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TORSION LINE BUNDLES AND BRANES ON THE HITCHIN SYSTEM

EMILIO FRANCO, PETER B. GOTHEN, ANDRE OLIVEIRA, AND ANA PEON-NIETO

ABSTRACT. We study the fixed loci for the action of tensorisation by a line bundle of order n on the
moduli space of Higgs bundles for the Langlands self-dual group GL(n,C). We equip these loci with a
hyperholomorphic bundle so that they can be viewed as BBB-branes, and we introduce corresponding BA A-
branes which can be described via Hecke modifications. We then show how these branes are naturally dual
via explicit Fourier-Mukai transform. It is noteworthy that these branes lie over the singular locus of the
Hitchin fibration.

1. INTRODUCTION

Motivated by a dimensional reduction of the self-dual equations on a 4-manifold, N. Hitchin introduced in
[[1i1] Higgs bundles over a smooth projective complex curve X of genus g > 2. These are pairs (E, @), where
E is a holomorphic vector bundle over X and ¢ is a holomorphic one-form with values in End(E). The moduli
space of Higgs bundles M x (n,d) of rank n and degree d is a holomorphic symplectic manifold carrying a
hyperkahler metric. Moreover, it admits the structure of an algebraic completely integrable system given
by the Hitchin map h: Mx(n,d) — Bx,,. Here the Hitchin base Bx, is an affine space whose dimension
is half that of M x(n,d), and the components of h are the coefficients of the characteristic polynomial of ¢.
The fibre of h over a generic point of the Hitchin base is a torsor for an abelian variety, namely the Jacobian
of an associated spectral curve.

The concept of a G-Higgs bundle can be defined for any complex (and even real) reductive Lie group
G and the definition above given above is then that of a GL(n,C)-Higgs bundle. N. Hitchin [[1i2] showed
that his original construction gives an algebraically completely integrable system for any classical complex
Lie group GG. The Hitchin system has since been extensively studied by many authors, in particular it was
generalized to arbitrary complex reductive groups G (see, for example, R. Donagi and E. Markman [DM]).

A new development arose with the discovery by T. Hausel and M. Thaddeus [[HT] of a close relation
between Higgs bundles, mirror symmetry and the Langlands correspondence. They proved that the moduli
spaces of Higgs bundles for, respectively, the group SL(n,C) and its Langlands dual group PGL(n, C) form a
pair of SYZ-mirror partners [SYZ], in the sense that the respective Hitchin maps have naturally isomorphic
bases and their fibres over corresponding points are, generically, half-dimensional torsors for a pair of dual
abelian varieties. This was subsequently generalised by N. Hitchin [Hi3] for the self-dual group G2 and
then by R. Donagi and T. Pantev [DP] for any pair (G,7G) of Langlands dual groups. The duality is
reflected by a Fourier-Mukai transform between the moduli spaces interchanging fibres of the Hitchin map
over corresponding points in the base. These dualities were obtained over the locus of the Hitchin base where
the corresponding spectral curves are smooth.

As mentioned above, the moduli space M x (n, d) is hyperkéhler. This means that it carries three natural
complex structures Iy, I and I3 verifying the quaternionic relations and a metric which is Kéahler with
respect to all three holomorphic structures. In the present case, I; is the natural complex structure on
the moduli space of Higgs bundles M x (n, d), while the complex structures Iy and Is = I, arise via the
non-abelian Hodge Theorem, which identifies M x (n, d) with the moduli space of flat GL(n, C)-connections
(see [Hil, Sil]).
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A. Kapustin and E. Witten considered in [[XW] certain special subvarieties of Mx (n,d), equipped with
special sheaves. The pair composed by such a subvariety and the corresponding sheaf is called a brane.
For each of the complex structures on Mx (n,d) a brane is classified as follows: it is of type A if it is a
Lagrangian subvariety with respect to the corresponding Kéahler form and the sheaf over it is a flat bundle,
and it is of type B if it is a holomorphic subvariety and the sheaf over it is also holomorphic. Thus, for
instance, a (BBB)-brane is a subvariety equipped with a sheaf, both holomorphic with respect to all three
complex structures I, I and I3; in other words, it is a hyperholomorphic subvariety equipped with a
hyperholomorphic sheaf. Similarly, a (BAA)-brane is a subvariety which is holomorphic with respect to I,
and Lagrangian with respect to I and I3. There are only two other possible types of branes on Mx (n, d),
namely (ABA)- and (AAB)-branes. Again all this holds for any complex Lie group and not just GL(n, C).

According to [[K'W], mirror symmetry conjecturally interchanges (BBB)-branes and (BAA)-branes, and
mathematically this duality should again be realized via a Fourier-Mukai transform (in complex structure
I). The support of the (BAA)-brane should depend not only on the support of the dual (BBB)-brane but
also on the hyperholomophic sheaf over it (and vice-versa). A similar story holds for a pair of (ABA)- and
(AAB)-branes.

Since Kapustin and Witten’s paper—and because of it—an intense study of several kinds of branes on
Higgs bundle moduli spaces has been carried out. Some examples may be found it [ITi4, BS1, BGP, 1S,
BCFG, Hi5, Ga, FJ, BS2, FP, B, HMDP] (see also [AFES] for a survey on this subject). Most of these works
mainly focus either on the smooth locus of the Hitchin system (exceptions are [BS2, FP, B]) or only deal
with the support of the branes and not with the sheaves on it (exceptions are [[i4, Hi5, Ga, FJ, FP]).

In this paper, we introduce families of dual (BBB)-branes and (BAA)-branes on Mx(n,d), the moduli
space for the self-dual group GL(n,C). Our construction is notable for two reasons. Firstly, our branes
are supported on a subspace BY < Bx, of the singular locus of the Hitchin map. Secondly, as required
in the general picture, our branes come equipped with natural hyperholomorphic/flat sheaves and, taking
due account of these, we can explicitly prove (when d = 0) that the branes are dual under a Fourier-Mukai
transformation over an open dense subspace B, of BY.

In the following we outline our construction in more detail. Let Jac(X)[n] denote the subgroup of the
Jacobian Jac(X) of X of elements of order n. Let v € Jac(X)[n] be a non-trivial element, and let L, — X
be the corresponding line bundle. Here we consider the subvariety Mx (n,d)” of M x(n,d) of points (E, ¢)
fixed by tensorisation by L., i.e. (E,¢) = (E® L,,¢). Using the description in [HT, NR] we prove that,
when v has order n, M x(n,d)” is a hyperholomorphic subvariety and that it can be endowed with a family
of hyperholomorphic bundles. In other words, we have a family of (BBB)-branes supported on Mx (n,d)".
Let BY be the image of Mx (n,d)” under the Hitchin map h. Then BY < By, lies in the singular locus
of h, in the sense that the corresponding spectral curves are always singular and possibly non-reduced (but
always irreducible). Let B, be the subspace of B whose associated spectral curves are reduced. Let
D~ : Xy — X be the unramified n-cover naturally defined by L., with Galois group isomorphic to Z,. Then
B, can be described as the subspace of all points in the Hitchin base By, whose spectral curves have
X, as a normalisation. It basically follows from [NR] that the pushforward by p., yields an isomorphism
between My (n,d)” and T* Jac?(X.,)/Zy, with the Galois group acting by pullback. From this one defines
a hyperholomorphic line bundle .Z over M x(n,d)”, naturally associated to a flat line bundle £ on X. We
call the pair (Mx(n,d)",.%) a basic Narasimhan-Ramanan (BBB)-brane, since L is a line bundle on the
base X. We represent it by (BBB)). and write (BBB)L5 for its restriction to BY,. More generally, we
can construct a hypeholomorphic sheaf .% on Mx (n,d)”, canonically associated to a flat line bundle F over
X, and we call the pair (Mx (n,d)?,.#) a non-basic Narasimhan-Ramanan (BBB)-brane and represent it
by (BBB)Z..

For a given b € B ,, let X the corresponding spectral curve and v, : X, — X} the normalisation. The
spectral data of the intersection Mx (n, d)? nh=1(b) is given by Jac?(X,), embedded in the compactified Ja-
cobian EJer(Xb) via pushforward by vy, where § = n(n—1)(g—1). Hence it lies in EHCI(XZ))\ Jac®t4(Xy).

We then turn to the question of identifying the corresponding dual (BAA)-brane of (BBB)}.. First,
we look at what happens on a fibre over b € B/ ;, and consider the subspace of Jac‘”d(Xb) consisting of
those line bundles over X; whose pullback to X is isomorphic to pj(ﬁ ® K01/ 2). Thus we are looking
at the fibre over pX(£ ® K™=1/2) of the map Jac’™(X}) — Jac’T¥(X,) induced by pullback under ;.

We prove that, upon varying b over B] ,, this defines a complex Lagrangian subvariety of Mx (n,d) on
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the locus of reduced spectral curves. With the trivial line bundle over it, it hence becomes a (BAA)-
brane on Mx (n, d), which we denote by (BAA)LS. A similar story holds for the non-basic case (BBB)7%.

Moreover, the Higgs bundles over the intersection (BAA);Ye’dL Nh~L(b) are precisely described as the ones that
can be obtained as Hecke transforms (associated to the divisor of singularities of X3) of the 7-fixed Higgs
bundle with underlying bundle p, .p*(£L® K"~V/2) ~ L@ K("~V/2 @ @7 L;?, and with the Higgs field
naturally determined by b. Hence, we can roughly say that the subvariety defining the support of (BAA);Ye’dL
is obtained as a Hecke transformation of the subvariety of those Higgs bundles in Mx(n,d + d)? whose
underlying bundle is p, 4p* (£ ® K~1/2). For this reason we refer to (BAA)YS as a Hecke (BAA)-brane.
Hecke transformations in the context of Higgs bundles have previously appeared in several papers; see, for
example, [[1i6, R, Ra, Wi, W].

Our main result is that, for d = 0, the branes (BBB);YC’(f and (BAA);YC’(f are dual when restricted to the
locus of reduced spectral curves (the analogous result also holds in the non-basic case). Indeed, we explicitly
describe a Fourier-Mukai transform over the fibres of B ; interchanging them. This Fourier-Mukai transform
is carried out using the autoduality of compactified Jacobians of integral curves with planar singularities,
from the general results of D. Arinkin [Ar]. It uses a Hitchin section (which embeds B, as a subvariety of

the support of (BAA)YX). to identify Jac’ (
to be autodual.

The corresponding result for the non-basic case is true as well. For d non-multiple of n a similar result
should hold, but the duality should require a gerbe to work out properly. We also note that the results in
this paper provide evidence for the dualities suggested in [FP].

It is interesting to notice that the support of our (BBB)-branes play a central role in the proof by Hausel
and Thaddeus [HT] of topological mirror symmetry for the moduli spaces of Higgs bundles for the Langlands
dual groups SL(n,C) and PGL(n,C) for n = 2,3 (the general case has recently been proved by Groechenig,
Wiss and Ziegler [GW7]). One might thus expect that further study of our dual branes in this setting would
provide a better geometric undestanding of the calculation of Hausel and Thaddeus. We will come back to
this question in a future article.

Here is a brief description of the organisation of the paper. In Section 2 we recall some background material
on the Hitchin system, and also on the Fourier-Mukai for compactified Jacobians. Section 3 deals with
the construction and description of the Narasimhan-Ramanan (BBB)-branes, including the corresponding
spectral data over a subspace B? of the Hitchin base. In Section 4 we describe a family of (BAA)-branes,
whose support maps to BY under h. In Section 5 we prove that, for d = 0, these two families (when restricted
to the open dense subspace B ;) are dual under mirror symmetry, by explicitly proving a Fourier-Mukai
interchanging them. Finally, in Section 6, we generalise the previous study to the case where v has order
strictly less than n in Jac(X)[n]. We give a description of a hyperholomorphic subvariety which conjecturally
admits a hyperholomophic sheaf, hence conjecturally a (BBB)-brane, and describe a Lagrangian subvariety
which is the support of the conjecturally dual (BAA)-brane.

Xp) with the corresponding EO(Xb), which is then shown

2. PRELIMINARIES

2.1. Higgs bundles and their moduli space. Let X be a smooth projective curve over C, of genus g > 2.
A Higgs bundle over X is defined [I1i1, Sil, Si2, Si3] as a pair (E, ¢) given by a holomorphic vector bundle
E — X, and a holomorphic section of the endomorphisms bundle, twisted by the canonical bundle K of X,

pe H*(X,End(E) ® K).

If the rank of F is n, then (F, ¢) is also, more precisely, called a GL(n, C)-Higgs bundle.
Let Mx (n,d) denote the moduli space of rank n and degree d polystable Higgs bundles on X. It is a
quasi-projective variety, whose complex dimension is given by

dim My (n,d) = 2n*(g — 1) + 2.

The moduli space Mx (n, d) is also denoted, following Simpson’s notation introduced in [Si2], by MR} (d).
The reason for this is that there is as a hyperkahler manifold [Hil, Si3] Mx ,(d) with complex structures

(21) Il, IQ and Ig = 11]2
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such that one can consider MR, (d) as (Mx ,(d), I1); it also called the Dolbeault moduli space. The De
Rham moduli space MR (d) is given by (Mx ,,(d),I2). It is the moduli space of connections on a fixed
C® vector bundle E over X of rank n and degree d, with constant central curvature equal to d/n (hence
projectively flat, and actually flat if d = 0).

Denote by w; the Kéhler form associated to I; and by €2; = w;;1 +iw;j_1 the corresponding holomorphic
symplectic form.

Non-abelian Hodge theory establishes the existence of a homeomorphism [Hil, S5i2, Si3, Do, Co] between
these spaces

homeo
>~

ML) "= MRS (d).

We shall mainly use the notation Mx (n, d) instead of MR, (d) for the moduli of Higgs bundles.
Given a Higgs bundle (E, ¢), we have the associated deformation complex

C* : End(E) 22 End(E) ® K,
with hypercohomology fits in the long exact sequence
0 — H(C*) — H°(End(E)) — H°(End(F) ® K) — H'(C*) —
— HY(End(E)) — H'(End(E) ® K) — H*(C*) — 0.

If (E, ) is a stable Higgs bundle, it represents a smooth point of the moduli space M x (n,d) with tangent
space T(g,,)Mx (n,d) = H'(C*). Thanks to Serre duality, ¢ € H(End(E) ® K) is an element of the dual
space of H'(End(E)).

We define the 1-form @ as the contraction of ¢ with the map H*(C*) — H*(End(E)). It can be check

that df defines a holomorphic symplectic form on the smooth locus of Mx(n,d) which coincides with
O = wa + iws.

2.2. The Hitchin system. We recall here the spectral construction given in [[1i2, BNR]. Let (p1,...,pn) be
a base of GL(n, C)-invariant polynomials with deg(p;) = 4; for instance, we could take p;(—) = (—1)tr(A?—).
The Hitchin map is the projection
hxn: Mx(n,d) — Bxn:=@®], H(X, K
Note that dim(Bx,,) = n?(g — 1) + 1 = dim(Mx (n, d))/2.
Consider the total space |K| of the canonical bundle and the obvious algebraic surjection 7 : |[K| — X.
The pullback bundle 7* K — | K| comes naturally equipped with a tautological section A. Given an element

be Bxp, with b = (b1, ...,by), we construct the spectral curve X, < |K| by considering the vanishing locus
of the section of 7* K™

N (T*b )AL 4 (D) + by, € HO(| K|, 7*K™).

It follows that the restriction of 7 : |K| — X to X, yields a ramified degree n cover that, by abuse of
notation, we also denote with

T Xy — X.

For generic b, the spectral curve X} is smooth, but it can be singular, reductive and even non-reduced. Since
the canonical divisor of the symplectic surface |K| is zero and Xj, belongs to the linear system |nX|, one can
compute the genus of Xp, yielding

(2.2) g(Xp) =1+n(g—1).
Furthermore, using Riemann-Roch, we see that 7,.Ox, is a rank n vector bundle of degree
deg(m+Ox,) = —n(n—1)(g — 1).
Given a torsion-free rank 1 sheaf F over X of degree § + d, where

(2.3) 0:=n(n—1)(g—1),
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we have that Er := m,F is a vector bundle on X of rank n and degree d. Since 7 is an affine morphism, the
natural O)x|-module structure on F, given by understanding F as a sheaf supported on |K|, corresponds to
a m4O|g| = Sym® (K™)-module structure on Ex. Such structure on Er is equivalent to a Higgs field

por:Er — Er @K,

as we know from [BNR, Si2]. This stablishes a one-to-one correspondence between torsion-free rank 1 sheaves
on X, and Higgs bundles (Ex, pr) such that

hxn(Er,or) =b.

The pair (X3, F) is said to be the spectral data of the Higgs bundle (E, ¢).

Furthermore, since this correspondence is done in [Si2] in a relative setting and semistability and stability
are preserved under the spectral correspondence [Si2, Corollary 6.9], one has an isomorphism between the
Hitchin fibre and the moduli space of rank 1 torsion free sheaves on X of degree 6. This moduli space is

precisely the compactified Jacobian (of degree ¢ + d) of X}, which we denote by E‘Hd(Xb). Hence

+d(Xb).

—
(2.4) hiyh, (b) = Jac
2.3. Fourier—-Mukai on compactified Jacobians of integral curves. In this section we review autodu-
ality of compactified Jacobians of integral curves with planar singularities and the associated Fourier-Mukai
transform given by Arinkin in [Ar] thanks to the construction of a Poincaré sheaf.

By construction, the spectral curve X}, has planar singularities as it is contained in |K|. Therefore, when

X, is integral, Arinkin’s duality becomes a duality of the corresponding Hitchin fibres hy', (b) = E6+d(Xb).

Suppose that X is integral. Then every semistable rank 1 torsion free sheaf on X, is indeed stable and
EJer(Xb) is a fine moduli space with universal family U, — X x Eéer(Xb). Denote by Uy its restriction
to X x Jac‘s(Xb). Before constructing the Poincaré sheaf, we first construct the Poincaré bundle using U
and Uy .

Given a flat morphism f : Y — S whose geometric fibres are curves, we can define the determinant of
cohomology (see [IKM] and [Es, Section 6.1]) as follows. If F is an S-flat sheaf on Y, the determinant of
cohomology Df(€) is an invertible sheaf on S, constructed locally as the determinant of complexes of free

sheaves, which is locally quasi-isomorphic to Rf+E. Consider the triple product X x EMCI(X b) x Jac(Xp)

and the projection fo3 : X} x E‘Hd(Xb) X Ja65+d(Xb) — E‘Hd(Xb) X Jac5+d(Xb), which is flat and whose
fibres are curves. Consider as well the corresponding obvious projections fi2 and fi3. The Poincaré line
bundle P, — ﬁ“d(){b) x Jac’(X3) is the invertible sheaf

—1
Py = szs (fl*Qub ® fl*Bul?) ® Df23 (fl*Bul?) ® szs (fl*Qub) .
The restriction of the Poincaré bundle P, to the point associated to M € Jac‘s(Xb), that is, Py =

+d(

is the line bundle over EJ X3p) given by

Polfaes+4(x,)x (a1}
(2.5) Povt =Dy, (Us ® [ M) @Dy, (f M) @ Dy, (Us),

where we have considered the obvious projections f1 : X} x E‘Hd(Xb) — Xp and fy 1 Xp X E‘Hd(Xb) —
—5+d

Jac™ (Xp).

. , . —5
Our Poincaré bundle is constructed over Jac
+d (

d .
- (Xp) x Jac’t4(X}). Of course, one can perform a similar

construction over Jac’ T4 (X}) x TJac’ X3), which coincides with Py, after restricting both to Jac? T4 (X3) x
Jac®™(X}). Gluing both line bundles over Jac’t¥(X;) x Jac®™(X}), one can define the line bundle

_ _ #
P — (Tac" (X)) x Tac (X))

where

o+d

(E‘”d(xb) X m‘”d(xb))ﬁ - (Jac”d(xb) x ﬁ“d(xb)) U (E (X3) x Jac”d(xb)) .

Consider the injection

i (E&rd(

— # — —
Xp) % Jach(Xb)) — Jac“d(Xb) X Jac“d(Xb),
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and define the Poincaré sheaf, as
i%:=:jgpg
Denote by 1 (resp. m2) the projection Jac Xp) x Eﬂd(Xb) — ﬁ“d(Xb) onto the first (resp. second)
factor. Using Py as a kernel, one can consider the integral functor
©,: Db (R‘”d(xb)) . Db (E6+d(Xb))
£ —  Rmy (7} @ Py)

6+d
(

(2.6)

o+d 6+d
( (

Theorem 2.1 ([Ar]). The moduli space of rank 1 torsion free sheaves over Jac Xy) is Jac Xp) itself.

Furthermore ©y is a derived equivalence.

3. NARASIMHAN-RAMANAN (BBB)-BRANES

3.1. Construction of (BBB)-branes. In this section we construct a (BBB)-brane on Mx (n,d). By defi-
nition, this is [K'W] a pair (N, (%, V #)) given by:
(1) A hyperholomorphic subvariety N € Mx(n,d), i.e. a subvariety which is holomorphic with respect
to the three complex structures I, I and I3 (cf. (2.1)).
(2) A hyperholomorphic sheaf (%#,V g) supported on N, i.e. a sheaf .# equipped with a connection
whose curvature Vg is of type (1,1) in the complex structures Iy, I and Is.

Remark 3.1. Notice that a flat connection is trivially of type (1,1) in any complex structure.

We start with the support of our (BBB)-brane. Inside the Jacobian Jac(X) = Jac"(X) consider the

subgroup Jac(X)[n] of n-torsion elements,
Jac(X)[n] :=={L e Jac(X) | L" = Ox}.
Recall that, as an abstract group, we have Jac(X)[n] = Z29. It acts on the moduli space of Higgs bundles
by tensorisation, i.e. as
v 1\/-[)((77’7d) - th(”ud)
(E,p)  — (E®Ly,¢).
Choose, once and for all, a non-trivial element
¥ & Jac(X)[n],

and denote the corresponding line bundle by L.. Every construction in this paper is carried out for such a
choice of 7.

Denote by M x (n, d)” the subvariety of points fixed by v € Jac(X)[n] under (3.1). It is a hyperholomorphic
subvariety since the tensorisation by line bundles is holomorphic in the three complex structures of M x (n, d)
(see [GR] for a proof in the case of SL(n, C)-Higgs bundles, that can be easily adapted to the case of GL(n, C)).

(3.1)

Remark 3.2. Since we are working with GL(n, C)-Higgs bundles (not fixing the determinant) one can ask
why don’t we consider the same action, but of Jac(X) in Mx(n,d). In fact, it is straightforward to see
that there are fixed points under tensorisation by L € Jac(X) if and only if L has finite order. Hence the
description of M x (n,d)? is precisely the same.

Let n = n’ - m, and suppose vy € Z,, has order m. Associated to L. there is a unique smooth projective
curve X, defined as the spectral cover of X given as the vanishing locus in the total space |L,| of L. of
the section §™ — 1 = 0, where § € H°(|L,|,pXL,) is the tautological section, being p, : |L,| — X the
projection.Let p still denote the restriction to X, of the projection |L,| — X, by

Dyt Xy — X,
Observe that it is a unramified regular m-cover of X. Notice the difference between these covers and the
ones appearing in the Hitchin system: the later ones are always ramified and the corresponding spectral
curves are always subvarieties of the total space of K. Notice also that ijnY is trivial over X, since the
nowhere vanishing section ¢ : Ox, — p5L, gives a canonical trivialisation.

The following is the fundamental result describing the fixed point subvariety M x (n,d)?. The proof for
vector bundles is done in [NR] for the locus of simple bundles, and then extended to all moduli space in
Proposition 3.46 of [Na]. The adaptation for Higgs bundles is in [[T].
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Theorem 3.3 ([NR, Na, HT]). Let (E,p) represent a point in Mx(n,d). Assume n = n' - m and let
v € Jac(X)[n] be a non-trivial element of order m. Then (E,¢) is fized by v if and only if it is the
pushforward of a semistable rank n' Higgs bundle (F, ¢) over X, that is,

(Ev 90) = (p%*va'y,*¢)'

Consider the moduli space Mx_(n’,d) of rank n’ and degree d Higgs bundles over X,. Since it is
compatible with the other complex structures, the pushforward under p, gives rise to a hyperholomorphic
morphism which is surjective onto M x (n,d)” by Theorem 3.3,

Py Mx (n,d) — Mx (n,d)”
(F7 (b) — (p’Y,*va’y,*gb)'
By [NR], two points in semistable vector bundles over X, are pushed forward to isomorphic vector bundles

on X if and only if they are in the same Z,,-orbit. A analogous result holds for Higgs bundles, as well, hence
we have an isomorphism

(3.2)

Mx(n, d)’y = MX’Y (n/, d)/Zm

Assumption 1. From now on, until the end of Section 5, we will be assuming that v € Jac(X)[n] has
mazimal order n.

In particular, we have the following corollary.
Corollary 3.4. If v € Jac(X)[n] has order n, then we have an isomorphism
Mx (n,d)” = Mx, (1,d)/Zy.
Since Mx_ (1,d) = T* Jac?(X,,), it naturally fibres over the Jacobian,
My, (1,d) — Jac*(X,).

Recall the norm map Nm : Jac?(X,,) — Jac?(X), given by Nm(O(D)) = O(p,(D)). It is obviously invariant
under the action of the Galois group, so it factors through the quotient by Z,,. Combined with the previous
projection, we get

9:Mx_ (1,d)/Z, — Jac’(X).

We will use these maps to construct flat (hence hyperholomorphic) bundles in Mx_ (1,d) and Mx_(1,d)/Z,.

There are natural embeddings X < Jac'(X) and X, < Jac'(X,). For d # 1, fix a point zy € X,
and ¥ € X, with p,(Zg) = wo. This allows us to generalize the embeddings for all d, X < Jac?(X) and
X, — Jac'(X,).

Let £ — X be a line bundle on the base curve with a flat connection V. Since 71 (Jac?(X)) is the
abelianization of m; (X), there exists a unique (up to isomorphism) flat line bundle (£, V) that restricts to
(£,V;) in X © Jac?(X). Consider the flat (thus hyperholomorphic by Remark 3.1) line bundle g*(£, V)
on Mx_ (1,d)/Z, and denote by (£, V) its pushforward under the isomorphism of Corollary 3.4, which
is a hyperholomorphic sheaf supported on Mx (n,d)?. This pair is therefore a (BBB)-brane on Mx(n,d),
which we call a basic Narasimhan-Ramanan (BBB)-brane associated to v € Jac(X)[n] and to L — X. We
denote it by

(BBB). := (Mx(n,d)", (£, V).

Analogously, given a line bundle 7 — X, with a flat connection V£, let (]—v' ,V7) be the (unique up to iso-
morphism) flat line bundle on Jac?(X.,) that restricts to (F, V) in X < Jac?(X,,). Note that f* (F,Vr)isa
flat line bundle on Mx_ (1, d), hence hyperholomorphic by Remark 3.1. Taking the pushforward under the hy-

perholomorphic morphism p~, we obtain the hyperholomorphic sheaf (#,V.z) := py & f *(f , Vr) supported
on Mx(n,d)7. As before, this defines a (BBB)-brane, the non-basic Narasimhan-Ramanan (BBB)-brane
associated to v € Jac(X)[n] and to F — X, which we denote by
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3.2. Spectral data of y-invariant Higgs bundles. Recalling the Hitchin fibration, hx , : Mx(n,d) —
Bx n, we denote its restriction to the fixed point set M x(n,d) and the image of the later by

h,y : MX(n,d)"Y i B;(,n = hX,n (MX(n,d)V) (e BX,n-
Also, we denote by B/, the subscheme of B;(,n given by those b such that the associated spectral curve, X,

is reduced.
Denoting by K., the canonical bundle of X, one can consider the Hitchin base for the curve X,

n—1
Bx,n=@ HO(X,Y,K;),
1=0

Since the n-covering p, : X, — X is étale, we have that pi‘;K =~ K, and, then, this yields

BX,n - BXw,n

(3.3) A

Lemma 3.5. The map (3.3) is injective and its image is B?&_’n, the fized point locus under the action of
the Galois group Z, of p-.

Proof. This is clear since p, is an étale covering, thus is a local diffecomorphism. Hence for every z € X,
dp(x) : To Xy — T, (X is an isomorphism. Therefore the map dp, : TX,, — TX between the tangent
bundles is surjective. Hence, for each i, p¥ : K* = A'TX* — A'T'X} = K/ is basically given by dual of
dp-, it follows that p¥ : K — K is injective. From this it follows (again using that p, is surjective) that
p%: HY(X,K') - H°(X,, K!) is injective for every 7, and therefore (3.3) is injective as well. a

Let £ = exp(27i/n) € Z,, be the standard generator of the Galois group Z,, of the cover p, : X, — X. We

will use the following notation repeatedly: given a section ¢ of the canonical line bundle K, of X, (i.e., ¢ is
a Higgs field for a line bundle in X ), write

ok = EM* 9,
for k =0,...,n— 1. Also, we denote the induced morphism the Jacobian by
o Jacd(X,) — Jacl(X,)
L —  EREL

Define
x: HYXy, Ky) — Bx

o (m@IZ ), @)
Notice that two sections ¢, ¢’ € HO(XV, K) map to the same point under x if and only if ¢’ = ¢, for some
k=0,...,n—1. It follows that
(34) Im(x) = H(X,, K,)/Zn,

with the Galois group Z,, acting by pullback.
Since X, — X is an unramified cover, one naturally has |K,| = |K| x x X,. Denote by

q: Ky — |K]
the obvious projection.

Proposition 3.6. Let v € Jac(X)[n] be of mazimal order. Then:

(i) For every b e B})n, the curve X5 < |K,| determined by b= p3b is the spectral curve associated with

(PXE,pZp), where hx n(E,p) = b.
(ii) The following diagram is Cartesian

(3.5) X; — X,

Xb?—‘xvu

where qp coincides with the restriction of q.
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(iii) Let ¢ € HO(X,,K,), b = hx n(py«®) and b= pib. Let also 7 = ¢*\ be the tautological section of
7T§‘I£Y over |K|. Then X5 is given by the vanishing of the section

n—1
[T =)
k=0
in |K,|. Hence
n—1
(3.6) X; = en(X5).
k=0

and it is singular and reducible. Moreover, Xy is reduced if and only if ¢ is not fized by any element of
the Galois group.

(iv) For every b € By ,, given by ¢ € HY(X,,K,) as in (iii) and such that ¢ is not fized by any element o
the Galois group Z,, one has that

(3.7) Xy =g 0 d(X),
so one naturally has a morphism

(3.8) vg:i=qo¢d: Xy — Xp.
which constitutes a normalisation map. Hence the corresponding spectral curve Xy s integral and
singular, with singular divisor sing(Xy) of length n(n — 1)(g — 1).

(v) For ¢ € H°(X.,, K.) not fized by any element of Zy, the curve in |K,| x H*(X., K.) given by

(3.9) X = | oiXy) x {on}

is the normalisation of X5, where the normalisation morphism is induced by t : |K.| x HY(X,,K,) —

|K|. Furthermore, there exists a morphism q : X - X, making the following diagram

X—t>X5

a[ o

X»Y?Xb

Cartesian.
Proof. (i) Let v € Jac(X)[n] be of maximal order and (F, ¢) € Mx(n,d), so that
(3.10) (B, ) = (py,«F, py.x0),

where (F, ¢) is a Higgs line bundle over X.,. Let b = hx ,,(E, ) € Bx n, so that b = (p1(¢),...,pn(p)), and
let X3, < |K| be the corresponding spectral curve, defined by

X+ (@A T pa(p) = 0.
Let now
pyb = (P3p1(9), - - -, P3Pa(9)) € Bx, -
Since p¥pi(p) = pi(piep), it is clear that
(3.11) hx., n(P3E, pyp) = p3b.

This proves the statement.
To see (ii), note that X; is defined by

T4 pET i) T T 4+ P pa () = 0,

where 7 = p¥A. Note that 7 is indeed the tautological section of p* K, in |K,| = [pZK]|.

So, the image of X; under dp,' : K, — K is X;, and we call this map ¢,. Hence, we have maps
m + Xz — X, and g : Xj — Xj, which moreover induce a morphism (73,p) : X; — X, xx X;. By the
universal property of fibred products, it is enough to define a morphism

X’yXXng’XE
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making the diagram below commutative

X’Y XxXb
\\/\
XETX[)
X, —X.

To do this, embed X, xx X < |K,| = X, xx |K| and check that the image is contained in Xj. It
follows from this commutative diagram that g, coincides with the restriction of ¢ under the identification
XE = X’Y Xx Xb.

(iii) From (3.10), we have that (pXE, p¥¢) = Z;é (€* F, ¢1,), hence from (3.11), we must have (3.6).

From (3.6) and (ii) proven above we conclude the following. If ¢ is not fixed by any element of the Galois
group, all the ¢ are different and then Xj is reduced and has precisely n irreducible components, each of
which is mapped isomorphically to X, by 7; (which is smooth and irreducible by maximality of the order

of 7).

On the other hand, if there is an element of the Galois group fixing ¢, then ¢, = ¢ for some k and k',
and Xj is a non-reduced curve.

(iv) Recall from (3.6) that the ¢;(X,) are the irreducible components of X3, and note that they all have
the same image under gy, : X3 — Xp, as

di(y) = ¢(&' (y))

for any y € X,. Then, since the image of g5 is X3, so is the image of one irreducible component
¢(X'Y) - X’g &) Xba

and (3.7) follows.

From (iii) we have that when ¢ is not fixed by any element of the Galois group, then Xj is reduced and
so is X3, by Cartesianity of (3.5). Since Xj is an n : 1 cover, the projection of each irredicible component,
as in (3.8), is generically an isomorphism. It is not an isomorphism because otherwise X, — X would be
unramified. We conclude that X, normalizes Xj. Since X is irreducible and the normalisation of X3, then
X is irreducible as well. Since X, is smooth with genus n(g — 1) + 1 as it is an unramified n-cover of X,
while the genus of X3 is n?(g—1) + 1, by (2.2). It follows that the singular divisor sing(X;) of X} has degree
0, that is, the difference of the genus of X and X,:

deg(sing(X3)) = n(n — 1)(g — 1) = 6.

(v) The description (3.9) of the normalisation of Xj; follows from the description of X; =, ¢r(X5).
Note that the composition

De(Xy) x (o1} — on(X,) 2 X,

coincide with vy, . Observe now that vy, = qo ¢p = vy o ¥, Then, setting § = (¢}, q},---,q,_;) for
¢; = &' o .y, we have that (6.6) commutes, O

After studying the spectral curves in Proposition 3.6, one can describe their loci in the Hitchin base.

Proposition 3.7. Let v € Jac(X)[n] have mazimal order n.

(i) One has the isomorphism
n—1
B, = H(Xy,K,)/Zy = ( P H(X, KL;)) /L,

where the Galois group acts by pullback in HO(XW, K.), and by multiplication under & on H(X, KL;)
In particular,

dim(B% ,,) =n(g — 1) + 1.
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(ii) Xy is non-reduced if and only if ¢ is fized by an element of the Galois group. Hence, under the previous
isomorphism B, | is the dense subscheme given by the image of the points of HO(XAY7 K.) not fized by
any element of the Galois group.

Proof. (i) By (3.11) and pZpi(¢) = pi(pip) = pi(@?;ol ¢:), we conclude that pX maps B, to Im(x). This
is an isomorphism by Lemma 3.5, since the elements in Im(y) are Z,-invariant. Thus, the first description
of By, follows from (3.4). The second description follows from this and the fact that, considering the

pushforward under p, (which being a finite morphism, does not change H 9,

n—1
H(Xy,K\) =~ @ H(X,KL).
=0

The dimension of By, follows from dim H°(X,, K,) = g(X,;) =n(g — 1) + 1
(ii) By (3.5), X is reduced if and only if X3 is, and the later is reduced whenever ¢; = ¢; for some i # j,
i.e., whenever ¢ is fixed by some element of the Galois group. Then, (ii) follows easily from (i). O

From all of the above, we deduce the following. Let
hx,1:Mx, (1,d) — H(X,, K)
be the Hitchin map on Mx_ (1,d) i.e. the projection of T™* Jac!(X,) — H°(X,, K,), and let
hy i Mx(n,d)’ — B},
be the restriction of the Hitchin map of Mx (n,d) to Mx(n,d)”.
Corollary 3.8. There is a commutative and Z,,-equivariant diagram

D~y

(312) MXW(l,d) 1\/IA)((’TL,CZ)V

hxw,ll Lhw

HY(X, K,)——— > B .
( vy V) (;Di‘)’lox X,n

Let be B! ,, and take ¢ € H°(X.,, K,,) such that pib = x(¢). Then the diagram above restricts to

(3.13) || (act(X,) x {0r}) 2 1 (b).
i=0

The Galois group Z,, permutes the components of the source. Hence

(3.14) h 1 (b) = Jac’(X,),

where the identifications between the different components in the source of (3.13) the Galois group action.

Proof. The top arrow is defined in (3.2), where we recall that we are considering v of maximal order. By
Lemma 3.5, the bottom arrow is well defined. Recalling that (3.3) is injective, commutativity follows since,
for any ¢ € H (X5, K,), one has for every invariant polynomial p;, that

PAPi(Py xP) = Pi(P3Py.20) = Di ( S ¢i> .

Equivariance by the action of Z, follows form the Z,-equivariance of the vertical arrows and the Z,-
invariance of the horizontal arrows. The preimage in (3.12) of the fibre of b € B}, is | J; h}i71(§i7*¢),
which are disjoint as the points in B] ; correspond to those ¢ not fixed by Z,. Finally, (3.14) follows from
commutativity, equivariance, Corollary 3.4 and (i) of Proposition 3.7. O
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Associated to ¢ € H°(X,, K.,) projecting to b € B] ; we have constructed in (3.8) the normalisation
morphism v,. By construction, we have the following commutative diagram

(3.15) X,

Py Xb

It follows from (3.8), that for every ¢; = £%*¢ projecting to the same b€ B] ,, one has

. Vg, = vg o &L
3.16 6 = Vpol
Consider the pushforward morphism
. —0+d
(3.17) Ugp JaCd(Xy) — Jac  (Xp)
g L V¢7*(€

where we recall that § is given by (2.3). If ¢, ¢ € H(X,,, K.,), with ¢y = ¢po&”, are any two representatives
of the class be BY ~ H°(X,, K.,)/Z, then the corresponding morphisms 74 and 7y, have the same image

Im(ﬂ¢) = Im(D¢k)
due to (3.16).

Proposition 3.9. Let be B . Then,
(i) the intersection of the fized point subvariety Mx (n,d)Y with the Hitchin fibre is

h'(b) = Im(ig) = Jac’(X,).

(i) the restrictions to h3'(b) of the line bundle £ and the sheaf 7 are respectively identified, under the
isomorphim (3.14), with the bundles Nm*L and @}—; &.F.

Proof. (i) The identification h " (b) = Im(74) follows easily from the commutativity of (3.15) and the fact
that, after Corollary 3.4, every point in hZ L(b) corresponds with the pushforward under p, of a line bundle

on X.,. Then, recall (3.14) which agrees with the fact that Tm(i7,) = Jac®(X,,) since i is injective as it is the
pushforward under the normalisation map of a curve. Note that Corollary 3.8 implies that the identification
between Jac?(X,) x {¢} and Jac?(X,) x {€"*¢} made by £, corresponds with the identification between
Im(vg) and Im(vg,).

(ii) Recall from (3.13) and (3.14) that the Hitchin fibre hgln(b) is given by the quotient

< |;| Jac’(X,) x {éi’*(b})/zn ~ Jact(X,).
i=0

Recall as well that .Z is given by g*ﬁv where ¢ is given by the factorization of the norm map Nm through
the quotient by Z, and the trivial projection T* Jac?(X,) — Jac(X,). Since .Z is a line bundle, note that
£ |h;(1 ®) is a line bundle as well, it is indeed the descent line bundle given by Z,-invariant line bundle in
LI, Jac* (X)) x {€"*¢} corresponding to Nm*Z on each component. This proves the statement for .%.

Recall that .7 is given by p, « f*F and recall from (3.13) that h}}n(b) is the image under p-, of | |, Jac?(X,)x
{€9*¢}. Since f is the trivial projection T* Jac?(X,) — Jac®(X,,), the restriction of J*F to each Jact(X,) x
{€8* ¢} is simply F. Then, the restriction of .# to the image under p, of | |; Jac? (X,) x {£€"*¢}, corresponds
with the direct sum of the pushforward of F under the isomorphisms

&'+ Jac!(X,) x {€* 0} — Jac!(X,) x {¢}.
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Remark 3.10. Since, for any i, the éi are automorphisms of Jacd(XV) with inverse é‘i, we have that the
pushforward under &' corresponds with the pullback under £ ~%. Also, note that these constructions commute
with dualization o

GF=grF.
Remark 3.11. Since the dual of the norm map corresponds to p- under dualization, we have that

Nm* [ =~ p\ﬁ/ﬁ
We observe as well that this bundle is invariant under the action of éi, as
EuPL = EfpiL = piL.
4. HECKE (BAA)-BRANES

In a hyperkéhler variety with Kéahler structures ((I1,w1), (I2,w2), (I3, ws)). By definition [KW], a (BAA)-

brane consists of a pair (X, (W, Vy)), where
(1) X is a complex Lagrangian subvariety for the holomorphic 2-form Q = ws + iws;
(2) (W,Vw) is a flat bundle supported on X.

In this section we construct a family of (BAA)-branes over the open subset determined by reduced spectral
curves, which are mapped under the Hitchin fibration to the same locus of the Hitchin base as our (BBB)-
branes (BBB)}. and (BBB)7J.. Its support is a subvariety of Mx(n,d), depending on v € Jac(X)[n] and
on a holomorphic line bundle J € Jac®*¥(X,). Denote it by Hec:Y; see (4.5). The basic idea of its

fibrewise description is the following (cf. Theorem 4.6). Take a point on b€ B ;. As we know, the Hitchin

o+d
(

fibre h;()ln(b) is the compactified Jacobian Jac X3). Consider a normalisation vy : X, — X3, where

x(¢) = pZb, and the induced pullback map 7y : Jac5+d(Xb) — Jac“d(X,y). Suppose J is in the image of
the pullback induced by py : X, — X, hence it is fixed by the Galois group action on Jac‘”d(X,y). Then
the intersection of Hec;ye’dj with h}}n(b) will be the fibre of ¥4 over J. By (3.16), and since {*J = J, this
fibre is independent of the choice of the representative ¢ of the class defined by b. If J does not descend to
X, then it is not fixed by the Galois group, and the intersection of Hec;ye'g with h)_(_ln(b) will be the union of
the fibres of 4 over the orbit of J under the Galois group. Again by (3.16), this union is independent of
the choice of ¢.

We will also see that the Higgs bundles lying in Hec;ye’dj can be constructed as Hecke transformations of

naturally associated Higgs bundles lying in M x (n,d +d)”. Hence, roughly speaking, our subvarieties Heczc’g

can be obtain as global “Hecke transformations” of the support of the Narasimhan-Ramanan (BBB)-branes
over My (n,d +d). This justifies the notation for these subvarieties, as well as the name we have given to the
corresponding branes, as Hecke (BAA)-branes. In fact, we shall also prove that each Hecze’g is a Lagrangian
subvariety, hence, when equipped with the trivial line bundle, becomes a (BAA)-brane, which we denote by
7T
(BAA) Y.
Notice here a kind of duality on a fibre of the Hitchin map over a point on B ;. For the Narasimhan-

Ramanan (BBB)-branes, we considered the spectral data embedded in E‘Hd(Xb) under the pushforward

morphism (3.17) induced by v,. For the Hecke (BAA)-branes we consider the fibre of the pullback morphism
again induced by vg. Indeed, for degree d = 0 (or multiple of n), we will associate, in Section 5, to each
brane (BBB)}. or (BBB)%, a (BAA)-brane (BAA)”:J where 7 is naturally associated (via the Hitchin
section) to £ or F. Moreover, we will prove there that these pair branes are indeed dual branes in the sense
of mirror symmetry.

4.1. Construction of the subvarieties. In this subsection we construct the subvarieties which will sup-
port our (BAA)-branes. As always, let 7 € Jac(X)[n] be of maximal order. Recalling that B}, =

HY(X,,K,)/Zy, we denote by H , the preimage of B! ,. This coincides with

H),={¢e H(X,,K,)| is not fixed by any element of Z,,}.
Define the tautological morphism constructed with the sections of K,
¢: X, xH, — PK,)xH],
w.0)  — ([o(y):1].9),



14 E. FRANCO, P. B. GOTHEN, A. OLIVEIRA, AND A. PEON-NIETO

and note that the closed subset ®(X, x H ;) < P(K,) x H_ , is the family of curves in P(K,) parametrized

by H ,, where the curve parametrized by ¢ is precisely ¢(X,). Recalling that K, ~ X, xx K, so P(K,) =~
X, xx P(K), we denote by ¢ the obvious projection P(K,) — P(K). Consider the closed subset of P(K) x
Hoas

27 i= (% Ly, ) 0 (X, x HLy),

and note that this defines a family of curves ¥7 — H! |, which is flat since both ® and ¢ are flat morphisms.
Furthermore, (3.7) implies that the restriction to ¢ € H), < H°(K,) is the spectral curve X;,, where

pib = x(9),
(4.1) g = q(d(Xy)) = Xb.

Hence, the geometric fibres of X7 are reduced by (iv) Proposition 3.6. Since X7 is a flat, finitely presented
family of curves, with geometrically reduced fibres, it follows by an unpublished result of Mumford [BLR,
Theorem 2, Section 8.2] that the associated relative Jacobian Jac“d (X7) — H] , exists and it is fine i.e. it

is the parametrization space of a universal family of line bundles U ; — X7 x HY, Jac HY, (E'V) Note that the
trivial family X, x H , satisfies as well the previous conditions, so the relative J acob1an J ac (X x H )

exists as well. Since the family X, x H , is trivial, we have

Jaco i (X, x HY ) = Jac® (X)) x H].

H red’

and it is trivially an open subset of Jac’*¥(X,) x HO(X,,, K,,) = My (1,6 + d). Later on, the choice of the
notation § + d for the degree will become clear.
By construction, X7 comes equipped with the morphism v := (g x 1de) o ® of HO(KV)-schemes

(4.2) v i (X, x HYy) — 57,
which coincides fibrewise with (3.8),

vg : Xy x {¢} — 7]y = Xp.
Since the pullback morphism is functorial for line bundles, associated to (4.2) one can define

~ S+d ~ N 6+d ¥y ~ S+d 0%
(4.3) v: Jac rcd(E ) Jacy; (X'v >;Hred) ~ Jac’ (X)) x H] 4
LYy +— vil — (X, x {¢}).

Consider the projection 7 : P(K) — X given by the structural morphism of K — X. Note that,
Y7 ¢ P(K) x H, comes naturally equipped with the projection

Hz(ﬂlerwcd):E'yﬁXxH;yed.

It follows from the fibrewise description of X7 (4.1) that IT is a ramified n-cover. Observe that (7 x
1y )*K — P(K) x H_ , has a tautological section A and let us abuse of notation to denote by A the
tautological secion restricted to ¥7 < P(K) x H] ,. Recall the universal family of line bundles U
7 x HY, JacHrvcd (37). Tt follows from the spectral correspondence that

(V7,07) = (n xp 1Jac)* ULy \) — (X x HLy) o Jachid (£7),

red

is a family of stable rank n degree d Higgs bundles parametrized by Jac HY, (37). From moduli theory, this
provides a morphism to the moduli space of Higgs bundles

(4.4) s Jac5+d (X7) — Mx(n,d),

defined over X7 via the spectral correspondence. Observe that the image of s is contained in M x (n, d) x g BY

by construction, and that it is an n to 1 map onto its image since for every ¢, = £¥*¢, one has that
s(Jac”H(27]5)) = s(Jac™H(27],,))

Associated to every line bundle J — X, of degree d + ¢, we define, using (4.4) and (4.3), the subvariety
of Mx(n,d) given by

(4.5) Heely = s (07 ({7} x H]Lq)) -
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By construction, Hec”7 lies inside M x(n,d) xp BY, so it fibres naturally over B under the Hitchin
fibration, whose restriction we denote by h’,

(4.6) hY : Hecls] — B,

One has the following fibrewise description of Hec]” 7.7

7 consider b € B, given by ¢ € H°(K,), and let
o = EM* ¢, then

(E,®) = mp 4L for any line
Heczc’;ﬂb =< (E,®) e Mx(n,d) xg B” | bundle L — X, satisfying
u;’jL >~ 0% 7 for some i.
Notice that if J descends to X, then £%* 7 =~ 7 is independent of i.
In fact, locally on B, Heczc’g can be realised in terms of Hecke transforms of families of bundles as
follows. Consider the family
2 = (X, x H),)/Z, — B,
Let 2" — B], be the family of spectral curves over B ;. Note that 2" = ¥7/Z,. Moreover, we have a
Cartesian diagram:

(4.7) X, x H  “—=3%7

L

where n is the normalisation morphism.
The following two results follow from the preceding considerations.

Lemma 4.1. X, x H] , is étale over Z.
Proposition 4.2. Let J € Jac(X,). Then, there exists a cover U of B, such that for any open set U e U

HecIed xpr U= UA_l (EW* T x U).
=0
In the above
S+d S+d (o
f: Jacy (ﬁ&”) — JaCBJid('%)
is the pullback morphism and Ny s its restmctwn over U.

4.2. Properties of Hec’y. We now study the properties of Hec] T Particularly relevant are the proofs

that Hec;ye’dj are indeed Lagrang1an subvarieties of Mx (n,d) and the proof that the Higgs bundles lying on
them arise as Hecke transformations of certain associated Higgs bundles representing points in M x (n, d+d)7.

Proposition 4.3. The subvariety Hec;ye’g is contained in the stable locus of Mx(n,d).

Proof. 1t follows by construction, since we are considering only spectral data given by reduced and irreducible
spectral curves. O

Consider the pullback map between the moduli spaces of Higgs bundles over X and over X,
Mx(n,d) — Mx, (n,nd)
(E,®) +— (p} “E ,P5®),

which is well defined since pullback by finite étale maps of solutions to Hitchin equations are solutions as
well.
Recall the unipotent locus described in [F'P, Section 4]. We now study its relation with Hecrcd

(4.8) 2

Proposition 4.4. We have
y (Hec?&‘f) c Dl Unifg;*j(n, nd).
In particular, if J descends to X, then )
-y (Hec?&‘f) c Uni)‘?7 (n,nd).
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Proof. This can be seen from the spectral data, as by [F'P, Proposition 4.5]
Unig_(n,nd) nh™'(b) = {L — X; : 7*L =q¢*T}.
Now, by Cartesianity of eqrefeq cartesian diagram spectral in Proposition 3.6, the spectral data of pj(E ,0)
is the pullback of the spectral data of (E, ¢). Thus
by (Heelid ) a bl 1 @) = {L > X ¢ L=p*L,L— Xy, viL =T},
But, thanks to (v) Proposition 3.6, we have
PR = gFeRii* g
We have thus proven

Py (Hecls ) m bt () Ui (n,nd) !, (B)

Proposition 4.4 has important consequences, as the holomorphic 2-form vanishes in Hec;ye’g.

Proposition 4.5. The subvariety Hec;ye’g 1s 1sotropic.

Proof. Let wx € QO(A*T*Mx (n,d)) be the symplectic form on My (n,d) associated with the complex
structure Jac(X)[n]1, and likewise for wx_ € QN> T*Mx_ (n,nd)). We need to check that the stalks of
wx on all stable points (F, ¢) € Mx (n,d)) vanish, which by Proposition 4.3 are all points. Recall that wx
is defined on the tangent space T(g ) Mx (n,d) = H'(C*) by the pairing

Coox  HY(X,EndE® Kx) ® HY(X,EndE) — H°(X,C) = C.
In a similar fashion, one defines wx by pairing the spaces H°(X,,EndE ® K.,) and H'(X,,EndE). Let
recall from (4.8) that the pullback map p,. By [F'P, Proposition 4.5], p~(E, ) = (E,$) is stable. Thus for
every v, w € T(p,,)Mx(n,d) one may consider

CUX,Y (dﬁvva dpvw) = <p'ﬂ;vﬂp:w>X-y = p:<vu ’U}>X = (dﬁv)th (’U, ’U}),

where the first and last equality follow from the identification T{ g, ,)Mx (n,d) = H'(C*). By Proposition
4.4 and [F'P, Proposition 4.2], (dp,)'wx (v,w) = 0 = p*{v,w)x. Since (v,wyx € C = H’(X,C), and p, is
a local isomorphism, it follows that the globally constant function (v, w)x vanishes locally, so it must be
globally zero. Hence isotropicity follows. O

We now describe the fibres of the fibration (4.6) restricted to the locus of reduced spectral curves, showing
that the points in Hec;ye’dj are Hecke transforms of certain y-invariant Higgs bundles determined by J, what
justifies the choice of the notation Hec. For every b e B] | given by ¢ € H(X,,, K), define

(4.9) (Bz.00) = (s T Pravi )

where A is the tautological section restricted to X;. By Theorem 3.3 these bundles are y-invariant.

Theorem 4.6. The fibre of (4.6) over be B]. | is a union of torsors over H°(Xy, O;ng(xb)). In fact
ngs—1
(h)7H0) = || HO(Xs, Ofgix,):
i=0

where ng is number of distinct points in the orbit of J under the Galois group Zy,.
Moreover, the Higgs bundles (E,v) € (h7,)~(b) are Hecke transforms, at the divisor m,(sing(X3)) on X,
of the y-invariant Higgs bundles (E7,¢y), i.e. one has the short exact sequence

(4.10) 0— E— Ey — On,sing(x,) — 0,
and

(4.11) ¥ = vyl
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Proof. Recall from (3.8) that vy : X, — X3 is a normalisation map. Hence, by [Gr, Proposition 21.5.8], we
consider the following short exact sequence of sheaves on Xj.

* * *
0 OXb Vd’;*OX.Y Osing(Xb

—0
and the induced long exact sequence in cohomology, which is )
0 — H°(Xp, 0%,) — H(Xp,v4,x0%) — H°(Xp, 0% o(x,) — H'(Xp,0%,) — H'(Xp,vx0% ) — 0,
as H(X,, O:‘mg(xb)) 0, since Obmg x,) 18 & torsion sheaf.
Since vy is a finite morphism, H%(Xp, Vv O0%_ ) = H(X,, 0y)=C" = HO(Oj‘(b) and also H'(Xp, Vv O%_ ) =

H'(X,, O}‘{w). Therefore, we get the short exact sequence

(4.12) 0 — HO(Xp, O yxy) — H' (X0, O%,) — H'(X,,0% ) — 0,

sing

where the second morphism corresponds to the pullback map 7y : Jac(X,) — Jac(X,) for via v4. By (4.12),
the kernel of 7, is isomorphic to H%(Xp, Obmg( X, )) Since the preimage under vy of any line bundle on
Jac’t¥(X,) is (non-canonically) isomorphic to kerg. After (3.16) we have ﬁ;l(j) = 19;]1 (€0=D* ), so
they are exactly ns of them. Then first statement follows.

Since every (E,¢) € (h7;)~"(b) is given by a spectral data L — X, such that viyL = J, one has that
(4.13) 0— L —vp+J — Osing(x,) — 0

Then, (4.10) holds after taking the pushforward under 7, of (4.13), were we observe that m xvp +J =
Py,xJ = Eg since (3.15) commutes. Finally, (4.11) is a consequence of the inclusion L < v4 »J of sheaves
in |K]|. O
Remark 4.7. Proposition 4.2 is the version of (4.10) in terms of families of spectral data.

Remark 4.8. If J is the pullback of a line bundle on X, then ns = 1 since it is invariant under the Galois
group. Then (hY)7'(b) is a torsor for HO(vaobmg(x )). Notice that this case only occurs when d is a

multiple of n (hence can assume d = 0), since deg(J) = ¢ + d.

The next result shows that, again if J descends to X, then the Hitchin section restricted to B, maps
to Hec?J, thus providing a section of (4.6).
Proposition 4.9. Suppose d is a multiple of n. Consider a line bundle L — X of degree (6 + d)/n.

*L
The Hitchin section associated to L intersects every fibre of Hec, ’pv — B, providing a section of this
fibration.
Proof. One can consider, for every b € B, the Higgs bundle obtained from the spectral data 7L — Xj,.
c
By the commutativity of (3.15), it is contained in Heclﬁ” O

'YJ

Since we already know, after Proposition 4.5, that Hec ;; is isotropic, Lagrangianity follows after showing

that is is mid-dimensional.

Theorem 4.10. Hec'y’dj is a Lagrangian subvariety.

Proof. Thanks to Theorem 4.6 the dimension of the fibres of (4.6) is equal to the dimension of H( X}, Osmg( Xb))

We have that dim H°(X,, OZina(x,)) equal to the degree of the singular divisor sing(Xp) of Xj, and by (iv) of

Proposition 3.6 this is n(n —1)(g —1). From (i) and (ii) Proposition 3.7 dim B} ; = dim B}, = n(g—1) +1.

So we have a mid dimensional subvariety, as the dimension of the fibers and the base of (4.6) are additive

since we lie in the stable, and therefore smooth, locus. It is moreover isotropic by Proposition 4.5, thus

Lagrangian. O
For every v € Jac(X)[n] of maximal order and every line bundle J — X, of degree ¢ + d, we have thus

constructed a Lagrangian subvariety Hec;ye’dj of the moduli space of Higgs bundles M x (n,d), which lies in
the locus given by reduced spectral curves. Taking the trivial flat bundle on it, we obtain a (BAA)-brane,

BAA)T = (e, (0,V0)).,

which we call the Hecke (BAA)-brane associated to v € Jac(X)[n] and J — X, (restricted to the locus of
reduced spectral curves).
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5. MIRROR SYMMETRY IN THE LOCUS OF REDUCED SPECTRAL CURVES

In this section we study the duality between the Narasimhan-Ramanan (BBB)-branes and the Hecke
(BAA)-branes that we have constructed in the preceding sections. For a choice of Lagrangian section of the
Hitchin fibration, one can construct a relative Poincaré sheaf over the locus of reduced spectral curves, and
mirror symmetry is expected to be realised by a Fourier—Mukai transform associated to it. Since the duality
is not yet well understood in the Hitchin fibres corresponding to non-reduced curves, we will restrict our
study to the locus of reduced spectral curves.

In this section, we perform a Fourier-Mukai transform of the restriction of the Narasimhan-Ramanan
(BBB)-branes (BBB)}. and (BBB)}. to a Hitchin fibre associated to a reduced curve. We will see that
the support of the transformed sheaf is precisely the intersection of the Hecke (BAA)-brane with the corre-
sponding Hitchin fibre. By functoriality of the relative Fourier—Mukai transform, the fibrewise Fourier—-Mukai
transform that we perform corresponds to the restriction to a given fibre of the relative one.

In this section we address only the case of trivial degree d = 0. We do so because, in this case there exist
global Lagrangian sections of the Hitchin fibration hx , : Mx(n,0) — Bx n, the so-called Hitchin sections.
This allow us to perform the relative Fourier-Mukai transform without using a gerbe (or using a trivial one).
For d non-multiple of n, there is non such global Lagrangian section, hence a gerbe is required to perform
the relative Fourier-Mukai (cf. [[I'T]). Another option for such d is to consider instead the moduli spaces
of parabolic Higgs bundles, since, for an appropriate choice of weights, there is a Hitchin section, hence the
duality can be performed without the gerbe (cf. [GO]).

Consider the Hitchin section associated to a square root of the canonical bundle K'/2, i.e. take for
every spectral curve m, : X — X, the line bundle 7 K (n=1)/2 5 X,. We consider here the Fourier-Mukai
associated to this Hitchin section, so 7} K (n=1)/2 will be the distinguished point in our Hitchin fibre. Note
that p,”;K =~ K, so p,”;K 11</2 is a square root of K, giving rise to an identification between the abelian variety
Jac’(X,) and the torsor Jac®(X,).

From (iv) Proposition 3.6, we have that, for any b € B ,, the spectral curve X is reduced, irreducible
and has only planar singularities. We find ourselves in the situation described in Section 2.3, and, thanks to
[Ar], there exists a Poincaré sheaf Pj, — Eé(Xb) X Eé(Xb) giving rise to the derived equivalence Oy of
(2.6).

We recall that the Poincaré sheaf Py, is constructed from the Poincaré bundle P, — EJ(XZ,) x Jacd (Xp).
We provide first some technical results concerning P,. Since X, is smooth, the jacobian JaCO(XW) is a
smooth abelian variety known to be self-dual and one can naturally define a Poincaré bundle over the
product Jac’(X.,) x Jac’(X,,). As & = n(n—1)(g— 1) is a multiple of n, the choice of a point zo € X defines
an isomorphism between Jac’(X.,) and Jac’(X,) defined via tensoring by O x, (p5"(x0)), where we recall
that p, : X, — X is an n-th cover.

Denote by ’57 the Poincaré bundle over Jac’(X,) x Jac’(X,). Recall from (3.17) the pushforward mor-
phism 7y induced from the normalisation map vy : X, — X3, and consider as well the pullback map
g = Jac’ (X)) — Jac’ (X,).

One sees that both (g x 1jac)" Py and (155 X %)*757 are bundles over Jac’(X.,) x Jac’(X,) where 15

and 1y, are the identity morphisms in Jac”(X,) and Jac’ (X,). Similarly to [FT°, Lemma 5.2], one can prove
that they are indeed isomorphic.

Proposition 5.1. One has that
(g X 13ac)™ Py = (L5 X 0g)*Ps.

Proof. After a certain adaptation, the proof is analogous to that of [F'P, Lemma 5.2]. We include it in the
present paper for the sake of clarity.
Note that (74 x 1yac)* Py is a family of topologically trivial line bundles over Jac?(X,) parametrized by

Jac®(X,). Since 73v — Jac” (X)) x Jac’(X,) is a universal family for these objects, there exists a map
g Jac’ (X)) — Jac®(X,,),
such that

~

(7 X Lyac)* Py = (155 % 9)*P5.

Jac
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We claim that this map is g = 74 but to see it, we need some preliminary statements.

For each M € Jac®(X,), recall the description of Py 5 given in (2.5). Recall as well the projections
f1: Xp x ﬁé(Xb) — Xb and fo : Xp x Eé(Xb) — EJ(XIJ), and take the obvious projections fl :
X, x Jac’(X,) — X, and fa: X, x Jac’(X,) — Jac’(X,). One has the following commuting diagrams,

Vg X Vg

X, x Jac’(X,) X % ﬁé(Xb)

| :

X'y - Xba

and

X, x Jac®(X,) — 2" o X, x Tac’ (X3)

J

Jac’(X,) Tac’ (Xp).

We know from [Es, Proposition 44 (1)] that the determinant of cohomology commutes with base change,
i.e.

I;;Df2 = 'sz(l/qb X D¢)*.

Let us denote by 7/77 - X, xJ ac’ (X,) the universal bundle of topologically trivial line bundles over X,.
Observe that, after Section 2.3, the Poincaré bundle P, satisfies

~

’PV,N = sz (Z/N{v ® fl*N)*l ®’Df2 (J?l*N) ®Df2 (Z/N{v)

Recall that U, — X3 x EJ is the universal sheaf of degree § torsion free sheaves on X3 and consider the
pullback (v x 74)*Uy, which is a sheaf over X, x Jac’(X,). Given G € Jac’(X,), observe that the restriction
of (Vg x Uy)*Uy to X, x {L} coincides with

lle

(v x 7g)* Up) Ix, x(ay = ((1x, X 76)* (Vg X Lac)*Us) |x, x ()
(

(Vo X L3ac)*Un) |x, x (s (G)}

lle

lle

V (ub|Xb><{V¢( )})
~ ’/qb (Mz;,*(ulewX{G}) :

Then, we see that 7/77 is a subfamily of (v4 x Uy)*Uy, fitting in the exact sequence
(5.1) 0 — Uy — (Vg x 74) Uy —> Qp — 0,

where Qp is the (constant) family of sky-scraper sheaves supported on Vgl(sing(Xb)).
The additive property of the determinant of cohomology [s, Proposition 44 (4)] applied to (5.1) gives

D, ((vg x p)*Up) = Dy, (Uy) @Dy, ()
Given any line bundle N over X, we have that Q) ® fl*N is isomorphic to 9y itself, hence
D;, (2 ®FffN) =Dy, (Q).

Also, one has the following commutative diagram
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Using these properties, we can show for any M € Jac®(X}) that

73%9(1\4) =5 Pom
7 (Dr. Uy ® FEM) " @D, (F5M) @ Dy, (th))
~ 73Dy, Uy ® M)~ @ 75Dy, (£ M) ® 75Dy, (Up)
>D; (g x 79)* (U ® fFM)) ™" @Dy, (v x 7)* (ff M) @ Dy, (vs % 7)*Us)
=D, ((uq5 X 75 Uy @fl*u;M)_l ®D;, (fl*u;*;M) ®D; (v * 79)*Us)
~sz(u ®f1’/¢ )~ (Qb®f1 vgM)™t @Dy, (Jyl*V; )

®Dj, (U) ®Dj, (D)

~D; (U, ® ffviM) " ©D; (Q) " ©D;, (?V;M) ®D;, () ® D, ()
D; (U, ® f{viM) ' ®D;, ( fl*u;tM) ®D; (i)

lle

I?

lle

P’y,u:M
~ P’y 1/¢
Then, g = 4 and this finish the proof. O

~

Consider the projections to the first and second factors

Jac®(X,) x Jac’(X,)

™ 2

Jac’ (X)) Jac® (X)),
and, using ’57 — Jac?(X,,) x Jac®(X,,), define the integral functor

0,: D'(Jac’(X,)) —  D'(Jac’(X,))
e — R (TFE* @ Py).

One can now study the image under ©; of the complexes constructed by pushforward via the embedding
vy : Jac’ (X)) — Eé(Xb). Let us denote the inclusion of the Jacobian into the compactified Jacobian by
B Jac® (X)) <> Jac (X3).

Theorem 5.2. There exists an isomorphism
Op(Rrg +E°) = Rh*ﬁ;fev(é').

Proof. First of all, note that Riy +€°® is a complex whose sheaves are all supported in Im(#y), and this does
not intersect Jac’(Xj). Therefore,

_ - #
supp (7} R +E%) N (JacJ(Xb) X Jacé(Xb)> = Tm(y) x Jac® (Xy),

N - S #
which is contained in JaCJ(Xb) x Jac® (X3) < (JacJ(Xb) X Jacé(Xb)>

Recall from Section 2.3 the injection j and note that the following diagram commutes,

(Jac (Xp) ><Jac (—>Jac (Xp) x Jac (Xb)

J /

Jac X Jac
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Since Py, = j*’ng, one can see that
Py @i Rivg +E° =~ ixPp @ T Rivg +E°.
Applying the projection formula yields
Py @Ry +E° = Riy(Py ® i*nF Rig 1E°).

Consider the obvious projections

Tac’ (X3) x Jac® (Xy)

! ’
St o

Tac’ (X)) Jac (X).

Recalling the inclusion & : Jac® (X;) < Eé(Xb), one has that
e homh =myo0i,
o T =m 0.
As a consequence of this,

Op(Rip +E°) =Rma 4 (Pp @ w5 Rivg +E°)
>Rrg w Riy(Py @ "1} Rivg +E°)
=RhyRmh (Py ® (71)* Rig +E°).

Consider also
Jac’(X,) x Jac®(Xp)

/ X
Jac’(X,) Jac® (X,),
and, recalling the projections 71 and 73, observe that
Ty =15 0 (Vg X 1iac),
7Ti = T1 0 (15;2 X ﬁ¢),
7] 0 (D X Llyac) = Up 0 Ty, and
g 0 (L33 X Dg) = Dy 0 Ty,

Finally, thanks to Proposition 5.1 and that all the maps involved are flat, one has the following,
Op(RUp +E°) =Rh*R7T/2)*((7T/1)*RI>¢1*8. ®Ps)
= Rhs Ry o (R(Vg X Liac)s (71)*E° @ P)
=Rhy Ry  R(7p X Lac)+((T1)*E* @ (g X 1yac)*Py)
~Rhy Rl R(7 X 1) (1) E° ® (13, x 05)*P)
>Rhy R, (F)*E* ® (15 x 0y)*P,)
~Rh R, (15, x 05)*(FEE* @ P,)
= Rhy 0} Rt (FFE° @ P,)
= Rh 0} Rt (FTE @ P,)
;Rh*ﬁ;’f@w(é"),
and the proof is complete. g

In the notation of [Mu2, Definition 2.3]), a sheaf is WIT,, if its Fourier-Mukai transform is a complex
supported in degree n. After Theorem 5.2 one has the following.

Corollary 5.3. Let £ be a sheaf on Jac’(X.,,) which is WIT,, with respect to ©.. Then iy € is a WIT,,
sheaf with respect to Oy.
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We recall from [Mu?2] that topologically trivial line bundles are WIT_,,,, where m is the dimension of
the abelian variety. In fact, as complexes supported in degree —m, a the fouriverfl\/[ukai transform of a
topologically trivial line bundle J is the sky-scraper sheaf at the point given by J.

Given £ and F, respectively, degree 0 line bundles on the base X and on X, the branes (BBB)Z and
(BBB)'} consist of a hyperholomorphic line bundle . and a hyperholomorphic vector bundle .# supported
on the fixed point locus M x(n,0)?. We know from Proposition 3.9 that . restricted to a Hitchin fibre
associated to a reduced spectral curve, is Nm*£ while the restriction of .% is P, f;]t' . As sheaves over
Mx (n,0), they correspond, respectively, with D¢1*£V and @), D¢7*§i‘7t".

Recall that the identification between J aCO(XW) and Jac® (X5) is determined by our choice of the Hitchin
section that determines the relative Poincaré sheaf. In that case, we see that @7(}v' ) is the complex supported
in degree dim Jac(X,) = n(g — 1) 4+ 1 given by the skyscraper sheaf supported in Fi= ]—'@ij("_l)/?

Since the dual of the norm map Nm corresponds to the pullback under p,, then @7(Nm*£v) is the complex
supported in degree dim Jac(X,) given by sky-scraper sheaf at L= pjﬁ ®p,”;K("_1)/2.

We have thus proved the following.

Theorem 5.4. Let b € B ,. The Fourier-Mukai transform of the restriction of (BBB)} to the Hitchin
fibre hy, (b) is the trivial sheaf supported on Hec:e’g N hy, (D),

@b(ﬂ¢7*5) =~ Q;O£ >~ 09;1(£).

Analogously, the transform of (BBB)} restricted to h;()ln(b) is is the trivial sheaf supported on Heczc’df N

hx (D),

6. THE CASE OF NON MAXIMAL ORDER

In the previous sections we have been dealing with branes corresponding to v € Jac(X)[n] of maximal
order n. In this final section we shall briefly consider the cases where v has order m. The main interest in
hence when 1 < m < n, so that n is not a prime number. Different kinds of (BBB)-branes appear depending
on m, and we analise their support and argue what their duals should be. The main difficulty to carry
out the full analysis is the lack of a natural hyperholomorphic bundle. The strategy is very similar to the
maximal rank case, and crucially uses the construction of branes associated with parabolic subgroups from
[P, Section 6].

6.1. The (BBB)-branes. Let n = n/ - m, and let v € Jac(X)[n] be an order m element. With the same
notation as in Section 3 we have the corresponding line bundle L., and the associated étale m-cover p, :
X, — X, with Galois group isomorphic to Z,,. Let £ = exp(2mi/m) be the standard generator.

Recall that, by Theorem 3.3, pushforward defines a surjective morphism

]57 : MXW (n’,d) e MX(n,d)'V

where Mx_ (n’,d) is the moduli space of rank n’ degree d Higgs bundles on X,.
We next investigate how the Hitchin maps of both moduli spaces relate to one another. Recall the Hitchin
map hx, n: Mx, (n,d) — Bx., »n on the moduli space of Higgs bundles over X,.

Lemma 6.1. Then there is a commutative diagram

(6.1) My, (n/,d) —— Mx_(n,d')

hXW,nl thy,nl

BX’yan/ ¢ BX‘Yvn

where € is extension of the structure group and d' is determined by the latter.
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Proof. This is due to the following fact: if i : G; — G> is a subgroup of a complex reductive Lie group,
then, the following diagram commutes:

i*
Clg]“? —— C[g1]*

L

Clgz] —— Clg1].

Consider the embedding e : GL(n',C) — GL(n,C)
Y 0 cee e 0

(6.2) y s | 08

0 em=ly

Remark 6.2. Note that the image of the above map is contained in the Levi subgroup L of (for example) the
parabolic subgroup P consisting of matrices with non-zero block diagonal entries and all remaining upper
triangular entries. We fix L and P, and let P = L x U with U the unipotent radical of P.

Let { = exp(2mi/m) € Z,, be the standard generator of the Galois group Z,, of the cover p., : )~(,Y - X.
Define
e: Mx, (n,d) — My (n/,md)

(Fo)  — (B & B @i, ¢*o)

Note that € is the morphism induced by extension of the structure group via (6.2). Then, by Lemma 6.1,
there is a commutative diagram

(6.3) My (n/,d) —— Mx (n,md)
han/l hxwll
BXW,n’ B BXW,n'

€

The elements of Bx_ - will be denoted b, and those of B X,n by b. The following proposition is proved
similarly to Proposition 3.6.
Proposition 6.3. Let v € Jac(X)[n] be of order m. Then:
(1) For every b € By, \{0}, there exists b € Bx, . such that b = pib € Bz . satisfies b = €'(b).
Moreover 6,(5,) = €'(b) if and only ifgl = &9*D for somei=0,...,m — 1.
(2) The curve Xj is the spectral curve of a given rank n' Higgs bundle on X (F,¢) such that (E,p) =
Dy« (F, ¢), and accordingly, X¢ixp 18 the spectral curve corresponding to EW*(F, ).

(3) The curve X5 < |Kx_ | determined by b = pib is the spectral curve associated with (pX E,pZp), where

hE, ) =b. It is a generically reduced curve with m irreducible components X; i = 1,...,m defined
by
Xi = —Xfifl,*g
isomorphic to X3. The normalisation
X; -2 X;
satisfies
m—1 m—1

Xp = X = Xeinp
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(4) the following diagram is Cartesian

(6.4) X; —> X,

Xb—ﬂ>-X.

(5) For every b e B}, \{0}, the corresponding spectral curve Xy is singular and its normalisation is Xz.
It fits in a commutative diagram

4

(6.5) X; — X,

Xb?X

Xy is generically integral, and the genericity condition is the same as the one for X3 to be smooth.
Its singular locus has length

deg(sing(Xyp)) = n(n —n')(g — 1).
(6) the following diagram is Cartesian

(6.6) X
oy
G XE
XE Db
N

(7) dim By, = (n')*m(g — 1) + 1.

Proof. The proof is very similar to the one of Proposition 3.6. Let us discuss cartesianity of (6.6). Consider
the larger diagram

X
Uy
_ 5
v X; — X,
XE Db Py
N
X, — X.
T

The rightmost diagram is Cartesian and the leftmost is easily seen to be commutative. Moreover, it is easy
to see that ¢ is a Z,,-Galois cover. Hence it is enough to see that vjn} L, trivializes over X;. This is the
case, as by commutativity

Vi Ly = ¥ Py Ly = %75 pS Ly = Oxy
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Let B!, be the locus corresponding to integral curves.
Proposition 6.4. Let b € B],,. Then the intersection of the fized point subvariety Mx (n,d)Y with the
Hitchin fibre is
h;l(b) = vy 5 Jac® (X3)
where k = d + ((n')? —n')m(g — 1).
Proof. By Proposition 6.3 (2), the spectral data of elements in Mx. (n’,d) is given by
JaCn(n/_l)(g_1)+d(XE).

By commutativity of diagram (6.5), vp 4 Jac”(",fl)(gfl)er(Xg) is the spectral data for p, «Mx_ (n',d). By
Theorem 3.3, we need only check that for L € Jac"(”lfl)(gfl)er(Xg)
degvp L = (n* —n)(g—1) +d.

Since

deg vy L = deg L + deg(sing(X53)),
we may conclude by Proposition 6.3 (5) O
6.2. The (BAA)-brane. In this subsection we construct a Lagrangian submanifold of Mx (n,d), which is
conjecturally the support of a (BAA) brane dual to a (BBB) brane whose support is M x (n,d)".

Let P = L x U be the parabolic subgroup defined in Remark 6.2. Fix W — X a rank n degree d bundle.
For b e B! ,, denote by

np - )?b I Xb
the normalisation of the spectral curve. By Proposition 6.3, we have isomorphisms )N(b ~ Xgi,*g for all

i = 1,...,m. Moreover, if we denote by ¢ the generator of the Galois group of Xg — X3, we have a
commutative diagram

(6.7) Xb éXfi,*E

N

X;.

12

From now on we will identify X, and X5, and use the identifications in (6.7).

Assumption 2. Assume that for all b e B), there exists

(6.8) Ly € Jac’T(X;)
such that mp svp Ly = W, where § +d = n(n —1)(g — 1) + d.
Define

If (E7 (b) = ﬂ-b.,*L
(6.9) Hec"" = { (E,®) € MY, xp B, | for some L — X,
then nfL = Ly

Remark 6.5. To understand the above assumption, let us compare with the maximal order case. In this case
W = p, «&*F for some j = 1,...,n, and some F € Jac(X,) (possibly descending to X, but not necessarily).

Proposition 6.6. Hec”'"V is a manifold.

Proof. Let B}adyn := p¥ B4, and let ngf,n/ be its preimage under €' defined in (6.1).

Over B;?in/, consider the families ¥ < P(K,) x Bgad_’n, of spectral curves for Mx_(n,d), and ¥ <
P(Kx) x B?j)n, of spectral curves for Mx (n,d) with ¥ = X, for b € B[, such that p*b = @;£"*b. Then,
we have a normalisations morphism

v Jacngjﬁn/ (%) — JaCngj’n, (2).
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Moreover, Assumption 2 is equivalent to assuming that there exists an element
LeJacgea ()
Xy,
such that under the spectral correspondence composed with pushforward
s:Jacgrea (X) —— M. (n',d)
X ,n!
\ ﬁwl
MX (TL, d)
we have that p, o s(£) parametrizes a family of Higgs bundles with underlying bundle W.
So
Hec”V = p, os(07'L).

O

In order to prove that the above manifold is isotropic, we compare it with some branes inside Mx_ (n,dm).
We first need a lemma:

Lemma 6.7. Let
Ei = (5_1)*£b € Jac(Xgi,*g)
be the pullback of L1 := Ly to Xeisp under the isomorphisms defined in (6.7). There is an equality

m—1
W =@V
i=0
where V. =5 Ly € Mx_ (n/,d).

Let E; = £V ® K&Tﬁi)(",)z; on X, and consider the variety

o Joe H(X,E/P):
(6.10) Unily>™(E) = { (B, @) | ¢ HOX, E,(p) ® K);
E,/U:=E, =~ @®;_, E.

These varieties were studied in [FP, Section 6].
Lemma 6.8. Let be BY,. Let L; be as in Lemma 6.7, and define
Li=Li@m K ¢ Jac (Xgi,*g) .
For each ordering J = (ji1,...,Jm) of {1,...,m}, let
L = (£, Q K G=m)  f ®K("/)2(jm_m)) e Jac(Xj3).
Then

Unig?; """ ",)(F)mJac(X5)= U vLL.
JeOrd,

Proof. We just need to note that the bundles £; satisfy condition [FP, Assumption 1] for the manifold
" (E). With that, we may apply [I'P’, Proposition 6.6] to conclude. O

Proposition 6.9. Let

Py : Mx(n,d) — Mx, (n, md)
be the morphism defined by pullback. Identify

(Hec”™') A Jac(X,) = 07 H(Ly).

and ) )
Unig?w """ ")(F) N Jac(X;) = U ﬁ_lﬁ;,].
JeOrd,,
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Let Jo = (m,m —1,...,1). Then

In particular, Hec”V is isotropic.

Proof. Let L € Jac(X}) be a spectral data for (E, )

Hec”"'. By Cartesianity of (6.4), we know that

€
L = pfL e Jac(Xj) is the spectral data for (E, @) := pi(E, p). Also, Cartesianity of (6.6) implies that

VL = GEviLy = (L1,...,Lm),

for £; as in Lemma 6.7. Note that

(L1, L) =L (Layeo o L) # L for all J € Ord,,\Jo.

By Lemma 6.8, we thus have that

Py (HecW) c o, 1L < Unig?;v-..,n')(E)-

Note that by Proposition 6.3 (4) Ly, Ly € Jac(X}) satisfy Ly = Lo if and only if L; = Ly ® 7} L,. Since
Xp/X is a ramified cover, it follows that p, factors through the quotient map.
Isotropicity is proved as in Proposition 4.5. g

We can finally prove the main theorem of this section, whose proof mimics that of Theorem 4.10 and is
thus omitted.

Theorem 6.10. The manifold Hec”'"V is Lagrangian.

[AFES]
[Ar]
[BS1]
[BS2]
[BNR]
[BCFG]
[BGP)

(B]
[BLR|

[Co]
(DM]
[DP]
[Do]
[Es]
[FJ]
[FP]
[Ga]
[GR]

[GO]
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