwh0 dmP(dω̄)

=
∑
w∈W

w

∫
Gw

h0dm

and

E0(e ◦ π) =

∫
Ω

∫
M
e(π(ω̄, x))h0(x)m(dx)P(dω̄)

=

∫
Ω

∫
M
e(ω̄0, x)h0(x)m(dx)P(dω̄)

=
∑
w∈W

w

∫
Gw

h0dm.

5. Examples

In this section we discuss several concrete examples of the previous abstract
models.
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5.1. Lorentz gas as a deterministic walk in random environment. It is easy
to verify that the Random Lorentz gas presented in Section 2 is a special example
of a deterministic walk in random environment. However the Random Lorentz gas
has several special features:

(1) the maps fα have all the same invariant measure λ, the Lebesgue measure;
(2) the set Gα is non random, i.e. it does not depend from α;
(3) the associated random process is reversible, in particular λ(e) = 0.

The first two facts are obvious. Let us discuss the third, which we believe to
be a key property in this research program (see [30, 31, 12, 32] where, in special
models, a similar property is instrumental in establishing the CLT). The dynamics
is reversible under the involution (q, p)→ (q,−p), which, at the level of the Poincaré
map, writing x ∈ ∪w∈WGw as x = (w, s, θ),12 reads i(w, s, θ, z) = (−w, s, θ, z+w).13

Also, let π(w, s, θ, z) = (w, s, θ) and i1(w, s, θ) = (−w, s, θ) so that i1 ◦ π = π ◦ i.
Thus, choosing as initial measure the common invariant measure of the Poincaré
maps h0 (hence h0 ◦ i1 = h0), we have

P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1Gw(k)
◦ π ◦ Fkω̄(x, 0)h0(x)dx

=

∫
B

n−1∏
k=0

1Gw(k)
◦ π ◦ Fkω̄ ◦ i(i1(x), e(x))h0(x)dx

=

∫
B

n−1∏
k=0

1G−w(k)
◦ π ◦ F−kω̄ (x,−e(x))h0(x)dx

=

∫
B

n−1∏
k=0

1G−w(k)
(f−1
ω̄z(k)

◦ · · · ◦ f−1
ω̄z(1)

(x))h0(x)dx,

where, in the third line, we have used the invariance of the measure with respect to
i1 and the relation e(i1(x)) = −e(x); while, in the last line, we have used the formula
Fω̄(x, z) = (f−1

ω̄z (x), z− e(f−1
ω̄z (x))). Next, using the invariance of the measure with

respect to the maps fω̄z ,

P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1G−w(k)
(fω̄z(k+1)

◦ · · · ◦ fω̄z(n−1)
(x))h0(x)dx.

Then, setting w̃(k) = −w(n− 1− k), z̃(k) =
∑k−1
j=0 w̃(j) and ω̃ = τz(n)ω̄,

P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1Gw̃(k)
(fω̃z̃(k)

◦ · · · ◦ fω̃z̃(1)
(x))h0(x)dx

= P?({z̃(n− 1), . . . , z̃(0)} | τz(n)ω̄).

(5.1)

Note that z̃(k) = z(n− k)− z(n). Which is the reversibility of the random process.
In particular Lemma 4.6 applies.

12The curvilinear coordinate s is chosen such that the segments s → (w, s) and s → (−w, s),
w 6= 0 go in the same direction.

13Recall that we are considering the case of deterministic gates, although the following con-
sideration easily extend to the general case. In particular, e is a function of x only, and we have
e(w, s, θ) = w.
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The Lorentz gas has a dynamics that is hard to study. To make further progresses
let us consider simpler local dynamics.

5.2. Markovian models. To try to get a better feeling for the difficulties involved
in studying the above questions, let us try to invent a model stripped of all the tech-
nical difficulties present in the Lorentz gas dynamics. For simplicity let us discuss
the case d = 1, although similar considerations hold in any higher dimensional lat-
tice. To simplify the dynamics f in (2.3) let us suppose that it is a map from [0, 1]
to itself. Hence the map Fω̄ acts on [0, 1]×Z. Also, we assume that the environment
is a random variable distributed according to a Bernoulli product measure over the
space Ω = AZ = {−1, 1}Z.

Example 1. The dynamics is defined by the map fα(x) = 4x mod 1 for α ∈ A,
with G−1,−1 = [0, 1/4], G−1,+1 = [1/4, 1] and G+1,−1 = [0, 3/4], G+1,+1 = [3/4, 1].

Remark 5.1. Here we are considering a more general situation than the one de-
scribed for the Lorentz gas insofar also the gates are random. This is indeed the
general case also for the Lorentz gas. We considered the case of deterministic gates
only to simplify the exposition.

Also, we consider the initial distribution h0 = 1. Then an elementary computa-
tion shows that

P?(z(n+ 1)− z(n) = ±1 | ω̄, z(n), . . . , z(0)) =
∣∣Gω̄z(n),±1

∣∣ =
1

2
∓
ω̄z(n)

4
.

This is an example of Sinai’s walk, hence we do not have the classical CLT.

Example 2. Assume that Gα,−1 = G−1 = [0, 1/2] and Gα,+1 = G+1 = (1/2, 1] for
any α and the maps are defined by

f−1(x) =

{
2x x ∈ [0, 1/4]

4x mod 1 x > 1/4

f+1(x) =

{
4x mod 1 x ∈ [0, 3/4]

2x− 1 x > 3/4.

Again let us consider the initial distribution h0 = 1. Denote by Lα,w the oper-
ator Lα,w(φ) = Lfα(1Gwφ). The two dimensional vector space V = {a−11G−1 +
a+11G+1

: a−1, a+1 ∈ R} is left invariant by the operators {Lα,w}α,w. Since
h0 ∈ V, this allows to compute the transition probabilities by using formula (3.2).

If φ = a−11G−1
+a+11G+1

, a direct computation shows that Lα,w(φ) = awLα,w(1),
and thus Lα′,w′Lα,w(φ) = awLα′,w′Lα,w1. For any ω̄ and z(1), . . . , z(n), z(n+ 1),
denote by αk = ω̄z(k)+w(k) and wk = w(k) = z(k + 1)− z(k). We have

P?(z(1), . . . , z(n) | ω̄) =

∫
Lαn−1,wn−1 . . .Lα0,w01.

Set φ = Lαn−2,wn−2 . . .Lα0,w01 = a−11G−1 + a+11G+1 ∈ V. We have

P?(z(1), . . . , z(n) | ω) =

∫
Lαn−1,wn−1

φ = awn−1

∫
Lαn−1,wn−1

1

and

P?(z(1), . . . , z(n), z(n+ 1) | ω̄) = awn−1

∫
Lαn,wnLαn−1,wn−1

1.
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It follows that

P?(z(n+ 1) | z(1), . . . , z(n), ω̄) =

∫
Lαn,wnLαn−1,wn−11∫
Lαn−1,wn−1

1

which is a function of z(n−1), z(n) and z(n+1) only. We have obtained a persistent
random walk, that is a walk where the transition probability depends not only on
the current position of the particle but also on its previous position.

Initial conditions. A natural question that arises at this point is what happens
if one starts by a different initial measure. A moment thought shows that this is a
non trivial issue. For instance, in the first example, there exists a Cantor set C (of
zero Lebesgue measure) that corresponds to the coordinates x(n) never belonging to
(1/4, 3/4). For such points x ∈ C, the set {x(n) ∈ Gα,w} does not depend on α, and
so the process (z(n)) is completely unaffected by the environment. If we identify
naturally the Cantor set C with {−1,+1}N (in such a way that x ∈ C is identified
with the sequence (in) such that x(n) ∈ Iin for all n ≥ 0, where I−1 = [0, 1/4] and
I+1 = [3/4, 1]), then the initial distribution of x can be identified with a probability
measure on {−1,+1}N and this measure will be the distribution law of the random
process (w(n)). In particular, if we consider the Bernoulli measure with equal
probabilities on such a Cantor set as the initial distribution of x, then we obtain a
standard random walk which has a very different behaviour than the Sinai’s walk.

Without going to such extremes, one can (perhaps more naturally) start from a
measure absolutely continuous with respect to Lebesgue and wonder which kind of
process this will yield. We do not discuss this issue at present because is it part of
the more general discussion that we will start in the next section.

Remark 5.2. The above examples (among other obvious limitations) are unreason-
able in one key aspect: their Markov structure. It is inevitable to ask what happens
when the Markov structure is absent (as for billiards). The next section is devoted
to investigating such a situation.

6. Non-Markovian examples: general discussion

We now consider a model of d-dimensional deterministic random walk in random
environment A = {(fα,M,Gα)}α∈A for a finite set A, where M = [0, 1], all maps
fα : [0, 1] → [0, 1] are piecewise C2 and uniformly expanding (i.e. |f ′α| ≥ λ > 1),
and the partitions Gα = {Gα,w}w∈W are made of subintervals of [0, 1], for a given
bounded subset W ⊂ Zd.

Let P be a translation invariant probability on the set Ω = AZd . For a given
environment ω̄ ∈ Ω, we have the dynamics Fω̄(·, ·) : M× Zd →M× Zd given by
Fω̄(x, z) = (fω̄z+e(ω̄z,x)

(x), z + e(ω̄z, x)), where e(α, x) =
∑
w∈W 1Gα,w(x)w.

We are interested in the quenched evolution, (xn, zn) = Fnω̄(x0, z0), of such a
system when the initial condition x0 is distributed according to the probability
measure

µ(ϕ) =

∫ 1

0

ϕ(x, 0)h0(x) dx

for some h0 ∈ BV, with inf h0 > 0.
Recall the definition of the probability measure P? and the dynamical system

(Ω?,F?) of the point of view of the particle, from Section 4.
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Our goal is to reduce the study of this model to a probabilistic one. To this end
we need some technical conditions.

6.1. Conditions (C1), (C2), (C3).
Let T = {fα}α∈A be a finite set of maps on [0, 1], and H be the (finite) set of all
the possible intervals of the partitions, i.e. H = {Gα,w}w∈W,α∈A.

Notation. The set T × H is canonically isomorphic to Σ = A × (A ×W), with
correspondence ρ : Σ → T × H given, for σ = (α, β), by ρ(σ) = (fα, Gβ). Hence,
we can use the notation (Tσ, Hσ) = (fπ1◦ρ−1(σ), Gπ2◦ρ−1(σ)), π1(α, β) = α and
π2(α, β) = β. We will often write Σ = T ×H.

Let τ : ΣN → ΣN be the unilateral shift. We denote Tnσ = Tσn ◦ . . . ◦ Tσ1
and

Hn
σ =

⋂n−1
j=0 (T jσ)−1(Hσj+1

).
Let Lσk be the transfer operator of the map Tσk with respect to the Lebesgue

measure, i.e.

Lσkf(x) =
∑

Tσky=x

f(y)

|T ′σk(y)|
.

We set L̂σkf = Lσk(f1Hσk ) and L̂nσ = L̂σn ◦ . . . ◦ L̂σ1
. We can write L̂nσf(x) =∑

Tnσ y=x g
n
σ (y)f(y), where gnσ = gσ1

× . . .× gσn ◦ Tn−1
σ , with gσk = 1Hσk

1
|T ′σk |

. Let

Θ−1 = infT∈T infx |T ′(x)|, then ‖gnσ‖∞ ≤ Θn.
We will only consider systems that satisfy

(C1): There exists δ? > 0 such that for all σ1 ∈ T ×H, inf L̂σ11 ≥ δ?.
Observe that this condition is satisfied if, for any choice of T and H, T admits

at least one full branch inside H. By iteration, we also have that inf L̂nσ1 ≥ δ?
n for

any σ ∈ ΣN and n ≥ 1. Next, we define the functionals

Λσ(f) = lim
n→∞

inf
L̂nσf
L̂nσ1

.

This limit exists since the sequence is increasing and bounded. Indeed,

inf
L̂n+1
σ f

L̂n+1
σ 1

≥ inf
L̂σn+1

(L̂nσ1
L̂nσf
L̂nσ1

)

L̂n+1
σ 1

≥ inf
L̂nσf
L̂nσ1

inf
L̂σn+1(L̂nσ1)

L̂n+1
σ 1

= inf
L̂nσf
L̂nσ1

;

and −‖f‖∞ ≤ inf
L̂nσf
L̂nσ1
≤ ‖f‖∞. In particular, for all n ≥ 0, we have

(6.1) Λσ(f) ≥ inf
L̂nσf
L̂nσ1

.

The Λσ satisfy the following properties:

• Λσ(1) = 1;
• |Λσ(f)| ≤ ‖f‖∞;
• f ≥ g implies Λσ(f) ≥ Λσ(g) (monotonicity);
• Λσ(λf) = λΛσ(f), for λ > 0 (positive homogeneity);
• Λσ(f + g) ≥ Λσ(f) + Λσ(g) (super-additivity);
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• Λσ(f + b) = Λσ(f) + b for all b ∈ R.

All the above follows immediately from the definition. Note that it is not clear at
the moment if Λσ is linear or not.

Next, we define

(6.2) ρσ = Λτσ(L̂σ1
1) ; ρ = inf

σ∈ΣN
ρσ.

Let Znσ be the partition of smoothness intervals of Tnσ , and Ẑnσ be the coarsest
partition which is finer than Znσ and enjoying the property that the elements of the
partition are either disjoint from Hn

σ or contained in Hn
σ .

Let us define the collections of intervals

Znσ,? = {Z ∈ Ẑnσ |Z ⊂ Hn
σ },

Znσ,b = {Z ∈ Znσ,? |Λσ(1Z) = 0}
Znσ,g = {Z ∈ Znσ,? |Λσ(1Z) > 0}.

(6.3)

Definition 1. We will call contiguous two elements of Znσ,? that are either con-
tiguous in the usual sense, or separated by a connected component of (Hn

σ )c =⋃n−1
j=0 (T jσ)−1(Hc

σj+1
).

We can now introduce the second condition needed to state our results.

(C2): there exist constants K ≥ 0 and ξ ≥ 1 such that for any n and σ ∈ ΣN,
at most Kξn elements of Znσ,b are contiguous. In addition, θ := ξΘ <

min{ρ, 1}. In particular, ρ > 0.

Let us turn to the third and last condition.

(C3(N,N ′)): ε̂(N,N ′) := min
k≤N

inf
σ∈ΣN

min
Z∈Zkσ,g

inf
x∈[0,1]

(L̂N
′

σ 1Z)(x)

(L̂N′σ 1)(x)
> 0.

Note that, by (6.1), condition C3(N,N ′) implies Λσ(1Z) ≥ ε(N,N ′) > 0 for all
Z ∈ Znσ,g, n ≤ N , and σ ∈ ΣN. This is morally what we need in the following,
however in Lemma 9.3 the above more precise condition is used.

We remark also that m′ ≥ m implies ε̂(n,m′) ≥ ε̂(n,m) and n ≥ n′ implies
ε̂(n,m) ≤ ε̂(n′,m). Thus, setting

ε?(n) = min{ε̂(n,m) : m ≥ n, ε̂(n,m) > 0},
we have ε?(N) > 0 if and only if (C3(N,N ′)) holds for some N ′ ≥ N . Also if
ε?(n) > 0, then ε?(n

′) > 0 for all n′ ≤ n, however ε? is not necessarily a decreasing
function.
6.2. The results.
We now state our main result, whose proof is given in Section 8.

Theorem 6.1. There exists an integers n2 ≥ 1, depending only on the classes
T and H, explicitly computable (see Remark 6.2), such that if (C1), (C2) and
(C3(n2, n3)) hold for some n3 ≥ n2, then the condition (Exp) holds. In particular,
the property of loss memory from Lemma 4.3 is verified.

Remark 6.2. The definition of n2 is a bit cumbersome but explicit:
given (T , H) define the constants (see Lemma 9.3 for their meaning)14

C? = 3(C + 1) + 2K(3C + 2); Cn =
(3C + 2)(2Kξ + 1)Θ

ε?(n)

14Note that Cn =∞ if ε?(n) = 0.



DETERMINISTIC WALKS IN RANDOM ENVIRONMENT 27

where C is such that
∨
Z g

n
σ ≤ C‖gnσ‖∞ for all n, σ and Z ∈ Znσ,?. Recall the

definitions of ρ and θ from (C2) and define (as in Lemma 9.5) n0 = d ln 4C2
?

ln ρθ−1 e. If

ε?(n0) = 0, then define n2 = n0.15 If ε?(n0) > 0, then Cn < ∞ for all n ≤ n0,
and we can set (as in Remark 9.9) a = max{1, 15

11 maxi≤n0

Ci
C?θi
} and B = 1+2aC?

(used in Lemma 9.6). Finally we define (as introduced in Lemmata 9.7, 9.8)

n2 =

⌈
ln 4aB(1 + 2Cn0ρ

−n0)

ln θ−1ρ

⌉
.

According to Remark 6.2, to check the hypothesis of Theorem 6.1 one has first
to check (C1), (C2); compute n0 and find N ′ for which (C3(n0, N

′)) holds; use it
to compute n2 and look for an n3 for which (C3(n2, n3)) holds. Given (T , H), this
can be rather laborious as we will see in Section 7.

As we already pointed out in Section 5, the choice of the initial condition might
play an important role. The following result states that if we restrict ourselves to
initial conditions absolutely continuous to Lebesgue, with density in BV bounded
uniformly away from 0, this difference is not so important in the sense that for
large times, the transition probabilities are exponentially close. For two different
initial densities h0, h

′
0 ∈ BV with inf h0 > 0 and inf h′0 > 0, we denote by P? and

P′? the probability measures corresponding to h0 and h′0 respectively. In section 8
we prove:

Theorem 6.3. Under the assumptions of Theorem 6.1, we have for all realisation
of the environment ω̄ ∈ Ω, n ≥ 0 and all densities h0, h

′
0 as above:

|P?(z(n) | z(1), . . . , z(n− 1), ω̄)− P′?(z(n) | z(1), . . . , z(n− 1), ω̄)| ≤ Ch0,h′0
νn,

where Ch0,h′0
> 0 depends only on the densities h0 and h′0.

Next, we consider the situation where all maps fα preserve a common density
h0 ∈ BV such that inf h0 > 0, and when the partitions Gα are deterministic, i.e.
Gα,w = Gw does not depend on α ∈ A. In this situation, the dynamical system
(Ω?,F?,P?) is measure-preserving, and so condition (Abs) holds by Lemma 4.5.

Theorem 6.4. Under the assumptions of Theorem 6.1, if the maps fα preserve a
common density, the partitions Gα are deterministic, and if furthermore condition
(Pro) of Section 4.2 holds, then the dynamical system (Ω?,F?,P?) is ergodic. In
particular, P?-a.e.,

lim
n→∞

1

n
z(n) =

∑
w∈W

w

∫
Gw

h0dm.

Remark 6.5. The assumption that the maps all preserve a common measure and
that the partitions are deterministic is only used to check the validity of condition
(Abs) thanks to Lemma 4.5, and to have an explicit formula for the drift. If for
a concrete example, one is able to check (Abs) by any other mean, then Theorem
4.9 applies and there exists V ∈ Rd such that limn→∞

1
nz(n) = V , P?-a.s. .

The proofs of Theorem 6.4 will be provided in Section 8.

15In this case (C3(n2, n3)) fails for all n3 ≥ n2 and hence Theorem 6.1 does not apply.
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7. Existence of Non-Markovian examples: β-maps

To ensure that the hypotheses of Theorem 6.1 are non empty it suffices to verify
them in some limiting regime, e.g. when the dynamics has a lot of expansion. This
is the aim of the present section. To further simplify things we will limit ourselves
to β maps, a popular class of dynamical systems.

7.1. General β-maps. More precisely, we consider the situation where the class
of maps is T = {Tβ1 , Tβ2} for β2 > β1 > 1, with Tβ(x) = βx mod 1 and the
partitions Gα are such that H = {[0, 1

2 ], ( 1
2 , 1]}. Note that W is not specified, and

Gα can be random.16 For σ ∈ ΣN = (T ×H)N, we denote by βσi the value of β such
that Tσi = Tβσi . For simplicity, we will fix $ > 1 and assume that β1 = β and

β2 = $β. We will show that assumptions (C1), (C2) and (C3) are verified for a
large set of β. When needed, we will denote by Znσ (β) the partition of smoothness
intervals of Tnσ , to emphazise the dependence on β, and similarly for the objects
defined in equation (6.3). We will do the same with the subsets of the partition
defined in Section 6.

Proposition 7.1. There exists a set B ⊂ (1,∞) and C > 0, with Leb(B∩ (1, t)) ≤
C log t, for t > 1, such that the model described above satisfies the assumptions of
Theorem 6.1 when β /∈ B.

The rest of the section is devoted to the proof of Proposition 7.1. It suffices to
check conditions (C1), (C2) and (C3) as explained in Remark 6.2.

7.1.1. Condition (C1). This condition is satisfied if every map T ∈ T admits at
least one full branch inside any interval H ∈ H. This is the case whenever β ≥ 3.

7.1.2. Condition (C2). We first give a general criterion to check this condition.
Let Znσ,f be the collection of elements Z in Znσ,? such that Tnσ Z = [0, 1], and let

Znσ,u = Znσ,? \ Znσ,f .
We call a system ξ-full branched, ξ > 0, if there exists K > 0 such that for all

σ ∈ Σ and n, the number of contiguous elements in Znσ,u is less than Kξn. A system
ξ-full branched satisfies (C2) with the same K, ξ.

Lemma 7.2. Calling Cnσ the maximal number of contiguous elements in Znσ,u, holds

Cnσ ≤ 2

n−1∑
i=0

(C(1) + 2)iC(1),

where C(1) is the supremum over all σ of C1
σ.

Proof. The proof is by induction on n. Clearly it is true for n = 1. Let us suppose
it true for n. The elements of the partition Zn+1

σ,? are formed by {T−1
σ1
Z∩Z1} where

Z ∈ Znτσ,? and Z1 ∈ Z1
σ,?. Now, if Z1 ∈ Z1

σ,f , the elements maintain the same

nature, i.e. if Z ∈ Znτσ,f (resp. Znτσ,u) then T−1
σ1
Z ∩ Z1 ∈ Zn+1

σ,f (resp. Zn+1
σ,u ). So

we have in Z1 at most Cnτσ contiguous elements of Zn+1
σ,u . The only problem arises

when a block of contiguous elements ends at the boundary of Z1 since in such a
case it can still be contiguous to others elements of Zn+1

σ,u . Yet, if the contiguous

elements of Z1 are in Z1
σ,f , then there can be at most a block of length 2Cnτσ. One

16For instance, W = {−1,+1} and whether [0, 1
2

] and ( 1
2
, 1] correspond to −1,+1 or +1,−1

respectively is random.
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must then analyze what can happen if Z1 ∈ Z1
σ,u. In this case, a set of contiguous

elements can either have only partial preimage in Z1, hence we get a shorter group
of contiguous elements, or all the group can have preimage. In this last case,
the worst case scenario is when the elements contiguous to the groups (that must
belong to Znτσ,f ) are cut while taking preimages. This means that at most two new
contiguous elements can be generated, but in this case the group must end at the
boundary of Z1. Since there are at most C1

σ contiguous elements in Z1
σ,u in this

way we can generate at most C1
σ(Cnτσ + 2) contiguous elements that, again in the

worst case scenario, can be contiguous to two blocks belonging to the neighboring
elements in Z1

σ,f . Accordingly,

Cn+1
σ ≤ C1

σ(Cnτσ + 2) + 2Cnτσ = (C1
σ + 2)Cnτσ + 2C1

σ ≤ 2

n∑
i=0

(C(1) + 2)iC(1),

where we have used the induction hypothesis. �

Hence any system is ξ-full branched with ξ = C(1) + 2 and K = 2C(1)

C(1)+1
.

Next, we estimate ρ. Remark that ρσ ≥ inf L̂σ1
1. Let N to be the minimal

number of full branches of T inside H for any T ∈ T and H ∈ H,

L̂σ1
1(x) =

∑
Tσ1y=x

1Hσ1
(y)

1

|T ′σ1
(y)|
≥ N

M
,

with M = supT |T ′(x)|. Thus ρ ≥ N
M , and condition (C2) is satisfied provided

(C(1) + 2)Θ < N
M .

For β transformations C(1) = 2, Θ = β−1, M = $β and N ≥ bβ2 c − 1. Thus,

remembering (6.2), ρ ≥ b β2 c−1

$β ; ξ = 4; θ = 4β−1;K = 4
3 and (C2) is satisfied if

4$β < β(bβ2 c − 1), which happens if β ≥ 8$ + 4.

7.1.3. Condition (C3). We start with a parameter selection.

Lemma 7.3. For each m ≥ 1, there exists a set Bm ⊂ (1,∞) and Cm > 0 such
that Leb(Bm ∩ (1, t)) ≤ Cm log t for all t > 1 and if 1 < β /∈ Bm, then

∀n ≤ m, ∀σ ∈ ΣN, ∀Z ∈ Znσ,?(β),

Tn+1
σ (Z ∩Hn+1

σ ) = [0, 1] or Tnσ Z ⊂ Hc
σn+1

.
(7.1)

This lemma, proven shortly, establishes a dichotomy between good and bad
elements of Znσ,?(β) when β /∈ Bm: either Tnσ Z ∩ Hσn+1 is large enough to cover
[0, 1] after one more iteration if Z is good, or it is empty if Z is bad.

Corollary 7.4. If β /∈
⋃
k≤n Bk then ε̂(n, n+ 1) ≥ 1

(2$β)n+1 .

Proof. By Lemma 7.3, for Z ∈ Zkσ,g(β), k ≤ n, we have Tn+1
σ (Z ∩ Hn+1

σ ) =

Tn−k
τk+1σ

(T k+1
σ (Z ∩Hk+1

σ ) ∩Hn−k
τk+1σ

) = [0, 1] and then

L̂n+1
σ 1Z(x) =

∑
Tn+1
σ y=x

1Z(y)1Hn+1
σ

(y)

|(Tn+1
σ )′(y)|

≥ 1

sup |(Tn+1
σ )′|

≥ 1

($β)n+1
,

and L̂n+1
σ 1(x) ≤ Ln+1

σ 1(x) ≤ 2n+1, since LTβi1(x) ≤ 2. �
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Proof of Proposition 7.1. We choose B = (1, β0) ∪
⋃6
k=1 Bk for some β0 > 2 ·

252$ + 1. Since K = 4
3 , we have C? = 25

3 . Note that if β ≥ β0, then d ln 4C2
?

ln ρθ−1 e < 1

and, by Remark 6.2, n0 = inf{n ≥ 1 : ε?(n) > 0}. But ε?(1) ≥ ε̂(1, 2) ≥ (2$β)−2,
hence n0 = 1. Accordingly, C1 ≤ 280

3 $2β; a ≤ 42
11$

2β2 and B ≤ 1 + 700
11 $

2β2

which yields, for all β0 large enough,

n2 =

⌈
ln 4aB(1 + 2C1ρ

−1)

ln θ−1ρ

⌉
≤ 5 lnβ +D1

lnβ −D2

for some constants Di ≥ 0 depending only on $. We can thus choose β0 large
enough so that n2 ≤ 6. �

The rest of the section is devoted to the proof of Lemma 7.3. The basic idea is

to discard the β for which the n-th iterates of elements of ∂Ẑnσ (β) come too close
to
{

0, 1
2 , 1
}

.

Lemma 7.5. For all σ ∈ ΣN and n ≥ 1, one has Tnσ (∂Ẑnσ (β)) ⊂ Qn(β) :=
{0, 1} ∪ {T iσ′(1), T iσ′(

1
2 ) / i = 1, . . . , n, σ′ ∈ ΣN}.

Proof. We proceed by induction, the result being clearly true for n = 1. Note that

Qn(β) ∪ T 1
τnσ(Qn(β)) ⊂ Qn+1(β). Since every Z ∈ Ẑn+1

σ (β) is of the form Z =

Z ′ ∩ (Tnσ )−1(Z ′′) for Z ′ ∈ Ẑnσ (β) and Z ′′ ∈ Ẑ1
τnσ(β), if a ∈ ∂Ẑn+1

σ (β), then either

a ∈ ∂Ẑnσ (β) or Tnσ a ∈ ∂Ẑ1
τnσ(β). In the first case, Tn+1

σ a ∈ T 1
τnσ(Tnσ (Ẑnσ (β))) ⊂

Qn+1(β), and in the second case, Tn+1
σ a ∈ T 1

τnσ(∂Ẑ1
τnσ(β)) ⊂ Q1(β) ⊂ Qn+1(β).

�

We thus see that we need to control all the orbits of 1 and 1
2 . To this end, for

x ∈ (0, 1] and σ ∈ ΣN,17 we introduce the map φx,σn : (1,∞) → [0, 1] defined by
φx,σn (β) = Tnσ (x).18 For non negative integers i1, . . . , in, we define

Ix,σi1,...,in =
{
β ∈ (1,∞) | bβσkφ

x,σ
k−1(β)c = ik, k = 1, . . . , n

}
.

Note that Ix,σi1 = [ i1x ,
i1+1
x ) if βσ1

= β1, Ix,σi1 = [ i1$x ,
i1+1
$x ) if βσ1

= β2, and that in

both cases, Ix,σi1 ⊂ [ i1$x ,
i1+1
x ). The family {Ix,σi1,...,in,in+1

}in+1≥0 forms a partition

into finitely many (at most b$ i1+1
x c + 1) intervals of Ix,σi1,...,in . From the relation

φx,σn+1(β) = βσn+1φ
x,σ
n (β) mod 1, we deduce easily by induction:

Lemma 7.6. The map φx,σn is C1 and strictly increasing on each interval Ix,σi1,...,in ,

and verifies (φx,σn )′(β) ≥ βn−1x.

Lemma 7.7. For each x ∈ (0, 1] and n ≥ 1, there exists Cx,n > 0 and a set
Bn,x ⊂ (1,∞), with Leb(Bn,x ∩ (1, t)) ≤ Cx,n log t, such that, if β /∈ Bn,x,

∀σ ∈ ΣN, d(φx,σn (β), {0, 1/2, 1}) > 3β−1.

Proof. Fix n ≥ 1 and σ ∈ Σ, and consider β ∈ Ix,σi1,...,in . We have β−1 ≤ $xi−1
1 and

thus d(φx,σn (β), {0, 1/2, 1}) > 3β−1 whenever

(7.2) d(φx,σn (β), {0, 1/2, 1}) > 3$xi−1
1 .

17Note that we will only consider x = 1
2

and x = 1 in the following.
18Recall that Tσi = Tβσi

and β1 = β, β2 = $β.
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Define Bx,σn,i1 to be the set of β in Ix,σi1 which do not satisfy (7.2). By Lemma 7.6,

the Lebesgue measure of Bx,σn,i1 ∩ I
x,σ
i1,...,in

is less than19

3

(
inf

Ix,σi1,...,in

|(φx,σn )′|

)−1

3$xi−1
1 ≤ C$,x,ni−n1 .

As {Ix,σi1,...,in}i2,...,in forms a partition of Ix,σi1 into at most C$,x,ni
n−1
1 elements, the

set Bx,σn,i1 has a measure less than C$,x,ni
−1
1 . For j = 1, 2, set Bx,jn,i1 =

⋃
{σ | βσ1

=βj} B
x,σ
n,i1

.

For n fixed, the condition (7.2) depends on σ only through its n first terms, and

thus Bx,jn,i1 is of measure less than C$,x,ni
−1
1 . The set Bn,x =

⋃
j=1,2

⋃
i1≥1 B

x,j
n,i1

then satisfies the conclusion of the lemma. �

We can now conclude the proof:

Proof of Lemma 7.3. We set Bm = ∪1≤n≤mBn,1/2 ∪ Bn,1 and we proceed by

induction over n ≤ m. Note that if Z ∈ Znσ,?(β), then Z ∩Hk
σ = Z for all k ≤ n.

If Z ∈ Z1
σ,?(β), then either Z is a full interval of Z1

σ,?(β) and so T 2
σ (Z ∩H2

σ) =

Tσ2
([0, 1] ∩ Hσ2

) = [0, 1], or one of the endpoints of Z is 1
2 or 1. In the latter

case, the other endpoint of Z must be sent after one iteration to 0 or 1 and so if
T 1
σZ ∩ H1

τσ is not empty, then |T 1
σZ ∩ H1

τσ| > 3β−1 by Lemma 7.7. The interval
T 1
σZ ∩ H1

τσ therefore contains at least one full interval of Z1
τσ,?(β), which implies

T 2
σ (Z ∩H2

σ) = [0, 1].
Now, we suppose that (7.1) holds for n and we prove it holds for n+ 1 < m.
Any Z ∈ Zn+1

σ,? (β) is of the form Z = Z ′ ∩ (Tnσ )−1(Z ′′) with Z ′ ∈ Znσ,?(β)

and Z ′′ ∈ Z1
τnσ,?(β). If both endpoints of Z belong to the interior of Z ′, then

Tnσ Z = Z ′′ ∈ Z1
τnσ,?(β) and we have

Tn+2
σ (Z ∩Hn+2

σ ) = T 2
τnσ(Tnσ Z ∩H2

τnσ) = T 2
τnσ(Z ′′ ∩H2

τnσ) = [0, 1],

or
Tn+1
σ Z = T 1

τnσ(Tnσ Z) = T 1
τnσZ

′′ ⊂ Hc
σn+1

,

according to whether Z ′′ is a good a or bad element of Z1
τnσ,?(β) respectively.

If one endpoint of Z is also an endpoint of Z ′, then Tnσ Z = [Tnσ a, b]
20 with

a ∈ ∂Znσ,?(β) and b ∈ ∂Z1
τnσ,?(β). By Lemma 7.5, Tnσ a = T iσ′x, with σ′ ∈ Σ,

0 ≤ i ≤ n and x ∈
{

1
2 , 1
}

.21 We consider two subcases: either b /∈
{

1
2 , 1
}

or

b ∈
{

1
2 , 1
}

.

In the first subcase, we have y := Tσn+1
b ∈ {0, 1}. Therefore, Tn+1

σ Z =

[Tσn+1
T iσ′x, y]. Since i + 1 ≤ n + 1 ≤ m, β /∈ Bn+1,y and one of the endpoints

of Tn+1
σ Z belongs to {0, 1}, it follows that Tn+1

σ Z ∩ Hσn+2
, if it is non empty, is

an interval of length strictly larger than 3β−1 by Lemma 7.7 and thus contains at
least one full interval of Z1

τn+1σ,?(β). Consequently, Tn+2
σ (Z ∩Hn+2

σ ) = [0, 1].

In the second subcase, Tnσ Z = [T iσ′x, b] has one endpoint belonging to
{

0, 1
2 , 1
}

,
and so, as above, we obtain that Tnσ Z ∩Hσn , if it is non empty, is of length strictly
larger than 3β−1 by Lemma 7.7. We deduce that Tnσ Z ∩Hσn contains at least one
full interval of Z1

τnσ,?(β), which implies that Tn+2
σ (Z ∩Hn+2

σ ) = [0, 1].

19In the following, C$,x,n will denote a constant, the value of which may change from one line

to another, depending on $, x and n, but not on i1.
20We write [x,y] to denote the interval joining x and y, disregarding whether x ≤ y or x ≥ y.
21Note that if Tnσ a = 0, then we are reduced to the previous situation.
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Finally, if both endpoints of Z are also endpoints of Z ′, then Z = Z ′ ∈ Znσ,?(β).

Since Z ∈ Zn+1
σ,? (β), we have Tnσ Z ⊂ Hσn+1

and so by our induction hypothesis, we

can only have Tn+1
σ Z = Tn+1

σ (Z ′∩Hn+1
σ ) = [0, 1]. This implies Tn+2

σ (Z ∩Hn+2
σ ) =

[0, 1] and concludes the induction. �

7.2. Markov maps with non-Markov gates. The reader might wonder if it is
possible to produce an example more similar to the Lorentz gas. In particular, one
in which the invariant measure of the maps is always the same and the gates are
deterministic, so that one knows explicitly the invariant measure of the process of
the environment as seen from the particle.

This is indeed possible: let T = {Tβ1
, Tβ2
}, with β2 > β1 both integers, and

partitions Gα = G deterministic with W = {−1, 0,+1} and G−1 = [0, y], G0 =
(y, 1− y] and G+1 = (1− y, 1], for 0 < y < 1

2 . Proceeding similarly to the previous
section, but using y as a parameter, instead of β, we have:

Proposition 7.8. Let $ > 1. Then for each 1 < β1 < β2 < $β1 integers, there
exists a measurable set Bβ1,β2

⊂ (0, 1
2 ), with Leb(Bβ1,β2

) = O(β−1
1 ) as β1 → ∞,

such that the model described above, with y 6∈ Bβ1,β2
, satisfies the assumptions of

Theorems 6.1.

In particular, this class of models is non-empty when β1 is large enough. Since all
maps in T preserve the Lebesgue measure and all gates are deterministic, Theorem
6.4 also applies22 and we therefore have 1

nz(n)→ 0 a.e., since the drift is equal to

V =
∑
w∈W

w

∫
Gw

h0dm =
∑

w∈{−1,0,+1}

w|Gw| = 0.

By corollary 4.11, the walk (zn) is then recurrent.

8. Equivalence with a Gibbs random walk

In this section, we prove Theorem 6.1. The proof will rely on a property of

exponential loss of memory for compositions of the operators L̂σ. More precisely,

we will investigate the properties of compositions of the form L̂nσf , in order to
understand better the asymptotics of the probabilities p(ω̄, n, w0 . . . wn−1). For
convenience, we will consider bi-infinite sequences σ ∈ ΣZ = (T × H)Z, with τ :

ΣZ → ΣZ the bilateral shift. We can extend the definitions of L̂nσ, ρσ, Caσ and Λσ
to the case σ ∈ ΣZ in a straightforward way.

What we mean by loss of memory is made precise by the following result proven
in Section 9.

Proposition 8.1. Under the hypothesis of Theorem 6.1 there exist ν ∈ (0, 1), a
family of positive numbers {ρσ}σ∈ΣZ and a family of positive functions {hσ}σ∈ΣZ

in BV such that Λσ(hσ) = 1 and for all σ ∈ ΣZ, f ∈ BV and n ≥ 0:

(8.1)

∥∥∥∥∥ L̂nσf
ρσ · · · ρτn−1σ

− Λσ(f)hτnσ

∥∥∥∥∥
∞

≤ C#ν
n‖f‖BV.

Remark 8.2. The above statement is similar to the one in [24]. Note however that
here the setting is very different insofar in [24] only small holes and nearby maps

22Condition (Pro) is satisfied here, since W is symmetric.
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are considered. The upgrade of the result to large holes and arbitrary maps (as we
inescapably need) turns out to be highly non trivial.

In the following we will need the following information on Λσ and hσ, which are
proven at the end of Section 9.

Lemma 8.3. Under the hypothesis of Theorem 6.1 there exist % > 0 such that, for
all n ≥ 0 and σ ∈ ΣZ, inf hσ ≥ % and ‖hσ‖∞ ≤ 1 + a.23 In addition, supσ ρσ <∞
and for all f ∈ BV , Λτnσ(L̂nσf) = ρσ . . . ρτn−1σΛσ(f); L̂nσhσ = ρσ . . . ρτn−1σhτnσ.

To prove Proposition 8.1, we will adapt the strategy of [20]. More precisely, we
will show that the family of cones24

Caσ = {h ∈ BV | h 6= 0, h ≥ 0,
∨
h ≤ aΛσ(h)}

is stricly invariant under compositions of large enough length of transfer operators

(i.e. L̂nσCaσ ⊂ C
a/2
τnσ for all n ≥ n0) for a suitable a > 0, see Lemma 9.5. From this,

we will deduce that L̂nσCaσ has uniform finite diameter in Caτnσ for the corresponding

Hilbert metric (Lemma 9.14), which will imply that L̂nσ is a strict contraction for
the Hilbert metric, and then enjoys exponential loss of memory.

To deduce Theorem 6.1 from Proposition 8.1, we will also need the following
technical lemma, which will be proven at the end of Section 9:

Lemma 8.4. There exists %′ > 0 such that for all n ≥ 0 and σ ∈ ΣN, we have

inf L̂nσ1 ≥ %′Λτnσ(L̂nσ1) and ‖L̂nσ1‖∞ ≤ BΛτnσ(L̂nσ1).25

Recall from Section 4 that the transition probabilities are given by (4.10). For

(ω̄, w̄) ∈ Ω?, we define σ = σ(ω̄, w̄) ∈ ΣN such that L̂σn = Lω̄,zn−1,w̄n−1
, so that

p(ω̄, n, w̄0 . . . w̄n−1) =

∫
L̂nσh0dm.

We will still denote by σ ∈ ΣZ an arbitrary element of ΣZ which coincides with σ
for future components (for instance, given an arbitrary σ? ∈ ΣZ, we identify σ ∈ ΣN

with the element σ̃ ∈ ΣZ defined by σ̃i = σi if i ≥ 1 and σ̃i = (σ?)i if i ≤ 0).
We are now ready to prove the announced results.

Proof of Theorem 6.1. We have

(8.2) Pω̄(w̄n | w̄0 . . . w̄n−1) =
p(ω̄, n+ 1, w̄0 . . . w̄n)

p(ω̄, n, w̄0 . . . w̄n−1)
=

∫
L̂n+1
σ h0dm∫
L̂nσh0dm

and

Pτzm ω̄(w̄n | w̄m . . . w̄n−1) =
p(τzm ω̄, n−m+ 1, w̄m . . . w̄n)

p(τzm ω̄, n−m, w̄m . . . w̄n−1)

=

∫
L̂n−m+1
τzmσ

h0dm∫
L̂n−mτzmσh0dm

.

(8.3)

23The constant a is defined in Remark 6.2
24By using a generalised variation, e.g. [11, 3], one could probably treat more singular maps.

We refrain from exploring this possibility to keep the exposition simpler.
25The constant B is defined in Remark 6.2.
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We can then write∫
L̂n+1
σ h0dm∫
L̂nσh0dm

= ρτnσ

∫
L̂n+1
σ h0dm

ρσ . . . ρτnσ

ρσ . . . ρτn−1σ∫
L̂nσh0dm

.

Using Proposition 8.1, we have

(8.4)

∣∣∣∣∣
∫
L̂nσh0dm

ρσ · · · ρτn−1σ
− Λσ(h0)

∫
hτnσdm

∣∣∣∣∣ ≤ C#ν
n‖h0‖BV,

which also implies

(8.5)

∣∣∣∣∣ρσ · · · ρτn−1σ∫
L̂nσh0dm

−
(

Λσ(h0)

∫
hτnσdm

)−1
∣∣∣∣∣ ≤ C#ν

n ‖h0‖BV

(inf h0)2
,

since, by Lemmata 8.3 and 8.4,∫
L̂nσh0dm

ρσ · · · ρτn−1σ
≥ (inf h0)

inf L̂nσ1
ρσ · · · ρτn−1σ

≥ (inf h0)
%′Λτnσ(L̂nσ1)

ρσ . . . ρτn−1σ
= %′(inf h0),

and Λσ(h0)
∫
hτnσdm ≥ % inf h0.

Note that we also have, using again Lemmata 8.4 and 8.3,∫
L̂nσh0dm

ρσ · · · ρτn−1σ
≤ ‖h0‖∞

‖L̂nσ1‖∞
ρσ · · · ρτn−1σ

≤ B‖h0‖∞.

Consequently, using (8.4) with n replaced by n+1, (8.5), Lemma 8.3 and the above
inequalities:∣∣∣∣∣

∫
L̂n+1
σ h0dm∫
L̂nσh0dm

− ρτnσ
∫
hτn+1σdm∫
hτnσdm

∣∣∣∣∣ ≤
[∣∣∣∣∣
∫
L̂n+1
σ h0dm

ρσ · · · ρτnσ
− Λσ(h0)

∫
hτn+1σdm

∣∣∣∣∣
×ρσ · · · ρτ

nσ∫
L̂nσh0dm

+ ρτnσΛσ(h0)

∫
hτn+1σdm

∣∣∣∣∣ρσ · · · ρτn−1σ∫
L̂nσh0dm

− 1

Λσ(h0)
∫
hτnσdm

∣∣∣∣∣
]

≤ C#ν
n

(
‖h0‖BV

inf h0
+
‖h0‖2BV

(inf h0)2

)
.

Hence, there exists Ch0
depending only on h0 such that, for all n ≥ 0,

(8.6) sup
σ∈Σ

∣∣∣∣∣
∫
L̂n+1
σ h0dm∫
L̂nσh0dm

− ρτnσ
∫
hτn+1σdm∫
hτnσdm

∣∣∣∣∣ ≤ Ch0ν
n.

Equation (8.6), by (8.2) and (8.3), implies (Exp). �

Proof of Theorem 6.3. By (8.6), we have

sup
σ∈Σ

∣∣∣∣∣
∫
L̂n+1
σ h0dm∫
L̂nσh0dm

−
∫
L̂n+1
σ h′0dm∫
L̂nσh′0dm

∣∣∣∣∣ ≤ (Ch0 + Ch′0)νn,

for all n ≥ 0, and the theorem follows with Ch0,h′0
= Ch0 + Ch′0 . �

Proof of Theorem 6.4. By Theorem 4.9, the discussion in Section 4.4, and since
(Exp) already holds by Theorem 6.1, it is enough to show that assumptions (Pos)
and (Ell) are satisfied for the probabilities defined by (4.10).
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Verification of (Pos). By Proposition 8.1, Lemma 8.3 and equation (6.2)

p(ω̄, n, w̄0 . . . w̄n−1) =

∫
L̂nσh0dm = ρσ · · · ρτn−1σ

∫
L̂nσh0dm

ρσ · · · ρτn−1σ

≥ ρn
(

Λσ(h0)

∫
hτnσ − C#ν

n‖h0‖BV

)
≥ ρn (% inf h0 − C#ν

n‖h0‖BV) .

Consequently, p(ω̄, n, w̄0 . . . w̄n−1) > 0 for all n large enough, and since this quan-
tity is non-increasing, this proves the positivity for all n ≥ 0.

Verification of (Ell). By (8.6) and Lemma 8.3, we have for all n ≥ 0,

Pω̄(w̄n | w̄n−1 . . . w̄0) =

∫
L̂n+1
σ h0dm∫
L̂nσh0dm

≥ ρτnσ
∫
hτn+1σdm∫
hτnσdm

− Ch0
νn

≥ ρ %

1 + a
− Ch0

νn,

which proves (Ell). �

9. Loss of Memory

To prove Proposition 8.1, we will adapt the strategy of [20] to our non-stationary
case, and employ the theory of Hilbert metrics, that we recall below.

Definition 2. Let V be a vector space. We will call convex cone a subset C ⊂ V
which enjoys the following properties:

(i) C ∩ −C = ∅.
(ii) ∀λ > 0, λC = C.

(iii) C is a convex set.
(iv) ∀f, g ∈ C, ∀αn ∈ R αn → α, g − αnf ∈ C ⇒ g − αf ∈ C ∪ {0}.

We now define the Hilbert metric on C:

Definition 3. The distance dC(f, g) between two points f, g in C is given by

α(f, g) = sup{λ > 0 | g − λf ∈ C},
β(f, g) = inf{µ > 0 | µf − g ∈ C},

dC(f, g) = log
β(f, g)

α(f, g)
,

where we take α = 0 or β =∞ when the corresponding sets are empty.

The next theorem shows that every positive linear operator is a contraction,
provided that the diameter of the image is finite.

Theorem 9.1 ([18, Theorem 1.1]). Let V1 and V2 be two vector spaces, C1 ⊂ V1

and C2 ⊂ V2 two convex cones and L : V1 → V2 a positive linear operator (which
implies L(C1) ⊂ C2). If we denote

∆ = sup
f,g∈L(C1)

dC2(f, g),

then

dC2(Lf, Lg) ≤ tanh

(
∆

4

)
dC1(f, g) ∀f, g ∈ C1.

The following lemma links the Hilbert metric to suitable norms on V:
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Lemma 9.2 ([21, Lemma 2.2]). Let ‖ · ‖ be a norm on V such that

∀f, g ∈ V g − f, g + f ∈ C ⇒ ‖f‖ ≤ ‖g‖
and let ` : C → R+ be a homogeneous and order preserving function, i.e.

∀f ∈ C,∀λ ∈ R+ `(λf) = λ`(f),

∀f, g,∈ C g − f ∈ C ⇒ `(f) ≤ `(g),

then

∀f, g ∈ C `(f) = `(g) > 0⇒ ‖f − g‖ ≤ (edC(f,g) − 1) min(‖f‖, ‖g‖).

From now on, we will always assume that conditions (C1) and (C2) hold. Our
main tool will be the following Lasota-Yorke type inequality:

Lemma 9.3. If condition (C3(N,N ′)) holds, then for any n ≤ N , for any σ ∈ ΣN

and h ∈ BV, we have ∨
L̂nσh ≤ C?(ξΘ)n

∨
h+ CNΛσ(|h|),

where C? = 3(C + 1) + 2K(3C + 2), CN = (3C+2)(2Kξ+1)Θ
ε?(N) , and C is such that∨

Z g
n
σ ≤ C‖gnσ‖∞ for all n, σ and Z ∈ Znσ,?.26

Proof. Remark that the case n = 0 is immediate, since C? ≥ 1 and CN ≥ 0. We
thus only consider n ≥ 1.

First notice that L̂nσ(h1Z) = 0 if Z ∈ Ẑnσ \ Znσ,?. We can then write

L̂nσh =
∑

Z∈Znσ,?

L̂nσ(1Zh) =
∑

Z∈Znσ,?

(1Zg
n
σh) ◦ (Tnσ,Z)−1,

where (Tnσ,Z)−1 is the inverse branch of Tnσ restricted to Z. Accordingly,∨
L̂nσh ≤

∑
Z∈Znσ,?

∨
1Tnσ Z(gnσh) ◦ (Tnσ,Z)−1.

We estimate each term of the sum separately.∨
1Tnσ Z(gnσh) ◦ (Tnσ,Z)−1 ≤

∨
Z

hgnσ + 2 sup
Z
|hgnσ |

≤ 3
∨
Z

hgnσ + 2 inf
Z
|hgnσ |

≤ 3‖gnσ‖∞
∨
Z

h+ 3 sup
Z
|h|
∨
Z

gnσ + 2 inf
Z
|hgnσ |

≤ 3‖gnσ‖∞
∨
Z

h+ 3C sup
Z
|h|‖gnσ‖∞ + 2‖gnσ‖∞ inf

Z
|h|

≤ 3(C + 1)‖gnσ‖∞
∨
Z

h+ (3C + 2)‖gnσ‖∞ inf
Z
|h|.

By assumption (C3(N,N ′)), we have for each x ∈ [0, 1],

inf
Z∈Znσ,g

L̂N ′σ 1Z(x)

L̂N ′σ 1(x)
≥ ε̂(N,N ′) ≥ ε?(N) > 0.

26The constant C exists by the usual bounded distortion estimates. In particular, note that if
all the maps in T are piecewise linear, then C = 0.
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Accordingly, for each x ∈ [0, 1], h ∈ BV and Z ∈ Znσ,g holds

L̂N
′

σ (|h|1Z)(x) ≥ inf
Z
|h|L̂N

′

σ 1Z(x) ≥ inf
Z
|h|ε?(N)L̂N

′

σ 1(x).

To deal with elements in Znσ,b, we use condition (C2) which insures that elements
of Znσ,g can be separated by at most Kξn elements of Znσ,b. For each Z ∈ Znσ,b, let

I±(Z) be the union of the contiguous elements of Znσ,b on the left and on the right

of Z respectively. Clearly, for each Z ′ ⊂ I±(Z), holds

inf
Z′
|h| ≤ inf

Z
|h|+

∨
I±(Z)

h.

Accordingly, ∑
Z∈Znσ,b

inf
Z
|h| ≤ 2Kξn

 ∑
Z∈Znσ,g

inf
Z
|h|+

∨
h

 .
For all x, we thus have∑

Z∈Znσ,?

inf
Z
|h| ≤ (2Kξn + 1)

∑
Z∈Znσ,g

inf
Z
|h|+ 2Kξn

∨
h

≤ (2Kξn + 1)
1

ε?(N)

∑
Z∈Znσ,g

L̂N ′σ (|h|1Z)(x)

L̂N ′σ 1(x)
+ 2Kξn

∨
h

≤ (2Kξn + 1)
1

ε?(N)

L̂N ′σ (|h|)(x)

L̂N ′σ 1(x)
+ 2Kξn

∨
h.

We can then conclude∨
L̂nσh ≤ [3(C + 1) + (3C + 2)2Kξn] ‖gnσ‖∞

∨
h

+ (3C + 2)(2Kξn + 1)‖gnσ‖∞
1

ε?(N)

L̂N ′σ (|h|)(x)

L̂N ′σ 1(x)
.

Taking the inf over x and recalling that ‖gnσ‖∞ ≤ Θn, infx
L̂N
′

σ (|h|)(x)

L̂N′σ 1(x)
≤ Λσ(|h|),

ξ ≥ 1 and ξΘ < 1 by (C2), we obtain the result. �

We will show that the family of cones

Caσ = {h ∈ BV | h 6= 0, h ≥ 0,
∨
h ≤ aΛσ(h)}

is strictly invariant under the transfer operators defined above.
Recall that, under assumption (C2), θ = ξΘ < ρ.

Lemma 9.4. For all σ and all g ∈ BV, g ≥ 0, we have Λτσ(L̂σ1
g) ≥ ρσΛσ(g). In

particular, Λτnσ(L̂nσg) ≥ ρnΛσ(g) and Λτnσ(L̂nσ1) ≥ ρn.

Proof. If we prove the first part of the statement, the second part follows by itera-
tion, since ρσ ≥ ρ for all σ. For each g ∈ BV, g ≥ 0 and x ∈ [0, 1],

L̂nτσL̂σ1g(x)

L̂nτσ1(x)
≥
L̂σn+1

[
L̂nσg
L̂nσ1
L̂nσ1

]
(x)

L̂nτσ1(x)
≥ L̂

n
τσ(L̂σ11)(x)

L̂nτσ1(x)
inf
L̂nσg
L̂nσ1

and taking the inf on x and the limit n→∞, we get the result. �
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Lemma 9.5. Let n0 ≥ d ln 4C2
?

ln ρθ−1 e such that C3(n0, N
′) holds for some N ′ ≥ n0,

then for all a ≥ a0 = 15
11 maxi≤n0

Ci
C?θi

and σ, we have

L̂nσCaσ ⊂ C
2aC?
τnσ ∀n ≥ 0 and L̂nσCaσ ⊂ C

a/2
τnσ ∀n ≥ n0.

Proof. Let n0 ∈ N which will be chosen later. Let h ∈ Caσ, then we can write each
n as n = kn0 +m, m < n0, and by Lemma 9.3, we have

(9.1)

∨
L̂nσh ≤ C?θn0

∨
L̂(k−1)n0+m
σ h+ Cn0

Λτ(k−1)n0+mσ(L̂(k−1)n0+m
σ h)

≤ Ck? θkn0

∨
L̂mσ h+

k−1∑
i=0

Cn0
(C?θ

n0)iΛτ(k−i−1)n0+mσ(L̂(k−i−1)n0+m
σ h)

≤ Ck+1
? θn

∨
h+

k−1∑
i=0

Cn0(C?θ
n0)iΛτ(k−i−1)n0+mσ(L̂(k−i−1)n0+m

σ h)

+ Cm(C?θ
n0)kΛσ(h).

Using Lemma 9.4, we obtain∨
L̂nσh ≤

[(
a+

Cm
C?θm

)
Ck+1
? θn

ρn
+
Cn0

ρn0

k−1∑
i=0

(
C?θ

n0

ρn0

)i]
Λτnσ(L̂nσh).

If k = 0 we have ∨
L̂nσh ≤ 2aC?Λτnσ(L̂nσh).

For k > 0 let us set τ = θρ−1, by (C2) τ < 1, and let n0 such that α = C2
?τ

n0 ≤ 1
4 .

Since C? ≥ 3 then C?τ
n0 ≤ 1

12 . Hence∨
L̂nσh ≤

{
1

4
a+ a0

11

15

[
1

4
+
C2
?τ

n0

C? − α

]}
Λτnσ(L̂nσh) ≤ 1

2
aΛτnσ(L̂nσh).

�

Lemma 9.6. Let B = 1 + 2a0C?. If (C3(n0, N
′)) holds, then for each h ∈ BV,

h ≥ 0, n ∈ N and σ ∈ ΣN,

Λτnσ(L̂nσ1)Λσ(h) ≤ Λτnσ(L̂nσh) ≤ BΛτnσ(L̂nσ1)Λσ(h).

Proof. For x ∈ [0, 1], we have

L̂mτnσ(L̂nσh)(x)

L̂mτnσ1(x)
≥
L̂nτmσ

[
L̂mσ h
L̂mσ 1
L̂mσ 1

]
(x)

L̂mτnσ1(x)
≥ L̂

m
τnσ(L̂nσ1)(x)

L̂mτnσ1(x)
inf
L̂mσ h
L̂mσ 1

where we have used twice the fact that L̂mσnσL̂nσ = L̂nσmσL̂mσ . Taking the inf on x
and the limit m→∞, we get the first inequality. For the second, for x ∈ [0, 1], we
have

L̂mτnσ(L̂nσh)(x)

L̂mτnσ1(x)
=
L̂mτnσ(L̂nσh)(x)

L̂mτnσ(L̂nσ1)(x)

L̂mτnσ(L̂nσ1)(x)

L̂mτnσ1(x)
≤ L̂

n+m
σ h(x)

L̂n+m
σ 1(x)

‖L̂nσ1‖∞,

which, by taking the inf on x and the limit m→∞, yields

Λτnσ(L̂nσh) ≤ ‖L̂nσ1‖∞Λσ(h).

By applying Lemma 9.5 to 1 ∈ Ca0
σ , we obtain

∨
L̂nσ1 ≤ 2a0C?Λτnσ(L̂nσ1). Thus

‖L̂nσ1‖∞ ≤ Λτnσ(L̂nσ1) +
∨
L̂nσ1 ≤ (1 + 2a0C?)Λτnσ(L̂nσ1) = BΛτnσ(L̂nσ1).
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�

Lemma 9.7. Let n1(δ) = d ln δ−1

ln θ−1ρe. Then, for each δ ∈ (0, 1) and n ≥ n1(δ), the

partition Ẑnσ has the property

sup
Z∈Ẑnσ

Λσ(1Z) ≤ δ.

Proof. Remark that n1(δ) is well defined due to condition (C2) and is such that for

all n ≥ n1(δ), θnρ−n ≤ δ. Then, for Z ∈ Ẑnσ ,

L̂nσ1Z(x) =
∑

Tnσ y=x

gnσ (y)1Z(y) ≤ ‖gnσ‖∞ ≤ θn.

Accordingly, for each x ∈ [0, 1],

L̂mτnσL̂nσ1Z(x)

L̂mτnσL̂nσ1(x)
≤ θn

inf
L̂m
τnσ

(L̂nσ1)

L̂m
τnσ

1

.

Taking the inf on x and the limit m→∞, this yields

Λσ(1Z) ≤ θn

Λτnσ(L̂nσ1)
≤ θnρ−n ≤ δ

where we have used Lemma 9.4. �

Lemma 9.8. Let n2(a) = n1

(
[4aB(1 + 2Cn0

ρ−n0)]−1
)
. If (C3(n0, N

′)) holds, then
for each a ≥ a0, n ≥ n2 and h ∈ Caσ there exists Z ∈ Znσ,g with

inf
Z
h ≥ 1

4
Λσ(h).

Proof. For each n,m with n < m, we can write

L̂mσ h(x) =
∑
Z∈Ẑnσ

L̂mσ (h1Z)(x) =
∑

Z∈Znσ,?

L̂mσ (h1Z)(x).

Suppose the lemma is not true. Then, we have

L̂mσ h(x) =
∑

Z∈Znσ,g

L̂mσ (h1Z)(x) +
∑

Z∈Znσ,b

L̂mσ (h1Z)(x)

≤
∑

Z∈Znσ,g

L̂mσ 1Z(x)
Λσ(h)

4
+

∑
Z∈Znσ,g

L̂mσ 1Z(x)
∨
Z

h+ ‖h‖∞
∑

Z∈Znσ,b

L̂mσ 1Z(x)

≤ L̂mσ 1(x)
Λσ(h)

4
+

∑
Z∈Znσ,g

[
Λτmσ(L̂mσ 1Z) +

∨
L̂mσ 1Z

]∨
Z

h

+ ‖h‖∞
∑

Z∈Znσ,b

L̂mσ 1Z(x).

If Z ∈ Znσ,b, by Lemma 9.6, we have Λτmσ(L̂mσ 1Z) ≤ BΛτmσ(L̂mσ 1)Λσ(1Z) = 0,
which implies

L̂mσ 1Z(x) ≤
∨
L̂mσ 1Z ≤ 2C

m/n0+1
? θm ≤ 2C?(C

1/n0
? θρ−1)mΛτmσ(L̂mσ 1),

by inequality (9.1) and Lemma 9.4.
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If Z ∈ Znσ,g, the same argument gives∨
L̂mσ 1Z ≤ 2C

m/n0+1
? θm + 2Cn0

ρ−n0Λτmσ(L̂mσ 1Z)

≤
[
2C?(C

1/n0
? θρ−1)m + 2Cn0

ρ−n0BΛσ(1Z)
]

Λτmσ(L̂mσ 1).

Setting κ = C
1/n0
? θρ−1 ≤ 4−1/n0 and using Lemma 9.6 again, we have

Λτmσ(L̂mσ h) ≤Λσ(h)

4
Λτmσ(L̂mσ 1)

+
∑

Z∈Znσ,g

Λτmσ(L̂mσ 1)
∨
Z

h
[
B(1 + 2Cn0

ρ−n0)Λσ(1Z) + 2C?κ
m
]

+ ‖h‖∞
∑

Z∈Znσ,b

2C?κ
mΛτmσ(L̂mσ 1).

Dividing this inequality by Λτmσ(L̂mσ 1) and taking the limit m→∞ yields

Λσ(h) ≤ Λσ(h)

4
+B(1 + 2Cn0

ρ−n0)
∨
h sup
Z∈Znσ,g

Λσ(1Z)

≤

[
1

4
+ aB(1 + 2Cn0ρ

−n0) sup
Z∈Znσ,g

Λσ(1Z)

]
Λσ(h) ≤ 1

2
Λσ(h)

where we applied Lemma 9.7. This yields the announced contradiction. �

Remark 9.9. From now on we set a = max{a0, 1}.

Remark 9.10. Since T ×H is finite, there exists M > 1 such that ‖L̂1
σ1‖∞ ≤M .

Hence, by condition (C1), δ?
n ≤ inf L̂nσ1 ≤ ‖L̂nσ1‖∞ ≤ Mn for all n ≥ 0 and

σ ∈ ΣN.

Lemma 9.11. If (C3(n2, n3)) holds for some n3 ≥ n2, then there exists % > 0 such
that

inf L̂nσf ≥ %Λτnσ(L̂nσf),

for all n ≥ n3, all σ ∈ ΣN and all f ∈ Caσ.

Proof. We first remark that, by Lemma 9.8, for each f ∈ Caσ , there exists Z ∈ Zn2
σ,g

such that

inf
Z
f ≥ 1

4
Λσ(f).

Consequently, for any ` ≥ 0, we have

inf L̂`σf ≥
1

4
Λσ(f) inf

L̂`σ1Z
L̂`σ1

inf L̂`σ1.

Since condition (C3(n2, n3)) holds, one has

inf
L̂`σ1Z
L̂`σ1

≥ ε?(n2)

for all σ ∈ ΣN, Z ∈ Zn2
σ,g and ` ≥ n3, and we thus get

(9.2) inf L̂`σf ≥
ε?(n2)

4
Λσ(f) inf L̂`σ1.
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We first prove Lemma 9.11 when n = n3 and then extend it to all n ≥ n3. By
Lemma 9.6,

Λσ(f) ≥ B−1 Λτn3σ(L̂n3
σ f)

Λτn3σ(L̂n3
σ 1)

≥ B−1 Λτn3σ(L̂n3
σ f)

sup L̂n3
σ 1

.

By Remark 9.10 and (9.2) with ` = n3, we obtain

inf L̂n3
σ f ≥ %̂Λτn3σ(L̂n3

σ f),

with %̂ = B−1 ε?(n2)
4 ( δ?M )n3 .

By Lemma 9.5, L̂n0
σ C

a
σ ⊂ Caτn0σ for all σ. We thus have

inf L̂n3+kn0
σ f ≥ %̂Λτn3+kn0σ(L̂n3+kn0

σ f),

for all k ≥ 0, σ ∈ ΣN and f ∈ Caσ .
Let now n ≥ n3. We write n = kn0 + n3 + r = n′ + r with r < n0. We have

inf L̂nσf = L̂r
τn′σ
L̂n
′

σ f ≥ %̂Λτn′σ(L̂n
′

σ f) inf L̂r
τn′σ

1

≥ %̂δ?rΛτn′σ(L̂n
′

σ f)

≥ %̂δ?n0Λτn′σ(L̂n
′

σ f).

But,

Λτn′σ(L̂n
′

σ f) = lim
k→∞

inf
L̂k
τn′+rσ

L̂r
τn′σ
L̂n′σ f

L̂k
τn′+rσ

L̂r
τn′σ

1

≥M−r lim
k→∞

inf
L̂k
τn′+rσ

L̂n′+rσ f

L̂k
τn′+rσ

1

= M−rΛτn′+rσ(L̂n
′+r
σ f)

≥M−n0Λτnσ(L̂nσf).

We have thus proved the result with % = %̂( δ?M )n0 . �

Corollary 9.12. It holds true ρ ≤ 1, where ρ is defined in (6.2).27

Proof. By Lemma 9.4 and Lemma 9.11, with f = 1, we see that, for all n ≥ n3,

inf L̂nσ1 ≥ %ρn but inf L̂nσ1 ≤
∫
L̂nσ1 ≤ 1, so ρ ≤ 1. �

Remark 9.13. Since by Remark 9.10, ‖L̂nσ1‖∞ ≤ Mn and inf L̂nσ1 ≥ δ?
n for all

n ≥ 0 and σ ∈ ΣN, we have

inf L̂nσ1 ≥ %′Λτnσ(L̂nσ1),

with %′ = min{%, 1, δ?M , . . . , ( δ?M )n3−1}.

Lemma 9.14. If (C3(n2, n3)) holds for some n3 ≥ n2, then for all σ ∈ ΣN and
n ≥ n3, one has

L̂nσCaσ ⊂ Caτnσ
with finite diameter less than ∆n, uniformly in σ.

27Hence the min in condition (C2) was, a posteriori, superfluous.
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Proof. By (9.2), we have

inf L̂nσh ≥
ε?(n2)

4
Λσ(h) inf L̂nσ1,

for any σ ∈ ΣN, h ∈ Caσ and n ≥ n3 and, using Lemmata 9.5 and 9.6,

sup L̂nσh ≤ Λτnσ(L̂nσh) +
∨
L̂nσh ≤

(
1 +

a

2

)
BΛσ(h)Λτnσ(L̂nσ1).

A simple adaptation of the proof of [19, Lemma 3.1] yields

dCaσ (g,1) ≤ log

[
max {(1 + ν)Λσ(g), sup g}
min {(1− ν)Λσ(g), inf g}

]
for any g ∈ Cνaσ with 0 < ν < 1. By Lemma 9.5 L̂nσ(Caσ) ⊂ Ca/2τnσ, so we can choose
ν = 1

2 and, recalling Remark 9.10, we obtain:

diamCa
τnσ
L̂nσ(Caσ) ≤ 2 log

max
{

3
2 , BM

n(1 + a
2 )
}

min
{

1
2 ,

ε?(n2)δ?n

4

}
 =: ∆n <∞

for any σ ∈ ΣN. �

Since we are interested in functions of the form L̂nτ−nσf , we will need to consider

functions f that belong to the intersections of all the cones Caσ , σ ∈ ΣZ. For this
purpose, we introduce the family of cones

Cainf = {f ∈ BV : f 6= 0, f ≥ 0,
∨
f ≤ a inf f}.

We have Cainf ⊂ Caσ for any σ ∈ ΣZ, and thus dCaσ ≤ dCainf
by Theorem 9.1.

Lemma 9.15. There exist ν ∈ (0, 1) and a family of positive functions {hσ}σ∈ΣZ

in BV such that for all f ∈ Cainf , σ ∈ ΣZ and n ≥ 0:∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

− hσ

∥∥∥∥∥
∞

≤ C#ν
n,

and ∥∥∥∥∥Λσ(L̂nτ−nσf)

L̂nτ−nσf
− h−1

σ

∥∥∥∥∥
∞

≤ C#ν
n.

Furthermore, hσ ∈ Ca/2σ , ‖hσ‖∞ ≤ 1 + a and inf hσ ≥ % > 0 for all σ ∈ ΣZ, where
% is defined in Lemma 9.11.

Proof. Writing n ≥ 2n3 as n = kn3 + r, with k ≥ 2 and r < n3, for all f ∈ Cainf ,
σ ∈ ΣZ and m ≥ 0, we have by Theorem 9.1 and Lemma 9.14:

dCaσ (L̂nτ−nσf, L̂
n+m
τ−(n+m)σ

f) ≤ γk−2dCa
τ−(k−2)n3σ

(L̂2n3+r
τ−nσ f, L̂

2n3+r+m
τ−(n+m)σ

f),

with γ = tanh
(

∆n3

4

)
< 1.

Since both L̂n3+r
τ−nσf and L̂n3+r+m

τ−(n+m)σ
f belong to Ca

τ−(k−1)n3σ
by Lemma 9.14 again,

as f ∈ Cainf ⊂ Caτ−nσ ∩ C
a
τ−(n+m)σ

, we have, using Lemma 9.14 one more time:

dCa
τ−(k−2)n3σ

(L̂2n3+r
τ−nσ f, L̂

2n3+r+m
τ−(n+m)σ

f) ≤ ∆n3
.

Consequently, for all n ≥ 2n3, m ≥ 0, σ ∈ ΣZ and f ∈ Cainf ,

dCaσ (L̂nτ−nσf, L̂
n+m
τ−(n+m)σ

f) ≤ C#ν
n,
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with ν = γ
1
n3 .

Using Lemma 9.2 with ‖ · ‖ = ‖ · ‖∞ and `(·) = Λσ(·), we get∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

−
L̂n+m
τ−(n+m)σ

f

Λσ(L̂n+m
τ−(n+m)σ

f)

∥∥∥∥∥
∞

≤ (e
dCaσ (L̂n

τ−nσf,L̂
n+m

τ−(n+m)σ
f)−1)

∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

∥∥∥∥∥
∞

.

Since L̂nτ−nσf ∈ C
a
σ , we have

(9.3) ‖L̂nτ−nσf‖∞ ≤ Λσ(L̂nτ−nσf) +
∨
L̂nτ−nσf ≤ (1 + a)Λσ(L̂nτ−nσf),

and we deduce that∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

−
L̂n+m
τ−(n+m)σ

f

Λσ(L̂n+m
τ−(n+m)σ

f)

∥∥∥∥∥
∞

≤ C#ν
n.

This implies that
L̂n
τ−nσf

Λσ(L̂n
τ−nσ

f)
is a Cauchy sequence in L∞, and thus converges to

a function hσ ∈ L∞. Since C
a/2
σ is closed in L∞ and L̂nτ−nσf ∈ C

a/2
σ for n ≥ n0

by Lemma 9.5, we have hσ ∈ Ca/2σ . Passing to the limit m → ∞ in the previous
relation, we obtain ∥∥∥∥∥ L̂nτ−nσf

Λσ(L̂nτ−nσf)
− hσ

∥∥∥∥∥
∞

≤ C#ν
n,

for all n ≥ 2n3, and all σ ∈ ΣZ. Using the same reasoning, we have for any pair
f, f ′ ∈ Caτ−nσ,

(9.4)

∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

−
L̂nτ−nσf

′

Λσ(L̂nτ−nσf ′)

∥∥∥∥∥
∞

≤ C#ν
n,

which proves that the limit hσ does not depend on the choice of f ∈ Cainf . By

Lemma 9.11, L̂nτ−nσf ≥ %Λσ(L̂nτ−nσf) for all n ≥ n3, whence we obtain inf hσ ≥ %.
Remark that (9.3) implies ‖hσ‖∞ ≤ 1 + a. When n < 2n3, we have∥∥∥∥∥ L̂nτ−nσf

Λσ(L̂nτ−nσf)
− hσ

∥∥∥∥∥
∞

≤ M2n3

δ?
2n3

sup f

inf f
+ (1 + a) ≤ (1 + a)

(
M2n3

δ?
2n3

+ 1

)
≤ C#ν

n,

where M > 1 and 0 < δ? < 1 are defined in Remark 9.10. For n ≥ n3 and f ∈ Cainf ,

since inf hσ ≥ % and inf
L̂n
τ−nσf

Λσ(L̂n
τ−nσ

f)
≥ % by Lemma 9.11, we have∥∥∥∥∥Λσ(L̂nτ−nσf)

L̂nτ−nσf
− h−1

σ

∥∥∥∥∥
∞

≤ %−2

∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

− hσ

∥∥∥∥∥
∞

≤ C#ν
n.

We handle the case n < n3 as previously, since ‖hσ‖∞ ≤ 1 + a. �

Lemma 9.16. For all σ ∈ ΣZ, there exists λσ ≥ ρσ such that L̂nσhσ = λσ · · ·λτn−1σhτnσ
for all n ≥ 1.

Proof. Applying Lemma 9.6 with h = L̂nτ−nσ1, we have by definition of ρσ =

Λτσ(L̂1
σ1):

ρσ ≤
Λτσ(L̂n+1

τ−nσ1)

Λσ(L̂nτ−nσ1)
≤ Bρσ.
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Consequently, there exist a subsequence {nj} and λσ ∈ [ρσ, Bρσ] such that

λσ = lim
j

Λτσ(L̂nj+1

τ−njσ
1)

Λσ(L̂nj
τ−njσ

1)
.

We can now compute

L̂1
σhσ = lim

j
L̂1
σ

L̂nj
τ−njσ

1

Λσ(L̂nj
τ−njσ

1)
= lim

j

L̂nj+1

τ−njσ
1

Λτσ(L̂nj+1

τ−njσ
1)

Λτσ(L̂nj+1

τ−njσ
1)

Λσ(L̂nj
τ−njσ

1)

= lim
j

L̂nj+1

τ−(nj+1)τσ
1

Λτσ(L̂nj+1

τ−(nj+1)τσ
1)

Λτσ(L̂nj+1

τ−njσ
1)

Λσ(L̂nj
τ−njσ

1)

= λσhτσ.

The general case n ≥ 1 is obtained by a simple induction. �

Lemma 9.17. For all σ ∈ ΣN, the functional Λσ (restricted to BV) is linear,

positive, and enjoys the property Λτnσ(L̂nσf) = ρσ · · · ρτn−1σΛσ(f) for all f ∈ BV

and n ≥ 1. Moreover, λσ = ρσ and
∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥
∞
≤ C#ν

n‖f‖BV for all f ∈
BV.

Proof. For f ∈ Cainf , we can write

L̂nσf
L̂nσ1

=
L̂nσf

Λτnσ(L̂nσf)

Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

Λτnσ(L̂nσ1)

L̂nσ1
.

So∥∥∥∥∥ L̂nσfL̂nσ1 − Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

∥∥∥∥∥
∞

=
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

∥∥∥∥∥ L̂nσf
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

L̂nσ1
− 1

∥∥∥∥∥
∞

≤ ‖f‖∞

(∥∥∥∥∥ L̂nσf
Λτnσ(L̂nσf)

− hσ

∥∥∥∥∥
∞

∥∥∥∥∥Λτnσ(L̂nσ1)

L̂nσ1

∥∥∥∥∥
∞

+ ‖hσ‖∞

∥∥∥∥∥Λτnσ(L̂nσ1)

L̂nσ1
− h−1

σ

∥∥∥∥∥
∞

)
.

Since
∥∥∥Λτnσ(L̂nσ1)

L̂nσ1

∥∥∥
∞
≤ %−1 for n ≥ n3 by Lemma 9.11, we get, using Lemma 9.15,

for all f ∈ Cainf and n ≥ n3:

(9.5)

∥∥∥∥∥ L̂nσfL̂nσ1 − Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

∥∥∥∥∥
∞

≤ C#ν
n‖f‖∞.

But, Λσ(f) = limn→∞ inf
L̂nσf
L̂nσ1

by definition, and, since
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)
are constants, we

deduce that limn→∞
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)
= Λσ(f) and

lim
n→∞

∥∥∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥∥∥
∞

= 0.

Now, if f ∈ BV, we have f + c ∈ Cainf for c = (1 + a−1)‖f‖BV, so we get that

Λσ(f) = limn→∞
L̂nσf
L̂nσ1

in L∞ for all f ∈ BV, since Λσ(f + c) = Λσ(f) + c. The

linearity of Λ follows from the linearity of the limit.
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Next, as L̂1
σf ∈ BV, we know that

Λτσ(L̂1
σf) = lim

n→∞

L̂n+1
σ f

L̂nτσ1
= lim
n→∞

L̂n+1
σ f

L̂n+1
σ 1

L̂n+1
σ 1

L̂nτσ1
= Λσ(f)Λτσ(L̂1

σ1) = ρσΛσ(f).

But then ρσ = λσ is obtained by taking f = hσ, since Λσ(hσ) = 1. In particular,

we have Λτnσ(L̂nσf) = ρσ · · · ρτn−1σΛσ(f) for all f ∈ BV, so
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)
= Λσ(f).

But if we look back to (9.5), the above implies that for all f ∈ Cainf and n ≥ n3:∥∥∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥∥∥
∞

≤ C#ν
n‖f‖∞.

This can be easily extended to all n ≥ 0, since
∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥
∞
≤ 2‖f‖∞. We

can again cover the general case f ∈ BV using the fact that f + c ∈ Cainf for
c = (1 + a−1)‖f‖BV, which finally implies∥∥∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥∥∥
∞

≤ C#ν
n‖f + c‖∞ ≤ C#ν

n‖f‖BV.

�

Remark 9.18. Following closely the ideas of [20], it is possible to prove that Λσ can
be interpreted as a non-atomic measure µσ, i.e. Λσ(f) =

∫
f dµσ for all f ∈ BV,

and that the measure νσ defined by dνσ = hσdµσ satisfies (T 1
σ )?νσ = ντσ. Since we

will not make use of these facts, we leave their proofs to the interested reader.

The main properties of Λσ being proved, we can now improve Lemma 9.15 by
extending it to general functions in BV and deduce Proposition 8.1:

Proof of Proposition 8.1. By (9.4) with f ′ = hσ, for any f ∈ Caσ , we get using
Lemma 9.17∥∥∥∥∥ L̂nσf

ρσ · · · ρτn−1σ
− Λσ(f)hτnσ

∥∥∥∥∥
∞

≤ C#ν
nΛσ(f) ≤ C#ν

n‖f‖∞.

Now, if f ∈ BV, we have f + chσ ∈ Caσ for all σ ∈ ΣZ with c = 2(1 + a−1)‖f‖BV.
Indeed, since

∨
hσ ≤ a

2 Λσ(hσ) = a
2 by Lemma 9.15, we have∨

(f + chσ) ≤
∨
f + c

∨
hσ ≤

∨
f +

ac

2
,

and

Λσ(f + chσ) = Λσ(f) + c ≥ inf f + c.

So f+chσ ∈ Caσ if c ≥ 2(a−1
∨
f− inf f), which is the case for our particular choice

of c. Consequently, we have∥∥∥∥∥ L̂nσ(f + chσ)

ρσ · · · ρτn−1σ
− Λσ(f + chσ)hτnσ

∥∥∥∥∥
∞

≤ C#ν
n‖f + chσ‖∞ ≤ C#ν

n‖f‖BV,

which leads to (8.1) after simplifications, since

L̂nσ(f + chσ) = L̂nσf + cρσ · · · ρτn−1σhτnσ

and Λσ(f + chσ) = Λσ(f) + c. �
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Proof of Lemma 8.3. By Remark 9.10, we have ρσ ≤ ‖L̂1
σ1‖∞ ≤ M , and so

supσ ρσ ≤ M < ∞. The remaining statements are immediate consequences of
Lemmata 9.15, 9.16 and 9.17. �

Proof of Lemma 8.4. This follows immediately from Lemma 9.6 and Remark
9.13. �
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