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INTRODUCTION

Anticommutativity is a frequent phenomenon in the study of geometry and physics, as it arises naturally in the context of
symmetry. Two of the most prominent examples of anticommutative algebras are the exterior algebra (which is also associative)
and Lie algebras (which, in general, are non-associative). We view an n-dimensional complex algebra as a point in cr’, given
by its structure constants relative to some fixed basis. Since anticommutativity and nilpotency are closed conditions (with respect
to the Zariski topology), the subset of n-dimensional nilpotent anticommutative algebras forms an affine variety. Moreover, the
general linear group GL,,(C) acts on cn’ by changing the basis and the orbits parametrize the isomorphism classes.

In this paper, our goal is to obtain a complete algebraic and geometric description of the variety of all 6-dimensional nilpo-
tent anticommutative algebras over the complex field. To do so, we first determine all such 6-dimensional algebra structures,
up to isomorphism (what we call the algebraic classification), and then proceed to determine the geometric properties of the
corresponding variety, namely its dimension and description of the irreducible components (the geometric classification).

Our main results are summarized below.

Theorem A. Up to isomorphism, the variety of 6-dimensional complex nilpotent anticommutative algebras has infinitely many
isomorphism classes, described explicitly in Appendix|[B|in terms of 14 one-parameter families and 130 additional isomorphism
classes.

From the geometric point of view, in many cases the irreducible components of the variety are determined by the rigid algebras,
i.e., algebras whose orbit closure is an irreducible component. It is worth mentioning that this is not always the case and already
in [18] Flanigan had shown that the variety of 3-dimensional nilpotent associative algebras has an irreducible component which
does not contain any rigid algebras—it is instead defined by the closure of a union of a one-parameter family of algebras. Here,
we encounter a similar situation. Informally, although Theorem B shows that there is no single generic 6-dimensional nilpotent
anticommutative algebra, one can see the family Ago () given below as the generic family in the variety.

Theorem B. The variety of 6-dimensional complex nilpotent anticommutative algebras is irreducible of dimension 34. It contains
no rigid algebras and can be described as the closure of the union of GLg(C)-orbits of the following one-parameter family of
algebras (a € C):

Ago(a) : e1ea = €3, €163 =e4, €265 = QEg, €364 = €5, €365 = €5, €465 = €g.
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Let us mention a few similar results. In [51], Mazzola showed that the variety of n-dimensional nilpotent commutative
associative algebras is irreducible for n < 6, but not so for n = 7. For nilpotent Lie algebras, a similar phenomenon takes place:
that variety is irreducible for algebras of dimension up to 6, by [27]] and [53]], but becomes reducible in dimensions 7 and 8,
by [26].

Motivation and contextualization. Given algebras A and B in the same variety, we write A — B and say that A degenerates
to B, or that A is a deformation of B, if B is in the Zariski closure of the orbit of A (under the aforementioned base-change
action of the general linear group). The study of degenerations of algebras is very rich and closely related to deformation theory,
in the sense of Gerstenhaber [|19] (see also [[18]]). It offers an insightful geometric perspective on the subject and has been the
object of a lot of research. In particular, there are many results concerning degenerations of algebras of small dimensions in a
variety defined by a set of identities. One of the main problems in this direction is a description of the irreducible components of
the variety. In case there are only finitely-many orbits (i.e., isomorphism classes), the irreducible components are determined by
the rigid algebras—algebras whose orbit closure is an irreducible component of the variety under consideration. For this reason,
they are seen of as generic algebras in that variety.

For example, rigid algebras have been classified in the following varieties: 4-dimensional Jordan algebras [38]], 4-dimensional
Leibniz algebras [34], 4-dimensional nilpotent Novikov algebras [36]], 4-dimensional nilpotent bicommutative algebras [42]], 4-
dimensional nilpotent assosymmetric algebras [33]], 5-dimensional nilpotent Jordan algebras [39]], 6-dimensional nilpotent binary
Lie algebras [1]], 6-dimensional nilpotent Tortkara algebras [23]].

There are many results related to the algebraic and geometric classification of low-dimensional algebras in the varieties of
Jordan, Lie, Leibniz and Zinbiel algebras; for algebraic classifications see, for example, [[1,11113-16}22124]32,133|[35136142,/45];
for geometric classifications and descriptions of degenerations see, for example, [|1,3H6L[89L/11,20L21}23125/27/2833H36,[38,
39L141H53]1.

Methods. Our first and most comprehensive step is the classification, up to isomorphism, of all 6-dimensional nilpotent anti-
commutative algebras. This will be achieved via the method of central extensions stemming from [54], [29] and [31]. Every
nilpotent algebra can be constructed as a central extension of an algebra A of smaller dimension, and the isomorphism classes
of the extensions are controlled by a suitable action of the automorphism group of A on the Grassmannian space based on the
second cohomology of A with trivial coefficients.

Skjelbred and Sund [54] used central extensions of Lie algebras to classify nilpotent Lie algebras. In later works, using the
same method, all non-Lie central extensions of 4-dimensional Malcev algebras [31]], all non-associative central extensions of
3-dimensional Jordan algebras [30]], all anticommutative central extensions of 3-dimensional anticommutative algebras [10] and
all central extensions of 2-dimensional algebras [[12] were described, to mention but a few. Related work on central extensions
can be found, for example, in [2,/37,40,/55].

The class of anticommutative algebras includes all Malcev (in particular, all Lie) and all Tortkara algebras. Concerning
the latter, the algebraic and geometric classifications of 6-dimensional nilpotent Tortkara algebras have been completed in [22]]
and [23]], respectively. We will rely on this work; in particular, we will be able to proceed in our algebraic and geometric classifi-
cations modulo the class of Tortkara algebras. We will also rely on the classification of 4-dimensional nilpotent anticommutative
algebras in [10]], 5-dimensional nilpotent anticommutative algebras in [17]], 6-dimensional nilpotent Malcev algebras in [32] and
6-dimensional nilpotent Tortkara algebras in [22-24]].

Organization of the paper. We will work over the base field C of complex numbers. In Section [I] we use the action of
automorphism groups of algebras of smaller dimension on central extensions to determine the distinct isomorphism classes
of 6-dimensional nilpotent anticommutative algebras, yielding Theorem A. Then, in Section [2} we obtain the corresponding
geometric description. Our main result, Theorem B, says that the variety defined by these algebras is irreducible and determined
by a one-parameter family of pairwise non-isomorphic algebras.

1. THE ALGEBRAIC CLASSIFICATION OF 6-DIMENSIONAL NILPOTENT ANTICOMMUTATIVE ALGEBRAS

1.1. The algebraic classification of nilpotent anticommutative algebras. Let A be an anticommutative algebra, V a vector
space and Z? (A, V) = Hom(A?A, V) the space of skew-symmetric bilinear maps 6 : A x A — V. For f € Hom(A,V),
we define §f € Z2 (A, V) by the equality 6 f (z,y) = f(zy) and set B2 (A, V) = {6f | f € Hom (A, V)}. One can easily
check that B2(A, V) is a linear subspace of Z* (A, V). Let us define H% (A, V) as the quotient space Z* (A, V) /B? (A, V).
The equivalence class of § € Z2 (A, V) in H% (A, V) is denoted by [6]. As usual, we call the elements of Z? (A, V) cocycles,
those of B%(A, V) coboundaries, and H% (A, V) is the corresponding second cohomology space.

Suppose now that dim A = m < n and dim'V = n — m. For any skew-symmetric bilinear map § : A x A — V, one
can define on the space Ay := A @ V the anticommutative bilinear product [—, —] A, Dy the equality [+ 2", y+y]a ) =
xy+0 (z,y) forz,y € A, 2’y € V. The algebra Ay is called an (n — m)-dimensional central extension of A by V. It is clear
that Ay is nilpotent if and only if A is nilpotent and also that Ay is anticommutative if and only if A is anticommutative and 6
is skew-symmetric.
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For a skew-symmetric bilinear form  : A x A — V, the space 0+ = {x € A | (A, x) = 0} is called the annihilator of
6. For an anticommutative algebra A, the ideal Ann (A) = {z € A | Az = 0} is called the annihilator of A. One has

Ann (Ay) = (HJ‘ NAnn(A)) @ V.

Any n-dimensional anticommutative algebra with non-trivial annihilator can be represented in the form Ay for some m-
dimensional anticommutative algebra A, some (n — m)-dimensional vector space V and some 0 € Z? (A, V), where m < n
(see [31, Lemma 5]). Moreover, there is a unique such representation with m = n — dim Ann(A). Note that the latter equality
is equivalent to the condition §- N Ann (A) = 0.

Let us pick some ¢ € Aut(A), where Aut (A) is the automorphism group of A. For § € Z2(A,V), let us define
(¢0) (x,y) = 0 (¢ (x),¢(y)). Then we get an action of Aut (A) on Z2 (A, V) which induces an action of that group on
HZ (A, V).

Definition. Let A be an algebra and I be a subspace of Ann(A). If A = A @ I for some subalgebra Ay of A then [ is called
an annihilator component of A. We say that an algebra is split if it has a nontrivial annihilator component.

For a linear space U, the Grassmannian G4 (U) is the set of all s-dimensional linear subspaces of U. For any 0 < s <
dimH? (A, C), the action of Aut (A) on H? (A, C) induces an action of that group on G, (H?% (A, C)). Let us define

T, (A) = {W € G, (HZ (A,0Q)) 0QW9L N Ann(A) = o} :

0]

Note that, by [31, Lemmas 15 and 16], T'; (A) is well defined and stable under the action of Aut (A).
Let us fix a basis e1,...,e; of V, and 6 € Z? (A, V). Then there are unique 0; € Z2(A,C) (1 < i < s) such that

0 (z,y) = >.0; (x,y)e; forallz,y € A. Note that 0+ = 0 N5 - - -NOL in this case. If #--NAnn (A) = 0, then by [31, Lemma
i=1

13] the algeI)ra Ay is split if and only if [61], [62] ..., [0s] are linearly dependent in H% (A, C). Thus, if - N Ann (A) = 0
and A is non-split, then ([01],. .., [0]) is an element of T (A). Now, if ¥ € Z2 (A, V) is such that 9+ N Ann (A) = 0 and
Ay is non-split, then by [31} Lemma 17] one has Ay = Ay if and only if ([61], [02] , ..., [0s]), ([P1], [F2],..., [¥s]) € Ts (A)

belong to the same orbit under the action of Aut (A), where 9 (z,y) = > ¥; (z,y) e;.
i=1

Hence, there is a one-to-one correspondence between the set of Aut (A )-orbits on T, (A) and the set of isomorphism classes
of non-split central extensions of A by V with s-dimensional annihilator. Consequently to construct all non-split n-dimensional
central extensions with s-dimensional annihilator of a given (n — s)-dimensional algebra A one has to describe Ts(A), Aut(A)
and the action of Aut(A) on Ts(A) and then for each orbit under the action of Aut(A) on Ts(A) pick a representative and
construct the algebra corresponding to it.

We will use the following auxiliary notation during the construction of central extensions. Let A be an anticommutative
algebra with basis ey, eg,...,¢e,. Forl < i # j < n, A;; : A x A — C denotes the skew-symmetric bilinear form
defined by the equalities A;; (e;,e;) = —Ayj (ej,e;) = 1 and A;; (eg, e,,) = 0 for {I,m} # {4, j}. In this case, the A;; with
1 <4 < j < n form a basis of the space 72 (A, C) of skew-symmetric bilinear forms on A.

We will often use the symbols V; to represent a basis of H% (A, C). Given an element § = >, ;V; € H% (A, C), with
«; € C, and an automorphism ¢ € Aut (A), we will write ¢0 = ). ' V;. The coefficients o] are easy to compute: identifying
¢ and 6 with their corresponding matrix representations with respect to some fixed basis of A, we deduce that the matrix
representation of ¢6 in that basis of A is just ¢7 ¢, from which the o} are readily determined. Below, we omit the details of
those computations.

The description of the multiplication of a given n-dimensional anticommutative algebra A is given in terms of the distin-
guished basis e, es,...,e,. We omit the products of basis elements which either are zero or can be deduced from the anti-
commutativity of the algebra. Unless otherwise stated, all matrices involving A are taken with respect to this distinguished
basis and the automorphism group of A is described in terms of the matrices of its elements. If no additional conditions are men-
tioned, the variables in these descriptions may take arbitrary complex values, subject only to the restriction that the corresponding
determinant is nonzero. The details of the computations of the automorphism groups are omitted.

We will make use of previous work on the algebraic and geometric classification of certain classes of anticommutative alge-
bras. An important such class is that of Tortkara algebras. These are anticommutative algebras satisfying the identity

(ab)(cb) = J(a,b,c)b, where J(a,b,c) = (ab)c + (be)a + (ca)b.

The algebraic classification of all 6-dimensional nilpotent Tortkara algebras was completed in [22] and their geometric classi-
fication was obtained in [23]]. Therefore, our classification of anticommutative algebras will be carried out modulo the class of
Tortkara algebras. Malcev algebras form another important class of anticommutative algebras which includes all Lie algebras.
We will thence use the following notation:



A; the jth 4-dimensional nilpotent anticommutative algebra,
Aj;  the jth 5-dimensional nilpotent anticommutative algebra,
A; the jth 6-dimensional nilpotent anticommutative non-Tortkara algebra,
M the jth 6-dimensional nilpotent Malcev-Tortkara algebra,

=

;  the jth 6-dimensional nilpotent Tortkara non-Malcev algebra.

The subspace Z2 (A, V) of cocycles § € Z% (A, V) such that Ay is Tortkara determines the second cohomology space
H2 (A, V), which we view as a subspace of H% (A, V). In case V = C we simply write these spaces as H% (A) and H? (A).

1.2. The algebraic classification of 6-dimensional split nilpotent anticommutative algebras. Thanks to [17], we have only
one (non-Tortkara) algebra of this type:

Apo: elea =e3, erez =eq, ezeq=es.

It is easy to see that any 6-dimensional nilpotent anticommutative algebra A such that dim Ann (A) > 3 is necessarily split.
Thus, it remains to consider non-split algebras having an annihilator of dimension 1 or 2.

1.3. The algebraic classification of 6-dimensional non-split nilpotent anticommutative algebras with 2-dimensional anni-
hilator. Thanks to [[10]], we have the classification of all nontrivial 4-dimensional nilpotent anticommutative algebras.

[ A | Multiplication table | H7(A) | H(A) ‘
Agr | e1e2 = e3 ([A13], [A14], [Aas], [A24], [As4]) | HZ (A1)
Ags | erea = es,ere3 = eq | ([Ara], [Aas], [As4]) H%(Am) @ ([Asz4])

In view of [24], all anticommutative central extensions of A; and of the 4-dimensional trivial algebra are Tortkara algebras,
so we need only consider central extensions of As.

1.3.1. 2-dimensional central extensions of Ags. Let us use the notation

Vi = [Au], Vo = [Ax], Vi = [Ay], Vi = [Az4]
Take 6 = 3., a;V; € H% (Ago). If
z 0 O 0
|y =z 0 0
¢ = w v oz 0 EAut(Aog),
h g zv z°%z
then ¢ = 37| aV;, where
af = 2%2(qr + azy + agu),
oy = zz(aez — aug) + ve(asz + agv),
af = 2%z(azz + ag),
af = oagrd

Consider the vector space generated by the following two cocycles

Ql = 051V1 + OZQVQ + OZ3V3 + V4,
b2 = p1Vi+ B2Va+ B3Vs.
Choosing u = — (12 + agy), g = asz,v = —asz, we get ¢(01) = (V4). Furthermore,
(1) if B3 # 0, then we can suppose that Bgﬂgl = ag, which gives 85 = 0. Choosing now y = fﬂlﬁglx, we get the
representative (Vs, V4);
(2) if B3 = 0and By # 0, 31 # 0, then choosing z = BE:Q we get the representative (V1 + Va, V4);
(3) if B3 = 0 and 5 # 0, 81 = 0, then we get the representative (Vo, V4);
(4) if B3 = 0and 53 = 0, 81 # 0, then we get the representative (V1, V).
It is easy to see that the 4 subspaces above are elements of T5(A(2) and that they determine distinct orbits under Aut(Aqz).
Thus, we have the following algebras:

Agr 1 ejex=e3, eilez3 =e4, ezeq=e5, ezeq = €g;
Aga 1 ere
Ags 1 ejea=e3, erez3=ey4, eze3=-e5, e384 = €g;
Aoy : erex =e3, ejez3 =ey4, €164 =€5, €364 = €q.

€3, €1€3 = €4, €164 = €5, €263 = €5, €364 = €¢q;
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1.4. The algebraic classification of 6-dimensional non-split nilpotent anticommutative algebras with 1-dimensional anni-

hilator. Thanks to [17] we have the algebraic classification of all nontrivial 5-dimensional nilpotent anticommutative algebras.

[ A | multiplication table | HE(A) | H%(A)
(o] [au oy &) [ man
PO N [ - L R e
oo | exea—eveis=eo | (R (anifany )| e @ ()
Aoa ZZ; _ 22’ e < [Ara]; [Ars], [Aza], [Ass] > H7 (Aoa) ® ([Asal, [Ass], [Ass])
s | rea=eveses=es | (a ) o (a] )| HE)
I R L~ e R I L .
Aoz | ere2 = e3,e3e4 = €5 < [A13], [A1a], [Ag3], [Azd] > H3 (A7) @ ([Ais], [Azs], [Ass], [Ass])
Aos ZZ z EZ’ e = e < [A15], [Ass], [Asa], [Ass] > Hi (Aos) @ ([Asa], [Ass], [Ass])
Agg | 1270010 =0 | ([Awal, [Ars). [, [Ans] ) HE (Agy) @ ([As4], [Ags)], [Ass))
Ao Z;Z z Z? cres = e < [A14], [Azs], [Aga] + [A1s] > H3(A10) @ ([A1s], [Ags], [Ass], [Aus])
An z;i _ 22’ aeTe - ([Aral; [Ars], [Ags], [Aza], [Ass], [Ass), [Aas])

1.4.1. 1-dimensional central extensions of Ago. Let us use the notation

Vi=[Au), Vo =[A5], Vs = [Ag3], V4 = [Ag], Vs = [Ags], Ve = [Ass], V7 = [Ays], Vs = [Asz4].

The automorphism group of Ag2 consists of the invertible matrices of the form

x 0 0 0
f y 0 0
o=|lu v zy O
h r xv 2%
t g O 0

0

N~ O O

8
Notice that we must have det ¢ = z4y32 # 0. Let § = Zle a;V; € H% (Ap2). Then ¢0 = > a}V;, where

22y(zaq + fay — tag + uag),

i=1

xlog + zzas + flag + zfas + zuag + (zh — t)ar + ulas,
z(y?as + vyay — ygoag — vgar + (V2 — yr)ag),

:CQy(ya4 — gaz +vag),

lyay + zyas + zvag + (2r — lg)ar + viag,

x(yzag + vzar + lyag),
22yzo,
3y’ ag.

We are interested only in those 6 with ag # 0, so we can assume that g = 1. We have the following cases:

(1) a7 # 0. Choosing | = —W7 v = —yay + gag, u = —za; — fay + tay, v = yaz — gag and h =

rzajas+fagas—tagar—raz—fas

a7

we have the representative (a3 Vs+aiV7+a§Vs), where af = (—asas+azar+as)yz.

(a) If —ayag + agar + as # 0, then choosing z = %, T = ,/%W we have the representative (V5 +

V7+Vg>.

(b) If —aya + asar + as = 0, then choosing, z = z—f, we have the representative (V7 + Vg).
(2) a7 = 0. Choosing | = —zag, v = —yay, r = yas — gag, u = —xay — fay we have the representative (a3 Vs +
aiVs + agVs), where a3 = ((a5 — auag) f + (a2 — aqag)z)z and of = (a5 — asae)yz.

(a) If a5 — agag # 0 then choosing z = usf;ji% f = _%, we have the representative (V5 + Vsg).
z2y2

(b) If a5 — agag = 0 and as — ajag # 0, then choosing z =

az—aiag’

we have the representative (Vs + Vg).



(c) If a5 — agaq = 0 and s — ;g = 0, then we have the representative (V). Note that this space is not in T (Ag2)
because e5 € Vg N Ann (Agz). It gives an anticommutative algebra with 2-dimensional annihilator, which was
already found above.

Summarizing, we obtain the following representatives: (Va + Vg), (V5 + V7 4+ Vg), (V5 + Vs), (V7 + Vs). All of them
belong to distinct orbits. The corresponding algebras are:

Ags @ e1ep=e€3, e1e3=eq, €165 =65, €364 = €;
A06 i €162 = €3, €1€3 = €4, €265 = €5, €364 = €, €4€5 = €¢;
AO? t €162 = €3, €1€3 = €4, €265 = €5, €364 = €g;
AOS I €1y = €3, €1€3 = €4, €364 = €, €4€5 = €4.

1.4.2. 1-dimensional central extensions of Ags. Let us use the notation
Vi =[A14], Vo = [A15], V3 = [Ags], Vi = [Ao4], V5 = [Ass], Ve = [Asza], V7 = [Ass], Vs = [Ays].

Take 6 = Z?Il a;V; € qu (Aps). The automorphism group of Ags consists of the invertible matrices of the form

z 0 0 0 O
u v w 0 0
¢=1|p g r 0 0
h k | zv 2w
a b ¢ xq xr

8
Notice that we must have det ¢ = 23 (vr — wq)? # 0. Then ¢0 = 3 a}V,, where

i=1
a] = vx(anx + agu + agp) + qx(ase + asu + arp) + (gzh —vza)as,
a5 = wr(ax + agu + agp) + ra(asx + asu + azp) + (reh — wza)as,
of = (v + agq) — k(agw + agr) + c(asv + arq) — blasw + azr) + (rv — qw)ag + (ck — bl)as,
o = vx(agv + agq) + qr(asv + azq) + (qrk — vad)as,
ai = wr(ov + asq) + re(asv + azq) + (rek — wzb)as,
ag = vr(ogw + aer) + qr(asw + azr) + (qrl — vac)as,
o = wr(oagw + agr) + re(asw + arr) + (rel — wee)as,

o = 2%(vr — wq)as.

We are interested only in those 6 with ag # 0. Consider af = «F = 0 as a linear system in [ and c. Its determinant is

az?(vr — wq) # 0. So, we can find [, ¢ such that of = o = 0. For the same reason, we may find k&, b such that o = o = 0

and h, a such that o] = a3 = 0. Thus, we may suppose from the very beginning that &3 = oo = oy = a5 = ag = oy =0,
ag #0.Choosinga=b=c=h=k=[l=0wehavea] =aj =af =af =af =af =0and

af = (vr — wq)as,

o = 2% (vr — wq)as.

Thus, we have two representatives: (Vg) and (V3 + V), depending on whether a3 = 0 or not.
The algebras corresponding to (V3 + Vg) and (Vg) are:

Agg 1 erea =ey4, erez=e5, exe3=cq, €465 = €¢;
Ap 1 erea=ey4, erez=es5, ege5 = cs.

1.4.3. 1-dimensional central extensions of Ag4. Let us use the notation

Vi =[Awul], Vo =[A5], V3 =[Ag], V4= [Ag], Vs =[Asz4], V6 = [Ass], V7 = [Ays].

The automorphism group of Aoy consists of invertible matrices of the form

0 0 0
0 0 0
Tz —Yv 0 0

xh —yu z(xz —yv) y(zz —yv)
vh—zu v(zz—yv) z(zz—yv)

©-

Il
+ —~ 2 e 8
Q 3 T
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Thus, we must have det ¢ = (22 — yv)® # 0. For§ = 3.1, a;V,; € H% (Aos), we get ¢ = 3 aV;, where

=1

af = (vz—yv)(v(zas +vay + uag + lar) + z(xar + vag + uas — taz)),
ay = (vz—yv)(z(vag +vay + uas + lar) + y(rag + vag + uas — taz)),
o = (rvz—yv)(z(yar + zas + has — gar) + v(yas + zag + hag + rar)),
a; = (rz—yv)(y(yoq + zag + has — gay) + z(yas + zay + hag + raz)),
arf = (vz—yv)*(ras + vag + uay),

af = (rz—yv)*(yas + zag + hay),

o = (02— yo)?

Q.
We are only interested in cocycles with (
‘We have several cases to consider:

5, a6, a7) 7 (0,0,0). Note that this condition is invariant under automorphisms.

. —-1/3 5 aZ—ajar —a
(1) a7 # 0. Thenchoosingz =0,z =0,v =1,y = —a; "7, u = 72—3, h = ﬁ, g = 5a7/3 , T = 0‘20‘;7/‘;50‘6,
7 7 7
2
Q307 —Q5Q _ OQg—agary .
t= Qs 70@ 826 [ — =6 az o we get the representative (V7).
(2) a7 = 0 and o # 0. Then taking z = _% we can make oy = o = 0, so we shall suppose that a7 = o = 0 and
as # 0 from the very beginning.
2/7 1/7
. @ «@ — e —
(@) If ay 7£ 0, then choosing x = §/7a y=0,z= 2/73 V= - 5/(;[23/75 h = %?7 %‘?77 U = a2?/37 ?‘01/0;45 we get the
a5 a4 a4 QS a4 DLS « 065

representative (V4 + V).

(b) If ay = 0 and s # 0, then choosing x = g—i, y=0v=02=1u= faé—‘g?, h = ,%g’ we get the
representative (Va + V).

(c) fay =0and ay = 0, then e5 € - N Ann (Aos) so we get an algebra with a 2-dimensional annihilator, which we

have already listed.
The algebras corresponding to (Vo + V5), (V4 + V5) and (V7) are:

A1r 1 ejea=e3, eijez3=ey, e1e5=¢cs, €283 =€5, €364 = €}
Ajp 1 erea=e3, erez3=eyq, ezez3=e;5, eze5=¢cg, €364 = Cg;
A1z : ejeg =e3, ejez=eq, eze3=e5, eqe5 = €G-

1.4.4. 1-dimensional central extensions of Agg. Let us use the notation
Vi =[A13], Vo = [A14], V3 = [A15], Vi = [Ao4], V5 = [Ass], Vs = [Asza], V7 = [Ass], Vs = [Asgs].

The automorphism group of A consists of invertible matrices of the form

T p 0 0 0
0 vy 0 0 0
p=1z t zy -py 0
q r 0 y? 0
s h ar—yz—pg f ay?

8
So, we must have det ¢ = x3y5 # 0. For 6 = Zle ;V; € H? (Aos), we get ¢ = > a}V;, where
i=1

of = zylonz — agq — ags) — (pg — re + yz)(azz + arg + agz),
ab = xy(agy — 20ap) + fraz +y(pg + re + yz)as + (fq — sy°)ar + (psy + hay + f2)as
+ (pq — rz +yz)(asp + asy + arr + ast),

o = zy*(azr + arqg + agz),
o = py(asy — a1p) + aa fp + asy® + as fy +y(pr + ty)as + (fr — hy*)ar + (hpy + ft)as,
ai = xy*(asp + asy + arr + ast),
ag = y(ay’as + (pg — re +yz)(ary — asp) + fras),
a; = zy’(ary — asp),
oy = *yPasg.

We are only interested in those 6 with ag # 0, so for simplicity we assume that ag = 1. Choosing p = a7y, t = —(azr +
azary+asy), 2 = —(azz+azq), f = —aey?, s = a1 —agq, h = (azae + 201 ar — )y — i we obtain the representative

(afVa4+aiVsg), where af = (aaar+ oy —azagar —aia? —asag)y®. Hence, we have two representatives (V) and (V4+Vs)
depending on whether a7 + ay — asagay — ozwz% — asag = 0 or not.



The algebras corresponding to (V4 + Vg) and (V) are:

Ay 1 erea =e3, ejeg =e;5, eze3=e5, €2e4 =€, €365 = €g;
Ais 1 erep = €3, €164 = €5, €263 = €5, €365 = €g.

1.4.5. 1-dimensional central extensions of Ag7. Let us use the notation

Vi =[A3], Vo = [A14], V3 = [Ag3], V4 = [Ag], V5 = [A15], Ve = [Ags], V7 = [Aszs], Vs = [Ays].

The automorphism group of A7 consists of the invertible matrices of the form

T Yy 0 0 0

z v 0 0 0
¢=10 0 zv—yz w 0

0 0 0 t 0

roq 0 h  (xv—yz)t

8
So, we must impose the condition det ¢ = (zv — y2)3t2 # 0. For § = 25, a;V; € H% (Ao7), we get ¢ = 3 ¥V, where
i=1

a7 = (v —yz)(rar + zas — ray),

ay = txag +tzag + hras + hzag + w(xay + zag — ray) — rtas,
oy = (vr—yz)(yoq +vag — gay),

af = tyas + tvay + hyas + hvag + w(yag + vas — gar) — gtas,
af = tlvr —yz)(ras + zas),

af = tlvr—yz)(yas + vag),

ap =tz —yz)’or,

af = tlvx —yz)(war + tag).

We are interested in cocycles with (a5, ag, az, ag) # (0,0, 0, 0). There are several cases to consider:

(1) ar #0.
(@) (as,a6) # (0,0). Then we may assume that a5 # 0. Choosing z = 0,y = —g%, v = 52, r = %%, ¢ =
Oésasa;galaa, W= 7%, h= % we have the representative <a§37;x2v4 + V5 + V7), where

CK* = Q457 — Qlalgi7 — 3508 + (X1 QgQg.
Hence, we have two representatives (V4 + V5 + V7) and (V5 + V7) depending on whether o* = 0 or not.
() (as,a6) = (0,0). Choosing # = 0, w = — 28 p = 2 q = %70‘3”, we have the representative (a5Vs +
aiVy + a3Vy), where

tz
oy = (auar — asag)—,
oz

t
o) = ((agar — azag)v + (agar — alag)y)a—,
7

2.2
ar =ty z"az.

1 g — Qa7

(1) agar — azag # 0. Then choosing v = T

<V2 + V7>.
(ii) agar — asag = 0. Then we have two representatives (V) and (V4 + V) depending on whether sy —
aiag = 0 or not.

z = 0‘40‘7;;“3“8 and y = 1, we obtain the representative
7

(2) a7 =0.
(a) ag # 0 and (as,a6) # (0,0). Then we may suppose that ag # 0. Choosing any x, z such that asx + agz #
0, v = —7%5, t = “X“"aﬂ and the values of r and ¢ such that o5 = «} = 0, we have the representative

s
<Oé’fV1 + a§V3 + Vs + V8>, where

(12 + agz)as

* _
M= (asw + ag2)2

* (041016 - 04305)0481/
Oé3 =

(a5 + apz)%ag

(i) a1ag — azas # 0. Then we can choose x, z such that a;x + a3z = asx + agz = ag # 0. For these values
of v and z and y = ﬁ, we obtain the representative (V1 + V3 + V5 + V).

(il) a1 —agas = 0. Then we have two representatives (V5 + Vg) and (V1 + V5 + Vg) depending on whether
as = 0 or not.



(b) ag # 0and (s, ) = (0,0). Choosing ¢ = Lyittyaetvwastivas apg . — wrogtivastwzastizos we have the

tasg tasg
representative (aiV1 + a3 Vs + a§Vs), where

o) = (vr — y2)(arx + asz),
s = (vr — yz)(asv + a1y),

af = (v — yz)agt?.

(i) (a1, as3) # (0,0). Then we may assume that ag # 0. Choosing x = 0, y = a3, v = —vg and z = aas—f, we
get the representative (V1 + Vg).
(i) (a1, a3) = (0,0). Then we have the representative (Vsg).
(c) ag = 0. Then (a5, ag) # (0,0). We may suppose that cg # 0.
(1) asas —ajag # 0. Then we will choose x, z such that ayz + a3z = a5z + gz = azas — ajag # 0. Take

y = —ag and v = as, so that af = 0. Considering a5 = oj = 0 as a linear system in & and w, we see that it
. . t — t —
has a unique solution h = (raa—azas) o, Hazas—asa
Q35 — Q1 (g

<V1 + V3 + V5>.
.. o . __ yas o _z(waga5+ta2a6)+z(woc3a6+toz4a6)
(i) azas = ajag. Choosing v = e and h = Y ey

asz + agz # 0, we obtain the representative (ajV1 + af V4 + afVs), where

S 5). Finally, taking ¢ = 1 we have the representative
305 — 1 Qp

, for any z, z such that

. yas(zas + zag)?
o = — P) )
g
. tylanas — agors)
044 == 5
(675
o — ty(zas + za)?
5 T e
(A) as # 0and asag = agas. Then we have the representative (V1 + V).
(B) a3 = 0and asag = agas. Then we have the representative (V).
(

(C) a3 # 0and asag # agas. Then we have the representative (Vi + V4 + V).
(D) as = 0and asag # agas. Then we have the representative (V4 + V).

Analyzing the representatives found above, we see that Orb(Vy + V7) = Orb(V4 + V7). The rest of the representatives
belong to distinct orbits. These are (V1 + Vs + V5), (V1 + Vs + Vs + Vs), (V1 +Va+Vs5), (V1 +V5), (Vi + V54 Vs),
(V1i4+Vs), (Va+ V7)., (Vi + Vs5) (Va4 V5 4+ V1), (Vs), (Vs + V1), (V5 + Vs), (V7). (Vs). The corresponding algebras
are:

Aig : ejea=e3, ele3=e, ere5=¢€g, €263 =e€g, €364 = C5;
A7 1 ejex =e3, eijez3=eg, e1e5 =65, €283 =€5, €364 = €5, €465 = C¢;
Ajig : erea=e3, ere3=eq, ere5=ceg, €264 =C€g, €364 = C5;
Ajg 1 erex =e3, ere3=eg, e1e5=c¢eg, €364 = €55

Aoy 1 ejex =e3, eiez3=eg, €165 =c5, €364 =€5, €465 = €g;
Ay 1 ejex =e3, eje3=eg, e3ze4=e5, e4e5 = cg;

Agy 1 ejex =e3, eieq =eg, eses =e5, e3e5 = €g;

Aoz 1 ejex =e3, eies =eg, eze4 =e, €34 = e€5;

Aoy 1 ejea =e3, eies =eg, ezeq4 =eg, e384 =€5, €365 = €;
Ags 1 e1ex =e3, ejes =eg, €364 = es;

Ags : ejex =e3, eres =e5, e3zeq4=e5, e3¢5 = Cg;

Ao7 1 ejex =e3, eies =eg, eseq4=e5, €465 = €g;

Agg : erea =e3, ezeq =e5, ezes = eg;

Agyg 1 erexa =e3, ezeq=e5, eqe5 = cg.

1.4.6. 1-dimensional central extensions of Ags. Let us use the notation
Vi =[A15], Vo = [Ag3], V3 = [Any], Vi = [Ass], V5 = [Asy], Vs = [Ass5], V7 = [Ays].

The automorphism group of Agg consists of the invertible matrices of the form

z 0 0 0 0
z y O 0 0
¢=1t p zy O 0
g r xzp 2%y 0
h s ar z?p 23y
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7
So, we must have det ¢ = z7y* # 0. For § = ZZ:1 a;V; € H? (Aos), we get ¢ = > a}V;, where
i=1

af = 2y(rai + zay + tag + qar),

a; = z(ylyag —ras — sag) + r(yas + pag + raz) + p(yas + pas — sar)),
a3 = 2*(p(yaa + pas +rag) +y(yas + pas — saz)),

af = 2y(yay + pag +raq),

oaf = 2*(yPas + pyas + pPar — ryaz),

of = z'y(yas +pag),

ar = 2%ylar.

We are interested only in those cocycles with (a5, ag, a7) # (0,0,0).

3 2
. — —2

1) ar 7§ 0. Then choosmg p = 71}0({176’ r = y(f;s, qg= 7:1:a1+200;4+ta6’ s = y(ag—asasar a3a5aaa7+a3a7) we have the
: : : El

representative (a5 Vo + o V4 + a3 V7), where

2
zry
ay = ——(agas — azag + asar),
az
2

73

= o (uar + asar — a%).

(a) aray + aras — ag # 0. Then we have the family of representatives (a«Va + V4 + V) of distinct orbits.
(b) aray + azas — a2 = 0. Then we have two representatives (V7) and (Vo + V7) depending on whether aqas —
asog + asar = 0 or not.

3 2 2
_ : _ _ zaitza __ yas _ ylag—aszasastazag)+rog(as—2as)
(2) a7 = 0 and ag # 0. Then choosing ¢ = —Ehp = s = agﬁ £ , we have the
representative (a3 V3 + aj V4 + afVe), where
2,2
x_ 1Y
ay = (azas — u5),
o]

o = 23y*(ay — as),

* 4.2
o5 =2 Y 0.

(a) a4 # as. Then we have the family of representatives («Vs + V4 + Vi) of distinct orbits.
(b) a4 = . Then we have two representatives (V) and (V3 4+ V) depending on whether and aycvs = aizavg or not.
(3) Q7 = 0,046 :Oanda5 750
2 2
(@) a5 # *as. Then choosing p = —;¥¢%- and r = y(?;f‘f;f;fgz:tﬁg )
aiVa+ afVs), where

, we have the representative (a7V7 +

3
o = zy(zay + zay),
* 3,2
Gy =T Y Qy,

o = 3y as.

(1) a4 # 0. Then we have the family of representatives (V4 + V5>a€{07i1} of distinct orbits.
(ii) gy = 0and ay # 0. Then we have the representative (V1 + V).
(iii) a4 = 0 and @3 = 0. Then we have the representative (V) which will be joined with the family (V4 +
Vs5)ag{o,+1}-

(b) a5 = avy. Then by choosing z = — %+ and p = — 4§32

5o we have the representative (a3Va + o} V4 + a5 Vs), where

2
* 2
a5 = — (dasay — Qs
2 4&4( 3)7
3,2
oy =2y oy,

af = 3%y,

(i) 4azay — a3 # 0. Then we have the representative (Vo + V4 + V5).
(ii) 4agay — a2 = 0. Then we have the representative (V4 + V5) which will be joined with the family (aV4 +

Vs)ag{o,41}-



(¢) a5 = —ay. Then by choosing z =

atVs), where

90041 and r = P 4 — gyzz pycas

*x _ 2 2
Oég—IyOég,

* 3,2
Qy = T7Y Oy,

* 3.2
of = —2°Y oy.

(i) a3 # 0. Then we have the representative (V3 — V4 + V5).
(i) @3 = 0. Then we have the representative (—V, + V5) which will be joined with the family (aV4 +

V5)ag{0,41}-

11

we have the representative (a3 Vs + a3 V4 +

Summarizing, we obtain the following representatives: (V1 + V5), (Vo + V4 + V5), (aVa + V4 + V7)), (Va2 + V7),
(V3 — V44 Vs), (aVs + V4 + Vi), (Vs + Vi), (aV4 + V5), (Ve), (V7). All of these representatives belong to distinct
orbits. The corresponding algebras are:

Az ©oeren
Az Lo €162
Agz (a) Ioe1€e2
Asz3 ©oerep
Aszy ©oerer
Ags(@) @ eres
Asg ©oeren
A37 (a) Ioe1€e2
Asg ©oerer
Aszg ©oeren

€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,

€1€3
€1€3
€1€3
€i1€3
€i1€3
€1€3
€i1€3
€1€3
€i1€3
€163

1.4.7. 1-dimensional central extensions of Agg.

Vi =[A14],Va =[A5],Vs =

The automorphism group of Agg consists of the invertible matrices of the form

SR"W Ny

= €4,

€4,

= €4,

= €4,

= €4,

= €4,

= €4,

= €4,

= €4,

€4,

€1€4
€1€4
€1€4
€1€4
€164
€1€4
€1€4
€1€4
€164
€1€4

= €5,
= €5,
= €5,
= €5,
= €5,
= €5,
= €5,
= €5,
= €5,

= €5,

€165
€2€3
€2€3
€2€3
€2€4
€2€4
€264
€2€5
€3€5
€4€5

Let us use the notation

[A24], Va = [Ags], Vs = [Ass], Ve = [As5], V7 = [Ays].

o

8
[

» QT+

2?4 xq+yt y+*t =z

0
0

T

3

xt

€6, €364 =

€6, €2€5
Q€g, €265
€6, €465
€6, €265

G€g, €2€5
€6, €3€s5
eg, €364 —
€6;

€.

0

0

xT

4

0
0
0
0

5

7
Thus, det ¢ = 215 # 0. For 6 = 31_, o, V; € HZ (Ago), we get ¢ = > o V;, where
i=1

af = 23(qas + sag) + 22(t + 2y)(zas + yay + zap + pag)—

€6;
€6,
€6,
€6;
—€g,
€6,
€6;
€6;

€3€4 = €¢;
€4€5 = €6,
€3€4 = €¢;
€3€5 = €63

(qr +ty — 2%2)(2%ay + tag + qar) + 2* (vay + yas + zas — ray) — tr(x?az + tas — saz),

S o O
[S1E
I

(
(2
* 3(
(a2
90

Q
=y
I

a7 == Q.

We are only interested in cocycles with (as, o, a7) # (0,0,0
(1) a7 # 0. Then choosing y = 0, t = —

_ =z 2
p = 073(044046047 + asae0r — Qa0

representative (V7).

ay = 2°(vag +yay + zag + paz),
t + zy)(z2ay + tag + qar) + vt (2 az + tas — saz),
2oy + tag + qa7)

as + t2ar + 2% (tag — qar) + 23 (yas + zar)),
xag + tay),

DLGI2
a7

“ap)r -

E

2

oF

(2) a7 = 0 and ag # 0. Then choosing ¢ = 0, t =

%2(2044015 — a4a5 — 203004006 + o + azasg —

~—

a4z

* 1'6
af =
Qe
af = 8.

Y =
2

(¢ — asar), 2z =

073 (a502 — 2040507

a%(ozg — aqar — asar), § =

(053047 - a5a6)

\1

— atar + azagar + a1a7), we have the

Z (a4 —as), 2 = %(a4a5 — g — a3), s =

7(0530‘6 - 0!4045),

&) we have the representative («

a3Vs + afVe), where

Then we have two representatives (Vg) and (V3 4+ Vi) depending on whether azag — g5 = 0 or not.
(3) a7 =0,a = 0and a5 # 0.
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(a2—ag)a? o?

astas 1T oay(astas)(as—oas)
3a2a3ai + agai + alai — 2a00304005 + 2a1a§a5 — agagag + a1a4a§) we have the family of representatives
(V4 4 Vs)ago,+13 of distinct orbits.

(b) a5 = ay4. Then choosing y = —%f, t = %

(a) a5 # *ay4 and ay # 0. Then choosing z = 0, y = — 2% ¢ =

Qg

(a30f —

(az — a3), z = —g5 (a3 — 6azas + a3 + 4agay), we have the
4
representative (V4 + V) which will be joined with the family (aVy + V5)ag(o,+1}-

_ a3

(¢) a5 = —ay. Then choosingt =0,y = e

22 .
q= ;Tﬁ (14 — azarg) we have the representative (s Vo +afVy +

atVs), where

* 6
Qg = (OQ - O[3)$ ’
af = aur’,
af = —ayx’.

So, we have two representatives (V4 — V) and (Vs + V4 — V) depending on whether oo = a3 or not. The
representative (V4 — V) will be joined with the family (aV4 + Vi) ag(0,4+1}-

. - 2 2 .
(d) a4 = 0. Thenchoosingy =z =0,t = —%, q = Z3(azaz—ajas), we have the representative (a3 Vo +a3Vs),
5
where
ay = aga’,
*x 7
af = asz’.

So, we have two representatives (V5) and (Va + V5) depending on whether a; = 0 or not. The representative
(V) will be joined with the family (V4 + Vs5)agf0,41}-

Summarizing, we obtain the following representatives: (Vo + V4 — V5), (Vo 4+ V5), (Vs + Vi), (aV4 + V5), (Vs), (V7).
All of these representatives belong to distinct orbits. The corresponding algebras are:

Ay . €162 = €3, €1€3 = €4, €164 =E€5, €165 = €5, €203 = €5, €2€5 = €6, €364 = —€g;
Ay . €162 = €3, €1€3 = €4, €164 = €5, €165 = €, €263 = €5, €3€4 = €63

Ay I e1ep = €3, €163 =€y, €164 =€5, €263 =€5, €284 = €5, €365 = €g;

Ays(a) : erea =e3, ejez3 =eyq, ejeq =e5, €2€3 =e€5, €265 = Qg €364 = €6;

Ay : elep =e3, e€1e3 =e4, €164 =€5, €263 = €5, €365 = Cg;

Ays i eiep =e3, €13 =e4, €164 = €5, €263 = €5, €4C5 = Cg.

1.4.8. 1-dimensional central extensions of A19. Let us use the notation

V1 = [A14]7 VZ = [A23]7 v3 = [A15} + [A34]7 V4 = [A15]7 VS = [A25]7 VG = [A35]7 v7 = [A45]~

The automorphism group of A;( consists of the invertible matrices of the form

x 0 0 0 0
0y O 0 0
o=12 0 ay 0 0
p g 0 z*¢y 0
r h —yp 0 222

7
Thus, det ¢ = 2545 # 0. For 6 = 31_, a;V; € HZ (A10), we get 98 = 3 aV;, where

i=1
af = 2%y(zay + zaz —raq),
a3 = wzy(yas —qas — hag) — py(yas + qaq),
of = a%y(vas+par),
af = 2%y} (vas + zag),
ap = 2’y (yas + qar),
of = 33,
oy = ztyPar.

We are only interested in cocycles with (ay, as, ag, a7) # (0,0,0,0).

(1) a7 # 0 and ag # 0. Then choosing v = 5%,z = — %4, p = — 2% h = ylagastasar) o zartzas oo U9 g

ag ar ! agar ar ar

have the representative (Vg + V7).
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(2) ay # 0 and ag = 0. Then by choosing ¢ = —%, p=-52r= %7 we have the representative (a3Vsa +
iV + arV7), where
2

oy = a—7(a2a7 + azas),

oy = 3%y,
o = 2'y3an.
(a) asar + asas # 0and ay # 0. Then we have the representative (Vo + V4 + V7).
(b) asar + azas = 0 and ay # 0. Then we have the representative (V4 + V7).
(¢) asar + agas # 0and ay = 0. Then we have the representative (Vo + V7).
(d) asar + asas = 0 and ay = 0. Then we have the representative (V7).
(3) ay = 0 and ag # 0. Then choosing z = —%, h = W, we have the representative (afV1 + a3Va +
a3Vs + afVs + a5 Vi), where

3
x
ay = —y(oqozg — azay),
(73
ay = (qras + pyas — xyas)(x — 1)y,

* 3,2
Q3 =2 Y a3,

(a) ayag — agay =0, a3 = 0and oz = 0. Then choosing 2z = 1 we have the representative (V).
(b) ayag —aszay =0, ag3 = 0and a5 # 0. Then choosing p = 3—2 and x = Z—Z we have the representative (Vs + V).
(¢) arag —azay =0, az # 0 and a5 = 0. Then choosing ¢ = g—f} andy = Z—g we have the representative (V3 + V).

Q2 —Qqx6
a6

(d) ayag—agay =0, az # 0and a5 # 0. Then choosing p =
<V3 + V5 + VG>.
(e) a1ag—azay # 0, a3 = 0and a; = 0. Then choosing x = 1l and y = g—i we have the representative (V1 + V).

,x = 9 and y = 22 we have the representative
Qg ag

(f) cnag — asay # 0, g = 0 and a5 # 0. Then choosing p = g—z, T = g—z andy = g—}a we have the representative
<V1 + Vs + Vg)
(g) anag — asay # 0, ag # 0 and as = 0. Then choosing ¢ = 3—2 and y = 3—2 we have the family of representatives
(aV1 + V3 4 Vg)azo of distinct orbits. We will join (V3 + V) with this family.
(h) a1as — agayg # 0, az # 0and as # 0. Then choosing p = ‘”;73% T = Z—Z and y = Z—Z we have the family of
representatives (V1 + V3 + V5 + Vi) a0 of distinct orbits. We will join (V3 + V5 + Vi) with this family.
4) a7 =0,a6 = 0,a5 # 0. Then by choosing p = ‘”(yo‘;%%), then we have the representative (a3V +a3Vs +aj Vs +
a;Vs), where
of = 2?y(zaq + zaz),
o3 = 2%y%as,
o = 23y’ay,
ok = 2%y3as.
(a) ag # 0and ay = 0. Then we have the representative (V3 + V).
(b) a3 # 0and ay # 0. Then we have the family of representatives («Vs + V4 + V5) 0.
(¢) az3 =0, oy = 0and a; = 0. Then we have the representative (V).
(d) a3 =0,a4 = 0and o; # 0. Then we have the representative (V1 + V).
(&) a3 =0, ag # 0 and a; = 0. Then we have the representative (V4 + V5) which will be joined with the family
<O¢V3 +V4+ V5>a750.
(f) a3 =0, ay # 0and a; # 0. Then we have the representative (V1 + V4 + V5).
(5) a7 =0,a5 =0, as = 0 and oy # 0. Then we have the representative (a7V1 + a3Va + a5 V3 + o Vy), where

oy = x2y(xa1 + zag),
a3 = zy(yas — qas),
o3 = 2%y%as,

o = 3y ay.

(a) az =0, a; = 0and ay = 0. Then we have the representative (V).
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(b) a3 =0, a1 # 0and as = 0. Then we have the representative (V1 + V).
(¢) a3 =0, a; = 0and ay # 0. Then we have the representative (Vy + V).
(d) a3 =0, a1 # 0nd ay # 0. Then we have the representative (V1 + V3 + V).
(e) asz # 0. Then we have the family of representatives (V3 + V4) a0 Of distinct orbits. We will join (V) with this
family.
Summarizing, we obtain the following representatives: (V1 + Vo + V4), (V1 + V3 + V5 + Vi), (aV1 + V3 + V),
<V1 + V4>, <V1 +Va4+ V5>, <V1 + V5>, <V1 +Vs5+ V5>, <V1 + V6>, <V2 + V4>, <V2 +Vai+ V7>, <V2 + V7>, <OtV3 + V4>,
(aV3 4+ Vi+ Vs5), (Vs + Vs), (Va+ V7), (Vs), (Vs + Vi), (Ve), (Ve + V7), (V7). All of these belong to distinct orbits.
The corresponding algebras are:

Ay ©oerer
Agr(@) @ ereq
A48 (Oé) : €162
Ay Lo €1€2
Asg eres
Asy eres
Asy €1€2
As3 eres
Asy eres
Ass €1€2
Asg Doerer
Asz(@) @ ereq
Asg(@) : ereq
Asg ©oerep
Agp €1€2
Agy eres
Ago eres
Ag3 erey
Agy €1€2 =
Ags eres

€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,
€3,

€163 =
€1€3 =
€163 =
€163 =
€1€3 =
€1€3 =
€1€3 =
€1€3 =
€13 =
€1€3 =
€1€3 =
€1€3 =
€1€3 =
€163 =
€1€3 =
€1€3 =
€1€3 =
€1€3 =
€13 =
€1€3 =

€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,
€4,

€1€4
€1€e4
€1€4
€1€4
€1€4
€1€4
€14
€1€4
€165
€1€5
€2€3
€165
€165
€165
€1€5
€2€4
€2€4
€2€4
€2€4
€2€4

1.4.9. 1-dimensional central extensions of A11.
Vi =[A1], Vo = [A23], V3 = [Ag], V4 = [A15], Vs = [Ass], Ve = [Aszs], V7 = [Ays].

The automorphism group of A;; consists of the invertible matrices of the form

So, we must have det ¢ = z7y° # 0.

Y

€6,

Q€g,
g,

€6,
€6,
€6,
€6,
€6,
€6,
€6,
€6,

(a+ 1)eg,
(&‘+-1)66,

€6,
€6,
€5,
€5,
€5,
€5,
€5,

€165
€165
€1€5
€165
€1€5
€264
€26y
€264y

€2€3 =

€2€3
€2€4
€2€4
€2€4

€2€4 =

€2€4
€2€5
€2€5
€3€5
€3€5
€465

= €6,
= €6,
= €6,
= €6,
= €6,
= €5,
= €5,
= €5,
€6,
= €6,
= €5,
= €5,
= €5,
€5,
= €5,
= €6;
= €6,
= €6;
= €6,
€6.

Let us use the notation

f 2 ow 8

0

S Oow

0

0
zy

0

0 —zyu z°y

0

0

0
%y

€2€3
€2€4
€2€4
€2€4
€2€4
€2€5
€2€5
€3€s5
€2€4
€2€4
€4€5
€3€4
€2€5
€2€5
€4€5

€365

€4€5

0
0
0
0
3

2

€6,
€5,
€5,
€53
€5,
€6;
€6,
€6;

= €5;

€5,
€6;
Q€
€6,
€6,
€6;

€6,

€6;

€264
€2€5
€3€4

€2€5

€365

€4€5

€3€4
€3€4

= zy(—u(ras + zas + uar) + z(za; + zasg — war)),
(ya2 - Uaﬁ)v

zy(ryas — uyas — vray),
23y% (o + zas + uay),

= €5;

€6, €3€4

= €6, €3€5

€65

€6;

€65

= «eg;
= €6;

7
For 0 = ZZ:I a;V; € H% (A1), we get ¢ = > o}V, where
i=1

= €6,

€6;

€3€5 = €63

We are only interested in cocycles with (ay, as, ag, a7) # (0,0,0,0), since otherwise we would obtain an algebra with an
annihilator of dimension greater than one.

(1) a7 # 0. Then choosing u = —i(xcu + zag), w = O%(xal + zag), v = %@;(xa;;o% + za? + zazar), we have the

representative (a3Va + ai Vs + o Ve + a3 Vr), where

() a5 # 0 and ag # 0. Then choosing = = &% and z = a%m
5

ay = %(mago@ — ag(zagas + za2 + razar)).

2

7

representatives (Vs + Vg + V7) a0 of distinct orbits.

(a202 — ayasa — agagar) we have the family of
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(b) a5 =0, ag = 0 and as = 0. Then we have the representative (V7).
(¢) a5 =0, ag = 0 and ap # 0. Then we have the representative (Vo + V7).
(d) a5 # 0, ag = 0 and az = 0. Then we have the representative (V5 + V7).
(e) as #0, ag = 0 and ay # 0. Then we have the representative (Vo + V5 + V7).
() a5 =0, ag # 0 and asy — agaig = 0. Then we have the representative (Vg + V7) which will be joined with the
family (aVs + Vg + V7)az0-
(2) a5 =0, ag # 0 and asay; — azag # 0. Then we have the representative (Vo + Vg + V7).
(2) ar = 0, ag # 0 and a5 # 0. Then choosing v = %, z = —%, u = %22, we have the representative (a3V71 +
aiVs + afVe), where

Y
o = —(agas — azay).
as

(a) ayas — agay = 0. Then we have the representative (Vs + V).
(b) ajas — asgay # 0. Then we have the representative (V1 + V5 + V).
(3) a7 =0, ag # 0 and a5 = 0. Then choosing v = y"‘z , we have the representative (ajV1 + a3Vs + af Va4 + o V),

where
of = 2?y(zoq + zaz — uay),
aj = 2y,
oy = xhylay.
(a) a3 # 0and ay # 0. Then choosing x = Z—Z y= Z—i and u = mlaitmg we have the representative (V3 + V4 +
V).

(b) a # 0 and g = 0. Then we have the representative (V3 + V).
(c) az =0and ay # 0. Then we have the representative (V4 + V).
(d) a3z = 0and ay = 0. Then we have two representatives (V) and (V1 + Vg) depending on whether a; = 0 or not.

(4) a7 =0, a6 = 0and a5 # 0. Then choosing z = — 4, u = 3¢ we have the representative (afV1 4+ a3V + aiVs),
where
3
7Y
OZT = 7(0[10&5 — 043044),

as = 2y’as.

(a) ayas — agay = 0and e = 0. Then we have the representative (V).
(b) ayas — azay = 0 and as # 0. Then we have the representative (Vo + V).
(¢) ajas — agay # 0and ay = 0. Then we have the representative (V1 + V).
(d) anas — asay # 0 and as # 0. Then we have the representative (V1 + Va + V5).

(5) a7 =0,a6 =0, a5 = 0and ay # 0. Then choosing u = MIT*;ZO‘?’, we have the representative (a5Va+a3Vs+a;Vy),
where

* 2
Qo = XY (2,
*x _ 2 2
Q3 = XY (3,

af = 2y ay.

(a) ag = 0and a3 = 0. Then we have the representative (V).

(b) as # 0nd ag = 0. Then we have the representative (Vo + V).

(c) as =0and ag # 0. Then we have the representative (V3 + V).

(d) g # 0and oz # 0. Then we have the family of representatives (Vg + V3 + Vi) a0 of distinct orbits. We will
adjoin (V3 + V4) to this family.

Summarizing, we obtain the following representatives: (Vy, + Va + V3), (V1 + Vs5), (V1 + Vs + V), (V1 + V),
<OéV2 + V3 + V4>, <V2 + V4>, <V2 + V5>, <V2 + V5 + V7>, <V2 + Vg + V7>, <V2 + V7>, <V3 + Va4 + Vg), <V3 + V6>,
(Va), (V44 V), (V5s), (V5 + Vi), (aV5 + Vg + V7), (Vs + V7), (Vs), (V7). All of them belong to distinct orbits. The
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corresponding algebras are:

Age : elep =e3, ejez3=e4, €164 =Cg, €263 = €5, €205 = €g, €364 = €5;
Agr i €162 = €3, €163 = €4, €1€4 = €g, €2€5 = €¢, €3€4 = €5;

Ags : e1eg =e3, €163 =€y, €164 =€, €265 = €5, €364 = €5, €365 = €g;
Agg I e1eg =e3, €163 =€y, €164 =€, €364 =€5, €365 = €g;

Aqp(@) @ eres =e3, eje3 =eq, ere5 =e€g, €263 = Qeg, €384 = €5, €364 = €5;
A7 : elep =e3, ejez3 =e4, e€1e5=¢€g, €263 = €5, €364 = €5;

A7y : eilep =e3, e€1e3 =e4, €263 =e€g, €265 = €5, €364 = C5;

Ars . e1es =e3, €1€3 =64, €263 =€, €265 = €5, €364 = €5, €4€5 = €g;
Ary : e1ey =e3, €163 =e€4, €263 =€, €364 = €5, €365 = €5, €4€5 = €g;
Azs © ejeg =e3, e1e3 =e€4, €263 =€, €384 = €5, €465 = €}

Az I e1eg =e3, €163 =€4, €165 =€Eg, €264 =€, €364 = €5, €365 = €6}
Azr I elep =e3, eje3 =e4, €364 =e€g, €364 =€5, €365 = CG;

Azg : ejeg =e3, eie3=ey4, €165 =€, €384 = €5;

Arg : e1ep =e€3, €1€3 =€y, €165 =€, €364 =€5, €365 = €g;

Agg I e1eg =e3, €163 =€4, €265 =€, €364 = €55

Agy €162 = €3, €1€3 = €4, €265 = €g, €3€4 = €5, €365 = €6;

Ago(a) @ erex =e3, ejez3=ey, ege5 = e, €364 = €5, €3€5 = €6, €4€5 = €g;
Ags : ejeg =e3, e1e3 =€y, €285 =e€g, €384 = €5, €4€5 = €g;

Agy : e1ey =e€3, €163 =€y, €364 =€5, €365 = €g;

Ag5 . €1 = €3, €1€3 = €4, €364 = €5, €4€5 — €¢.

All of the above, combined with the algebraic classification of 6-dimensional nilpotent Tortkara and Malcev algebras in [22]
and [32], respectively, yields our main result of this section.

Theorem 1. The distinct isomorphism classes of 6-dimensional complex nilpotent anticommutative algebras are given explicitly
in Appendix|[B| The list is comprised of 14 one-parameter families and 130 additional isomorphism classes.

2. THE GEOMETRIC CLASSIFICATION OF 6-DIMENSIONAL NILPOTENT ANTICOMMUTATIVE ALGEBRAS

2.1. Degenerations of algebras. Given an n-dimensional vector space V, the set Hom(V®V, V) 2 V*®@V*®V is a vector

space of dimension n3. This space inherits the structure of the affine variety c’. Indeed, let us fix a basis ey, . . ., e, of V. Then

any 1 € Hom(V ® V, V) is determined by n® structure constants ¢’ ; € Csuch that pu(e; ® ej) = 37, cy j€k- A subset of

Hom(V ® V, V) is Zariski-closed if it can be defined by a set of polynomial equations in the variables cfy ; (1 <4,5,k <n).
The general linear group GL(V) acts by conjugation on the variety Hom(V ® V, V) of all algebra structures on V:

(g* )z @y) =gulg™'z @ g™ 'y),
forz,y € V, p € Hom(V ® V,V) and g € GL(V). Clearly, the GL(V)-orbits correspond to the isomorphism classes
of algebras structures on V. Let T be a set of polynomial identities which is invariant under isomorphism. Then the subset
L(T) ¢ Hom(V ®V, V) of the algebra structures on V which satisfy the identities in 7" is GL(V)-invariant and Zariski-closed.
It follows that I.(T") decomposes into GL(V)-orbits. The GL(V)-orbit of u € L.(T) is denoted by O(1) and its Zariski closure

by O(p).
Let A and B be two n-dimensional algebras satisfying the identities from 7" and i, A € L(T') represent A and B respectively.

We say that A degenerates to B and write A — B if A € O(y). Note that in this case we have O(\) C O(u). Hence, the
definition of a degeneration does not depend on the choice of 1 and \. It is easy to see that any algebra degenerates to the algebra
with zero multiplication. If A 22 B, then the assertion A — B is called a proper degeneration. We write A /4 B if \ & @

Let A be represented by p € IL(T'). Then A is rigid in L(T") if O(y) is an open subset of IL(7"). Recall that a subset of a
variety is called irreducible if it cannot be represented as a union of two non-trivial closed subsets. A maximal irreducible closed
subset of a variety is called an irreducible component. It is well known that any affine variety can be represented as a finite union
of its irreducible components in a unique way. The algebra A is rigid in L(7") if and only if O(u) is an irreducible component of
L(T).

In the present work we use the methods applied to Lie algebras in [9,27,128,|53]]. To prove degenerations, we will construct
families of matrices parametrized by ¢. Namely, let A and B be two algebras represented by the structures p and A from L(T),
respectively. Let eq, ..., e, be a basis of V and cﬁ ; (1 <4, 5,k < n) be the structure constants of A in this basis. If there exist

aj(t) € C(1 <4,j < n,t € C*)such that the elements Ef = 3", a](t)e; (1 < i < n) form a basis of V for any t € C*,

and the structure constants ¢ ;(t) of y in the basis Ef, ..., E}, satisfy lim ¢ ;(t) = ¢ ;, then A — B. In this case EY,..., B
: S8 €, :

is called a parametric basis for A — B.

When the number of orbits under the action of GL(V) on IL(T)) is finite, then the graph of primary degenerations gives the
whole picture. In particular, the description of rigid algebras and irreducible components can be easily obtained. Since the
variety of 6-dimensional nilpotent anticommutative algebras contains infinitely many non-isomorphic algebras, we have to fulfill
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some additional work. Let A(x) := {A(«)}.er be a family of algebras and B be another algebra. Suppose that, for o € I,
A(a) is represented by the structure p(«) € L(T) and B is represented by the structure A\ € L(T). Then A(x) — B means

A € U{O(u(a)) }oer, and A(x) 4 B means A € U{O(u(a))}aer-
Let A(x), B, u(a) (o € I) and X be as above. To prove A (%) — B it is enough to construct a family of pairs (f(t), g(t))

parametrized by ¢t € C*, where f(t) € I and g(t) = (aj- (t)) € GL(V). Namely, let e1,..., e, be a basis of V and ¢} ;

?
s,

(1 <14,j,k < n) be the structure constants of A in this basis. If we construct a{ :C*">C0<i4,j<n)and f:C* — I such

n

that B} = 377, a](t)e; (1 < i < ) form a basis of V for any ¢ € C*, and the structure constants ¢; ;(t) of u(f(t)) in the

basis E1, ..., E! satisfy }g% ¢ ;(t) = cf;, then A(x) — B. In this case, Ef, ..., E}, and f(t) are called a parametric basis and
a parametric index for A(x) — B, respectively. In the construction of degenerations of this sort, we will write ,u( f (t)) = A,
emphasizing that we are proving the assertion p(x) — A using the parametric index f(¢).

Through a series of degenerations summarized in Appendix [A]by the corresponding parametric bases and indices, we obtain

the main result of this section (compare Theorem A).

Theorem 2. The variety of 6-dimensional complex nilpotent anticommutative algebras is irreducible of dimension 34. It is
defined by the family of algebras Ago (a), with o € C*.

Proof. Thanks to [23] the algebras T, T17 and T19 (see Appendix B) are rigid in the variety of 6-dimensional nilpotent Tortkara
algebras. These algebras and the remaining 6-dimensional nilpotent anticommutative algebras degenerate from Ags (a) , as shown
in the table below. Clearly, we need only consider algebras in the family with o # 0. Since Det(Ago (a)) =3, forall « # 0, it
is follows that the dimension of the irreducible component is dim GLg(C) — dim Der(Ago (o #0)) +1=36—-3+1=34. O
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APPENDIX A. DEGENERATIONS OF 6-DIMENSIONAL NILPOTENT ANTICOMMUTATIVE ALGEBRAS

Agz(— 1t ) Tio | BY = —e1 +ea+ —e3 + (1 +1/t%)ey E% = teg —tez + (1/t + t)eq
Eé = —teg + tey E$ = —e4 + (1 —1/t%)es — 1/teg
E; =es5 Eg = —eg
— 5 9:213:3_.2 — 243 —2)2
Ag2(Z5h) Tir | Bf =t ler + (L4t 2)en + Loy + 122220480 Ej = ( ey + 23—y — L t7) e
—2)(t— t—2)2 _ t—2)2
Eé:(t—2)/teg—( f)é Jey — & tG) es Ei:tt22e4_ ( t6>7e5
: (t—2)2 t_ (t=2)3
Eg = a5 E6 =7 ¢
t(2t—1) t_ + t(275t+7t275t3+2t4) (t—1)t —1)t
ASZ((I—t+t2)2) Tio | By = -7zt (- 22 ez + (71+2t)(17t+t2) ea+ 2t T
E;:(17t+t2)252+(t717t)53+e4+1 2t65
2 2 3 4
t(t—1—t t t —14t“ -2t t
EL=t(t—1—1t2 )eg+(t+2t3)e4+ ( = 2* e (CAHtZ =27t ) o
t_ .2 (t—1)t 2 (1420262443
By = 4t o7 635"" . 21
2 t3 (1—t+t
Bi= - mes+ QtrtD g EL = —t3(1 —t + t2)eg
Ago (a) Ago Ei =e1 E% = eg
E; =e3 E$ = ey
, Ef =es Eé:l/teg2
Agg(t ) Agy E{:ﬁel Eé:(lft )62763+647ﬁ65
2
Eé = —teg + tey Ei’ = 1it2 eq
2 2 3
t _ _t I t_ 3
By = m—yes @12 €6 Bs = gz .
Aga (1/t3) Aoz | BY =t"Ter + ("‘;7?})&2 —t~%eq + *5%4 +t %5 Bb = —t72%e5 4+t 3e3 — ﬂ
142
Eé :—t73€3+%64+t71366 Ei: —t’4e4+%e5+f1—365
— 1—t t — )
Eé =t Ses + 13 €6 Eé —t 135
2
1 t __ 1 1 t —t —1—t+
As2(7<t,1)t) Aoz Ei el — 7“171)3%62 T oAz Ef = 6241r Lies + (t 1)2te4 T G5z es
Ej =T 63 + 1ogea + 7?—1)%2 es E;; = oz~ 7( 1542 €5
Es = *7( 03:%5 + iz e Fe = Gzisezee
t_ 2t 8+4t 16t t_ _ t 2¢2 4t2 322
A82(2) Aoa E17—261+€2+m53—m64+W65 Ezf—m€2+m53—me4+wes
t _ 2t2 412 162 64t t _ _ 4t? 16t2 32t
Bs = 4+f83 4+'64 T arnzes T ainses Bi=—ameat upzes ¥ g3
t_ t _ 32t
B = (4+t>2 st (4+t>3 ce Bs = MEESL ce
Ag2 (t72) Aos | BT =1/tey Ef = t3es
Eé = t%e3 E‘:i = teyq
Eé = t265 — t266 Eé’ = t355
Aga (t) Aos | EY =1/te; + (1 + t2)ea + teqg — t2(2 4 t2)es El =t2(2 4 t3)ex —t3(2+ t2)eq
Eé = (2t + tH)es — (2t + tH)eq + t2(2t + t1)es — t2(2 + t3)2eq El = 2+ t3)es — t2(2 + t3)es + t2(2 + %) %ep
Ef = 2+ t3)%e5 — 2 +3) (2 + t3)?) /tes Ef = (2+t3)3¢s
+ t _ 1 1 t _ 1
ASZ(i) Aor Ei =e1 *W62+m64 Ei = *€2+64+m55
Ez = —e3 By =-ea+ t(11+t) €5
t _ t _ -2
Esft €5+ 3+t4 E67—t
Aga(—t—1) Aos | EY =e1 +ea +eq+ tes El = —tZeg + tZe3 — t2(2 + t)ey — toes
Ef = —tZe3 + t2eq — t2es + thes Ef = —tZey + t2e5 + t3ep
pi Bs = t3625 pi pi 2 By = _t4§6 )
t 14t —1 —1— —1— —1
A82((t (7-*1-;)) Aoo E{: tt71617 -1 (t t4t )e[ + =1 rrt e4 E£:7<t = ) e +tea + (¢ — t2)es
_ _1\2
Eb = (¢2 71)63+64+(17t)55+w Ei:t64+(t*t2>65+%65
Bt = (t2 — 1)es — (t — 1)2(1 + t)eg Bt = (t% — t)eg
Aga (%) Ao | Bl =t%e1 fegx —toey El = tZes
Eé = tseg — t384 E‘:i = t4e4
, Eg = tSes Eé =t'%s
_ z _
A82(2tt 1) Aqq E{:7€1+2tt277162 E£:€27€3+(1+t 17t)e4
Bl = —e3 + (1 —t)ey El = ey
Eé:tile5 . . Eé:t7166 . s
Ag2(—1/t2) Ao | BY =t ey 4 M= e 4 IS T 2ty Bl =t ey 417 ey + LTty 4 SASIELEEAL o
1448 1
Bl =t~ 63+Te4+( 1—t72 47T+ 470 7 Nes + “Hfeg B =t~ e4+1*”9¢
E% = —t Ceg +t_12 —t 4eq 2 E% = —t10¢q
Aga(—1/t) A1z | Bl =e1 4+ (t —t2)ea +eq +t(—1+t2)es ELl =2 ezft e3+(t+t)e4
Ef =t2e3 — t2eq + t2es Ef =12 e4+( t2 + tYes + t3eq
Eg = 7t365 Eé = —t* =
Ag2 (£2) Ata | Bf =tZe; —t Sea +t lez —t Zes Ef =t Ze; —eq —t les
Eé :egft_les Ei:te4+t_356
) E§:e§+t_les Z 2 T Eézeﬁ 3
Aga(— t7) Ais | Bl =t°e; + (1 —t%)ea +t7eg —toey B4 = teg + t°ey
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APPENDIX B. THE LIST OF 6-DIMENSIONAL NILPOTENT ANTICOMMUTATIVE ALGEBRAS
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