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Abstract. Consider a periodic function f of two variables with
symmetry Γ and let L ⊂ Γ be the subgroup of translations. The
Fourier expansion of a periodic function is a sum over L∗, the dual
of the the set L of all the periods of f . After projecting f , some of
its original symmetry remains. We describe the symmetries of the
projected function, starting from Γ and from the structure of L∗.

1. Introduction and preliminaries

An usual method of studying bifurcation [5] on problems equivariant
under the Euclidean group E(2) is to look for periodic solutions — see
[2, 3, 4]. If f : R2 −→ R has two noncolinear periods then its symmetry
group is a plane crystalographic group, Γ ≤ E(2), and its level sets form
a periodic pattern.

We start with a pattern in R2 and project it into R. What are the
symmetries of the projected pattern? This question is addressed in [6].
The new pattern, the level sets of a function in R, may be periodic or
invariant under reflections. We relate the existence of these symmetries
to properties of Γ and of L∗, the dual of the set L of all the periods of
f . The set L∗ arises naturally in the Fourier expansion of f and the
symmetries in Γ impose restrictions on Fourier coefficients.

We write elements of E(2) = R2+̇O(2) in the form (vδ, δ), whith
vδ ∈ R2 representing a translation and δ ∈ O(2). They act in f :
R2 −→ R with the scalar action (see [7]):

(vδ, δ) · f(x) = f((vδ, δ)
−1) · x) = f(δ−1x − δ−1vδ).

We assume that Γ is a plane crystalographic group — see [1, 8] for
general results and definitions. Denote by L the subgroup of the trans-
lations in Γ, a module over the integers, also called a lattice. If f is
Γ-invariant, then in particular elements of L are periods of f . A pattern
and the lattice L may not have the same symmetries: see figure 1.
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a) b)

Figure 1. a) The lattice (black dots) is not invariant un-
der the glide reflection transforming the grey motive into
the darker one. However this is a symmetry of the lighter
pattern. b) The lighter pattern is not invariant under the
reflection on the black line, although this is a symmetry of
the lattice (black dots).

2. Symmetries and Projection

Let XΓ be a vector space of Γ-invariant functions f : R2 −→ R,
having unique formal Fourier expansions of the form:

f(x, y) =
∑
k∈L∗

ωk(x, y)C(k),

where L∗ is the dual lattice and ωk(x, y) = e2πi<k,(x,y)>.
The elements of L∗ are k ∈ R2 such that < k, l >∈ Z for all l ∈ L,

where < k, l > is the usual inner product in R2.
Given y0 > 0, define the projection of a function f ∈ XΓ to be the

function

Πy0(f)(x) =

∫ y0

0

f(x, y)dy x, y ∈ R.

We assume that in XΓ we have,

Πy0(f)(x) =
∑
k∈L∗

∫ y0

0

ωk(x, y)C(k)dy

and that XΓ contains, for all k ∈ L∗, the real and imaginary parts
of Ik(x, y) =

∑
δ∈J ωδk(−vδ)ωδk(x, y), where J ∼ Γ/L is the largest

subgroup of O(2) that leaves L invariant. Notice that these are the
simplest Γ-invariant functions.

The first step in obtaining the symmetries of the projected functions
is to relate the (vα, α)-invariance to restrictions on Γ and on L∗. This
is the main result in this paper: Proposition 2.1, below.

For α ∈ {1,−1}, let α+ ∈ {I,−σ} and α− = σα+ ∈ {σ,−I}, where

α+ =

(
α 0
0 1

)
and σ =

(
1 0
0 −1

)
.

Note that α± = α−1
± and σ = σ−1.
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Proposition 2.1. All functions in Πy0(XΓ) are invariant under the
action of (vα, α) ∈ R+̇O(1) if and only if one of the following condi-
tions holds:

A. (v+, α+) ∈ Γ and for each k ∈ L∗,
either < k, (0, y0) >∈ Z − {0} or < k, v+ − (vα, 0) >∈ Z,

B. (v−, α−) ∈ Γ and for each k ∈ L∗,
either < k, (0, y0) >∈ Z − {0} or < k, v− − (vα, y0) >∈ Z,

C. (vσ, σ), (v+, α+) ∈ Γ and, for each k ∈ L∗, one of the conditions
C1, C2 or C3 below holds:

C1. < k, (0, y0) >∈ Z − {0},
C2. < k, v+ − (vα, 0) >∈ Z,
C3. < k, vσ − (0, y0) > +1

2
∈ Z.

A more concise formulation of this result is possible using the subsets
of L∗ defined below. Let M∗

+ and M∗
− be the modules

M∗
+ = {k ∈ L∗ : < k, v+ − (vα, 0) >∈ Z} and

M∗
− = {k ∈ L∗ : < k, v− − (vα, y0) >∈ Z} ,

and let

N ∗
y0

= {k ∈ L∗ : < k, (0, y0) >∈ Z − {0}} ,

N ∗
σ = {k ∈ L∗ : < k, vσ − (0, y0) > +1/2 ∈ Z} .

The last two sets are not modules. The smallest modules generated by
each of them are, respectively, N ∗

y0
= N ∗

y0
∪M∗

y0
and N ∗

σ = N ∗
σ ∪M∗

σ,
where all the unions are disjoint and M∗

y0
and M∗

σ are the modules

M∗
y0

= {k ∈ L∗ : < k, (0, y0) >= 0} and

M∗
σ = {k ∈ L∗ : < k, vσ − (0, y0) >∈ Z} .

Properties of N ∗
σ : Let m1, m2 ∈ Z. If g1, g2 ∈ N ∗

σ then

m1g1 + m2g2 ∈
{

M∗
σ if m1 + m2 even

N ∗
σ if m1 + m2 odd

.(1)

Proposition 2.1 can therefore be written the following way:

Proposition 2.2. All functions in Πy0(XΓ) are invariant under the
action of (vα, α) ∈ R+̇O(1) if and only if one of the following condi-
tions holds:

A. (v+, α+) ∈ Γ and L∗ = N ∗
y0
∪M∗

+,
B. (v−, α−) ∈ Γ and L∗ = N ∗

y0
∪M∗

−,
C. (vσ, σ), (v+, α+) ∈ Γ and L∗ = N ∗

y0
∪M∗

+ ∪N ∗
σ .

For D(k1) =
∑

k2:(k1,k2)∈L∗ C(k1, k2)
∫ y0

0
ωk2(y)dy, the projection of

f ∈ XΓ may be written, with L∗
1 = {k1 : (k1, k2) ∈ L∗}, as

Πy0(f)(x) =
∑

k1∈L∗
1

ωk1(x)D(k1).
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Thus Πy0(f) is (vα, α)-invariant if and only if∑
k1∈L∗

1

ωk1(x)D(k1) =
∑

k1∈L∗
1

ωk1(α x)ωk1(−α vα)D(k1),(2)

or, equivalently, D(k1) = ωk1(−vα)D(α k1), for all k1 ∈ L∗
1.

In the next section we show that each condition of Proposition 2.1
leads to the restrictions on the coefficients D(k1) above. Reciprocally,
when those restrictions are imposed on the projection of Ik(x, y), for
all k ∈ L∗, this implies the conditions of Proposition 2.1.

3. Proof of Proposition 2.2

Let f ∈ XΓ and (vα, α) ∈ R+̇O(1). If Πy0(f) is (vα, α)-invariant then
Πy0(f)(x) = Πy0(f)(α x − α vα), which is equivalent to (2). The right
hand side of (2) equals

∑
k1∈L∗

1
ωαk1(x)ωαk1(vα)D(k1). Since α(L∗

1) =

(L∗
1) and Fourier expansions are unique, then for each k1 ∈ L∗

1, we
have:

D(k1) − ωk1(−vα)D(α k1) = 0.(3)

Proof — sufficiency. The difference in (3) may be written as∑
k2:(k1,k2)∈L∗

C(k1, k2)G(k1, k2)

∫ y0

0

ωk2(y)dy.(4)

In each case we compute G(k1, k2) and use the conditions on L∗.
Suppose α+ ∈ J. Then all the Fourier coefficients of any f ∈ XΓ

satisfy C(k) = ωk(−v+)C(α k) and G(k1, k2) = 1 − ωk(v+ − (vα, 0)).
Thus G(k1, k2) = 0 if < k, v+ − (vα, 0) >∈ Z.

If (v−, α−) ∈ Γ then G(k1, k2) = 1 − ωk(v− − (vα, y0)), since∫ y0

0

ω−k2(y)dy = ωk2(−y0)

∫ y0

0

ωk2(y)dy.(5)

Then G(k1, k2) = 0 if < k, v− − (vα, y0) >∈ Z.
When both (v+, α+) and (v−, α−) lie in Γ then

G(k1, k2) = 1+ωk(vσ)ωk2(−y0)−ωk1(−vα) (ωk(v+) + ωk(v−)ωk2(−y0)) .

Using ωk(v−) = ωk(vσ)ωk(σv+) and ωk(σv+ − v+) = 1 we get

G(k1, k2) = (1 − ωk(v+ − (vα, 0))) (1 + ωk(vσ − (0, y0))) .

If either 1 − ωk(v+ − (vα, 0)) = 0 or 1 + ωk(vσ − (0, y0)) = 0 then
G(k1, k2) = 0.

It follows from the conditions on L∗ that for each k ∈ L∗ either∫ y0

0
ωk2(y)dy = 0 or G(k1, k2) = 0 and thus (3) holds for all k ∈ L∗.

Proof — necessity. For D′(δ, k) = ωδk(−vδ)
∫ y0

0
ωδk|2(y)dy, the projec-

tions of Ik, with k ∈ L∗, are

Πy0(Ik)(x) =
∑

k̃1∈Jk|1

ωk̃1
(x)

∑
k̃2:(k̃1,k̃2)∈Jk

D′(δ, k̃),
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where δk|j denotes the jth coordinate of δk. If Πy0(Ik) is (vα, α)-
invariant then, by (3),∑

δ∈JI(k)

D′(δ, k) − ωk1(−vα)
∑

δ∈Jα(k)

D′(δ, k) = 0,

where JI(k) = {δ ∈ J : δk|1 = k1} and Jα(k) = {δ ∈ J : δk|1 = α k1} .
Let JI = {I, σ} ∩ J and Jα = {α+, α−} ∩ J. We list some proper-
ties of JI(k) and Jα(k) in Lemma 3.1 below. Then we describe the
set O∗ =

{
k ∈ L∗ : JI(k) = JI ∧ Jα(k) = Jα

}
in Lemma 3.2. A ge-

ometrical characterization of the complement of O∗ in L∗ is given in
Lemma 3.3 and in Lemma 3.4 we reformulate the cases of Lemma 3.2
in terms of L∗ instead of O∗, completing the proof.

Lemma 3.1. For k ∈ L∗, the sets JI(k) and Jα(k) satisfy:
1. JI(k) = {δ ∈ J : δk = k ∨ δk = σk}.
2. Jα(k) = {δ ∈ J : δk = α+k ∨ δk = α−k}.
3. JI ⊂ JI(k) , Jα ⊂ Jα(k) and JI(0, 0) = Jα(0, 0) = J.
4. Let k = (k1, k2) 
= (0, 0). If δ ∈ JI(k) − JI then δk = (k1,−|δ|k2)

and if δ ∈ Jα(k)−Jα then δk = α(k1,−|δ|k2), where |.| is the determi-
nant.

Proof. Properties 1. and 2. follow by orthogonality of J and Property
3. is imediate from this and the definitions.

For property 4, let δ ∈ JI(k) − JI and k 
= (0, 0). If δk = k then
|δ| = −1, since an element of O(2) with determinant 1, other than the
identity, does not fix any point besides the origin. Similarly if δk = σk
then |σδ| = −1 and |δ| = 1. Now suppose δ ∈ Jα(k)−Jα and k 
= (0, 0).
Thus, either α+δ = k or α+δ = σk. As α+δ ∈ JI(k)−JI , we may apply
the previous result to α+δ, and the property follows.

Lemma 3.2. Suppose that
∑

δ∈JI(k) D′(δ, k) = ωk1(−vα)
∑

δ∈Jα(k) D′(δ, k)

for all k = (k1, k2) ∈ L∗. Then one of the following cases holds:
1. JI = {I}, Jα = ∅ and O∗ ⊂ N ∗

y0
,

2. JI = {I, σ}, Jα = ∅ and O∗ ⊂
(
N ∗

y0
∪N ∗

σ

)
,

3. JI = {I}, Jα = {α+} and O∗ ⊂
(
N ∗

y0
∪M∗

+

)
,

4. JI = {I}, Jα = {α−} and O∗ ⊂
(
N ∗

y0
∪M∗

−
)
,

5. JI = {I, σ}, Jα = {α+, α−} and O∗ ⊂
(
N ∗

y0
∪M∗

+ ∪N ∗
σ

)
.

Proof. If Jα = ∅ and k ∈ O∗ then by hypothesis
∑

δ∈JI D′(δ, k) =
0. By (5), if σ ∈ J then (1 + ωk(vσ − (0, y0)))

∫ y0

0
ωk2(y)dy = 0 and∫ y0

0
ωk2(y)dy = 0 if σ 
∈ J. Cases 1 and 2 follow because

∫ y0

0
ωk2(y)dy =

0 implies k ∈ N ∗
y0

and 1 + ωk(vσ − (0, y0)) = 0 implies k ∈ N ∗
σ .

In case 3 we have (1 − ωk1(−vα)ωk(v+))
∫ y0

0
ωk2(y)dy = 0 and the

result follows because 1 − ωk1(−vα)ωk(v+) = 0 implies k ∈ M∗
+.

In case 4, (1 − ωk1(−vα)ωk(v−)ωk2(−y0))
∫ y0

0
ωk2(y)dy = 0 and either

k ∈ N ∗
y0

or 1 − ωk1(−vα)ωk(v−)ωk2(−y0) = 0, which implies k ∈ M∗
−.



6 I. S. LABOURIAU AND E. M. PINHO

The hypothesis in case 5 yelds G(k1, k2)
∫ y0

0
ωk2(y)dy = 0, where

G(k1, k2) = 1+ωk(vσ)ωk2(−y0)−ωk1(−vα) (ωk(v+) + ωk(v−)ωk2(−y0)) ,

as in the proof of sufficiency in Proposition 2.1. Therefore, either k ∈
N ∗

y0
or G(k1, k2) = 0. In the second case either (1 − ωk(v+ − (vα, 0))) =

0 or (1 + ωk(vσ − (0, y0))) = 0 and the result follows.

Let P∗ =
{
k ∈ L∗ : JI(k) 
= JI ∨ Jα(k) 
= Jα

}
be the complement

of O∗ in L∗.

Lemma 3.3. P∗ lies in a finite union of lines through the origin.

Proof. P∗ may be written as a finite union of submodules

P∗ =
⋃

δ∈J−JI

M∗
δ,I ∪

⋃
δ∈J−Jα

M∗
δ,α

for M∗
δ,ξ = {k ∈ L∗ : δk = ξ(k1,−|δ|k2)} and ξ = I, α. If δ is a rotation

then for k ∈ M∗
δ,ξ we have δk = ±(k1,−k2), i.e., k lies on the line fixed

by ±σδ. Therefore M∗
δ,ξ is the intersection of those lines with L∗.

Similarly, if δ is a reflection then M∗
δ,ξ is the intersection of L∗ with a

line fixed either by δ or by −δ.

Lemma 3.4. If
∑

δ∈JI(k) D′(δ, k) = ωk1(−vα)
∑

δ∈Jα(k) D′(δ, k) for all

k = (k1, k2) ∈ L∗, then one of the following cases holds:
A. Jα = {α+} and L∗ = N ∗

y0
∪M∗

+,
B. Jα = {α−} and L∗ = N ∗

y0
∪M∗

−,
C. Jα = {α+, α−} and L∗ = N ∗

y0
∪M∗

+ ∪N ∗
σ .

Proof. Let k ∈ L∗ − {(0, 0)} and observe that(
M∗

y0
∩ P∗) − {(0, 0)} = ∅.(6)

Let g = (1/n)k ∈ L∗, n ∈ Z, have minimal norm and choose h ∈ L∗

such that L∗ = {g, h}Z . Let Q∗
k = {k + mh : m ∈ Z}. Since Q∗

k is
contained in a line in R2 that does not go through the origin, by Lemma
3.3, the set Q∗

k ∩ P∗ is finite.
For k ∈ L∗ − {(0, 0)} there are three possibilities for Q∗

k ∩ N ∗
y0

:
it is either the empty set, or a set with only a point, or an infinite
set of equally spaced points. This happens because N ∗

y0
is a module

and if k + m1h 
= k + m2h ∈ Q∗
k ∩ N ∗

y0
, then (m2 − m1)h ∈ N ∗

y0

and {k + m1h + m(m2 − m1)h : m ∈ Z} is a subset of
(
Q∗

k ∩N ∗
y0

)
. A

characteristic period, τy0 , is given by the smallest difference between
two elements of Q∗

k ∩N ∗
y0

.
The same three possibilities hold for Q∗

k ∩N ∗
σ . Although N ∗

σ is not a
module, the smallest difference between two elements of Q∗

k∩N ∗
σ defines

a period τσ ∈ M∗
σ, by (1). Thus, whenever Q∗

k ∩N ∗
σ has more than one

element, if k + m1h ∈ N ∗
σ then {k + m1h + mτσ : m ∈ Z} = Q∗

k ∩N ∗
σ .

Repeating the construction for Q∗
k ∩ M∗

+ and Q∗
k ∩ M∗

− we may
define characteristic periods τ+ and τ−, respectivelly, when these sets
have more than one element.



PROJECTED WALLPAPER PATTERNS 7

We complete the proof following the cases of Lemma 3.2.
Case 1). From L∗ = N ∗

y0
∪ P∗, we get M∗

y0
⊂ P∗ and, by (6),

M∗
y0

= {(0, 0)}. Moreover, Q∗
k ∩N ∗

y0
must be infinite because Q∗

k ∩P∗

is finite. Thus, the period τy0 exists and Q∗
k − N ∗

y0
is either empty or

infinite. From
(
Q∗

k −N ∗
y0

)
⊂ (Q∗

k ∩ P∗) it follows that L∗ = N ∗
y0

. Since
σ ∈ J, then M∗

y0

= {(0, 0)} and so case 1) cannot occur.

Case 2). Here L∗ = N ∗
y0

∪ N ∗
σ ∪ P∗ which, by (6), implies M∗

y0
⊂

(N ∗
σ ∪ {(0, 0)}). Moreover, M∗

y0

= {(0, 0)} since σ ∈ J. Suppose

k̃ ∈ M∗
y0

and k̃ 
= (0, 0), then, k̃ ∈ N ∗
σ and 2k̃ ∈ M∗

y0
. However,

2k̃ /∈ N ∗
σ , by ( 1), and so case 2) is also impossible.

Case 3). We follow the arguments of case 1) using the least common
multiple of the existing periods, τy0 or τ+, instead of τy0 . Therefore
k ∈

(
N ∗

y0
∪M∗

+

)
and condition A follows because (0, 0) ∈ M∗

+.
Case 4). This is like case 3) with M∗

− and τ− instead of M∗
+ and τ+,

yelding condition B.
Case 5). Here Q∗

k −
(
N ∗

y0
∪M∗

+ ∪N ∗
σ

)
= ∅ because at least one of

the periods τy0 , τ+ or τσ exists and condition C follows.

Acknowledgements

Both authors had financial support from Fundação para a Ciência e a Tec-
nologia (FCT), Portugal, through programs POCTI and POSI of Quadro
Comunitário de Apoio III (2000–2006) with national and EU (FEDER) fund-
ing. E. M. Pinho was partly supported by the grant SFRH/BD/13334/2003
of FCT and by UBI-Universidade da Beira Interior, Portugal.

References

[1] Armstrong, M. A., Groups and Symmetry, Springer-Verlag, 1988
[2] Bosch Vivancos, I., Chossat, P. and Melbourne, I., New planforms in systems

of partial differential equations with Euclidean symmetry, Arch. Rat. Mech.
Anal. 131 (1995) 199-224

[3] Dionne, B. and Golubitsky, M., Planforms in two and three dimensions, Z.
Angew. Math. Phys. 43 (1992) 36-62

[4] Dionne, B., Silber, M. and Skeldon, A. C. Stability results for steady, spatially
periodic planforms, Nonlinearity 10 (1997) 321-353.

[5] Golubitsky, M. and Stewart, I., The Symmetry Perspective, Prog. Math. 200,
Birkhäuser Verlag, 2002

[6] Gomes, M. G. M., Black-eye patterns: A representation of three-dimensional
symmetries in thin domains, Phys. Rev. E 60 (1999) 3741-3747

[7] Melbourne, I., Steady-state bifurcation with Euclidean symmetry, Trans. Amer.
Math. Soc. 351 (1999) 1575-1603

[8] Senechal, M., Quasicrystals and Geometry, Cambridge University Press, 1995
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