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TORSION LINE BUNDLES AND BRANES ON THE HITCHIN SYSTEM

EMILIO FRANCO, PETER B. GOTHEN, ANDRÉ OLIVEIRA, AND ANA PEÓN-NIETO

Abstract. We study the fixed loci for the action of tensorisation by a line bundle of order n on the
moduli space of Higgs bundles for the Langlands self-dual group GLpn,Cq. We equip these loci with a
hyperholomorphic bundle so that they can be viewed as BBB-branes, and we introduce corresponding BAA-
branes which can be described via Hecke modifications. We then show how these branes are naturally dual
via explicit Fourier-Mukai transform. It is noteworthy that these branes lie over the singular locus of the
Hitchin fibration.

1. Introduction

Motivated by a dimensional reduction of the self-dual equations on a 4-manifold, N. Hitchin introduced in
[Hi1] Higgs bundles over a smooth projective complex curve X of genus g ě 2. These are pairs pE,ϕq, where
E is a holomorphic vector bundle overX and ϕ is a holomorphic one-form with values in EndpEq. The moduli
space of Higgs bundles MXpn, dq of rank n and degree d is a holomorphic symplectic manifold carrying a
hyperkähler metric. Moreover, it admits the structure of an algebraic completely integrable system given
by the Hitchin map h : MXpn, dq Ñ BX,n. Here the Hitchin base BX,n is an affine space whose dimension
is half that of MXpn, dq, and the components of h are the coefficients of the characteristic polynomial of ϕ.
The fibre of h over a generic point of the Hitchin base is a torsor for an abelian variety, namely the Jacobian
of an associated spectral curve.

The concept of a G-Higgs bundle can be defined for any complex (and even real) reductive Lie group
G and the definition above given above is then that of a GLpn,Cq-Higgs bundle. N. Hitchin [Hi2] showed
that his original construction gives an algebraically completely integrable system for any classical complex
Lie group G. The Hitchin system has since been extensively studied by many authors, in particular it was
generalized to arbitrary complex reductive groups G (see, for example, R. Donagi and E. Markman [DM]).

A new development arose with the discovery by T. Hausel and M. Thaddeus [HT] of a close relation
between Higgs bundles, mirror symmetry and the Langlands correspondence. They proved that the moduli
spaces of Higgs bundles for, respectively, the group SLpn,Cq and its Langlands dual group PGLpn,Cq form a
pair of SYZ-mirror partners [SYZ], in the sense that the respective Hitchin maps have naturally isomorphic
bases and their fibres over corresponding points are, generically, half-dimensional torsors for a pair of dual
abelian varieties. This was subsequently generalised by N. Hitchin [Hi3] for the self-dual group G2 and
then by R. Donagi and T. Pantev [DP] for any pair pG, LGq of Langlands dual groups. The duality is
reflected by a Fourier-Mukai transform between the moduli spaces interchanging fibres of the Hitchin map
over corresponding points in the base. These dualities were obtained over the locus of the Hitchin base where
the corresponding spectral curves are smooth.

As mentioned above, the moduli space MXpn, dq is hyperkähler. This means that it carries three natural
complex structures I1, I2 and I3 verifying the quaternionic relations and a metric which is Kähler with
respect to all three holomorphic structures. In the present case, I1 is the natural complex structure on
the moduli space of Higgs bundles MXpn, dq, while the complex structures I2 and I3 “ I1I2 arise via the
non-abelian Hodge Theorem, which identifies MXpn, dq with the moduli space of flat GLpn,Cq-connections
(see [Hi1, Si1]).
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A. Kapustin and E. Witten considered in [KW] certain special subvarieties of MXpn, dq, equipped with
special sheaves. The pair composed by such a subvariety and the corresponding sheaf is called a brane.
For each of the complex structures on MXpn, dq a brane is classified as follows: it is of type A if it is a
Lagrangian subvariety with respect to the corresponding Kähler form and the sheaf over it is a flat bundle,
and it is of type B if it is a holomorphic subvariety and the sheaf over it is also holomorphic. Thus, for
instance, a pBBBq-brane is a subvariety equipped with a sheaf, both holomorphic with respect to all three
complex structures I1, I2 and I3; in other words, it is a hyperholomorphic subvariety equipped with a
hyperholomorphic sheaf. Similarly, a pBAAq-brane is a subvariety which is holomorphic with respect to I1,
and Lagrangian with respect to I2 and I3. There are only two other possible types of branes on MXpn, dq,
namely pABAq- and pAABq-branes. Again all this holds for any complex Lie group and not just GLpn,Cq.

According to [KW], mirror symmetry conjecturally interchanges pBBBq-branes and pBAAq-branes, and
mathematically this duality should again be realized via a Fourier-Mukai transform (in complex structure
I1). The support of the pBAAq-brane should depend not only on the support of the dual pBBBq-brane but
also on the hyperholomophic sheaf over it (and vice-versa). A similar story holds for a pair of pABAq- and
pAABq-branes.

Since Kapustin and Witten’s paper—and because of it—an intense study of several kinds of branes on
Higgs bundle moduli spaces has been carried out. Some examples may be found it [Hi4, BS1, BGP, HS,
BCFG, Hi5, Ga, FJ, BS2, FP, B, HMDP] (see also [AFES] for a survey on this subject). Most of these works
mainly focus either on the smooth locus of the Hitchin system (exceptions are [BS2, FP, B]) or only deal
with the support of the branes and not with the sheaves on it (exceptions are [Hi4, Hi5, Ga, FJ, FP]).

In this paper, we introduce families of dual pBBBq-branes and pBAAq-branes on MXpn, dq, the moduli
space for the self-dual group GLpn,Cq. Our construction is notable for two reasons. Firstly, our branes
are supported on a subspace Bγ Ă BX,n of the singular locus of the Hitchin map. Secondly, as required
in the general picture, our branes come equipped with natural hyperholomorphic/flat sheaves and, taking
due account of these, we can explicitly prove (when d “ 0) that the branes are dual under a Fourier-Mukai
transformation over an open dense subspace Bγ

red of Bγ .
In the following we outline our construction in more detail. Let JacpXqrns denote the subgroup of the

Jacobian JacpXq of X of elements of order n. Let γ P JacpXqrns be a non-trivial element, and let Lγ Ñ X

be the corresponding line bundle. Here we consider the subvariety MXpn, dqγ of MXpn, dq of points pE,ϕq
fixed by tensorisation by Lγ , i.e. pE,ϕq – pE b Lγ , ϕq. Using the description in [HT, NR] we prove that,
when γ has order n, MXpn, dqγ is a hyperholomorphic subvariety and that it can be endowed with a family
of hyperholomorphic bundles. In other words, we have a family of pBBBq-branes supported on MXpn, dqγ .
Let Bγ be the image of MXpn, dqγ under the Hitchin map h. Then Bγ Ă BX,n lies in the singular locus
of h, in the sense that the corresponding spectral curves are always singular and possibly non-reduced (but
always irreducible). Let Bγ

red be the subspace of Bγ whose associated spectral curves are reduced. Let
pγ : Xγ Ñ X be the unramified n-cover naturally defined by Lγ , with Galois group isomorphic to Zn. Then
B

γ
red can be described as the subspace of all points in the Hitchin base BX,n whose spectral curves have

Xγ as a normalisation. It basically follows from [NR] that the pushforward by pγ yields an isomorphism

between MXpn, dqγ and T ˚ JacdpXγq{Zn, with the Galois group acting by pullback. From this one defines
a hyperholomorphic line bundle L over MXpn, dqγ , naturally associated to a flat line bundle L on X . We
call the pair pMXpn, dqγ ,L q a basic Narasimhan-Ramanan pBBBq-brane, since L is a line bundle on the

base X . We represent it by pBBBq
γ
L
and write pBBBq

γ,L
red for its restriction to Bγ

red. More generally, we
can construct a hypeholomorphic sheaf F on MXpn, dqγ , canonically associated to a flat line bundle F over
Xγ , and we call the pair pMXpn, dqγ ,F q a non-basic Narasimhan-Ramanan pBBBq-brane and represent it
by pBBBqγ

F
.

For a given b P Bγ
red, let Xb the corresponding spectral curve and νb : Xγ Ñ Xb the normalisation. The

spectral data of the intersection MXpn, dqγ Xh´1pbq is given by JacdpXγq, embedded in the compactified Ja-

cobian Jac
δ`d

pXbq via pushforward by νb, where δ “ npn´1qpg´1q. Hence it lies in Jac
δ`d

pXbqz Jacδ`dpXbq.
We then turn to the question of identifying the corresponding dual pBAAq-brane of pBBBq

γ
L
. First,

we look at what happens on a fibre over b P B
γ
red, and consider the subspace of Jacδ`dpXbq consisting of

those line bundles over Xb whose pullback to Xγ is isomorphic to p˚
γpL b Kpn´1q{2q. Thus we are looking

at the fibre over p˚
γpL b Kpn´1q{2q of the map Jacδ`dpXbq Ñ Jacδ`dpXγq induced by pullback under νb.

We prove that, upon varying b over Bγ
red, this defines a complex Lagrangian subvariety of MXpn, dq on
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the locus of reduced spectral curves. With the trivial line bundle over it, it hence becomes a pBAAq-

brane on MXpn, dq, which we denote by pBAAq
γ,L
red . A similar story holds for the non-basic case pBBBq

γ
F
.

Moreover, the Higgs bundles over the intersection pBAAq
γ,L
red Xh´1pbq are precisely described as the ones that

can be obtained as Hecke transforms (associated to the divisor of singularities of Xb) of the γ-fixed Higgs

bundle with underlying bundle pγ,˚p
˚
γpL bKpn´1q{2q – L bKpn´1q{2 b

Àn´1

i“0 L
´i
γ , and with the Higgs field

naturally determined by b. Hence, we can roughly say that the subvariety defining the support of pBAAq
γ,L
red

is obtained as a Hecke transformation of the subvariety of those Higgs bundles in MXpn, δ ` dqγ whose

underlying bundle is pγ,˚p
˚
γpL bKpn´1q{2q. For this reason we refer to pBAAq

γ,L
red as a Hecke pBAAq-brane.

Hecke transformations in the context of Higgs bundles have previously appeared in several papers; see, for
example, [Hi6, HR, Ra, Wi, W].

Our main result is that, for d “ 0, the branes pBBBqγ,Lred and pBAAqγ,Lred are dual when restricted to the
locus of reduced spectral curves (the analogous result also holds in the non-basic case). Indeed, we explicitly
describe a Fourier-Mukai transform over the fibres of Bγ

red interchanging them. This Fourier-Mukai transform
is carried out using the autoduality of compactified Jacobians of integral curves with planar singularities,
from the general results of D. Arinkin [Ar]. It uses a Hitchin section (which embeds Bγ

red as a subvariety of

the support of pBAAqγ,Lred ), to identify Jac
δ`d

pXbq with the corresponding Jac
0
pXbq, which is then shown

to be autodual.
The corresponding result for the non-basic case is true as well. For d non-multiple of n a similar result

should hold, but the duality should require a gerbe to work out properly. We also note that the results in
this paper provide evidence for the dualities suggested in [FP].

It is interesting to notice that the support of our pBBBq-branes play a central role in the proof by Hausel
and Thaddeus [HT] of topological mirror symmetry for the moduli spaces of Higgs bundles for the Langlands
dual groups SLpn,Cq and PGLpn,Cq for n “ 2, 3 (the general case has recently been proved by Groechenig,
Wiss and Ziegler [GWZ]). One might thus expect that further study of our dual branes in this setting would
provide a better geometric undestanding of the calculation of Hausel and Thaddeus. We will come back to
this question in a future article.

Here is a brief description of the organisation of the paper. In Section 2 we recall some background material
on the Hitchin system, and also on the Fourier-Mukai for compactified Jacobians. Section 3 deals with
the construction and description of the Narasimhan-Ramanan pBBBq-branes, including the corresponding
spectral data over a subspace Bγ of the Hitchin base. In Section 4 we describe a family of pBAAq-branes,
whose support maps to Bγ under h. In Section 5 we prove that, for d “ 0, these two families (when restricted
to the open dense subspace Bγ

red) are dual under mirror symmetry, by explicitly proving a Fourier-Mukai
interchanging them. Finally, in Section 6, we generalise the previous study to the case where γ has order
strictly less than n in JacpXqrns. We give a description of a hyperholomorphic subvariety which conjecturally
admits a hyperholomophic sheaf, hence conjecturally a pBBBq-brane, and describe a Lagrangian subvariety
which is the support of the conjecturally dual pBAAq-brane.

2. Preliminaries

2.1. Higgs bundles and their moduli space. Let X be a smooth projective curve over C, of genus g ě 2.
A Higgs bundle over X is defined [Hi1, Si1, Si2, Si3] as a pair pE,ϕq given by a holomorphic vector bundle
E Ñ X , and a holomorphic section of the endomorphisms bundle, twisted by the canonical bundle K of X ,

ϕ P H0pX,EndpEq bKq.

If the rank of E is n, then pE,ϕq is also, more precisely, called a GLpn,Cq-Higgs bundle.
Let MXpn, dq denote the moduli space of rank n and degree d polystable Higgs bundles on X . It is a

quasi-projective variety, whose complex dimension is given by

dimMXpn, dq “ 2n2pg ´ 1q ` 2.

The moduli space MXpn, dq is also denoted, following Simpson’s notation introduced in [Si2], by MDol
X,npdq.

The reason for this is that there is as a hyperkähler manifold [Hi1, Si3] MX,npdq with complex structures

(2.1) I1, I2 and I3 “ I1I2
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such that one can consider MDol
X,npdq as pMX,npdq, I1q; it also called the Dolbeault moduli space. The De

Rham moduli space MDR
X,npdq is given by pMX,npdq, I2q. It is the moduli space of connections on a fixed

C8 vector bundle E over X of rank n and degree d, with constant central curvature equal to d{n (hence
projectively flat, and actually flat if d “ 0).

Denote by ωj the Kähler form associated to Ij and by Ωj “ ωj`1 ` iωj´1 the corresponding holomorphic
symplectic form.

Non-abelian Hodge theory establishes the existence of a homeomorphism [Hi1, Si2, Si3, Do, Co] between
these spaces

MDR
X,npdq

homeo
– MDol

X,npdq .

We shall mainly use the notation MXpn, dq instead of MDol
X,npdq for the moduli of Higgs bundles.

Given a Higgs bundle pE,ϕq, we have the associated deformation complex

C‚ : EndpEq
r´,ϕs

ÝÝÝÑ EndpEq bK,

with hypercohomology fits in the long exact sequence

0 ÝÑ H
0pC‚q ÝÑ H0pEndpEqq ÝÑ H0pEndpEq bKq ÝÑ H

1pC‚q ÝÑ

ÝÑ H1pEndpEqq ÝÑ H1pEndpEq bKq ÝÑ H
2pC‚q ÝÑ 0.

If pE,ϕq is a stable Higgs bundle, it represents a smooth point of the moduli space MXpn, dq with tangent
space TpE,ϕqMXpn, dq “ H1pC‚q. Thanks to Serre duality, ϕ P H0pEndpEq b Kq is an element of the dual

space of H1pEndpEqq.
We define the 1-form θ as the contraction of ϕ with the map H1pC‚q Ñ H1pEndpEqq. It can be check

that dθ defines a holomorphic symplectic form on the smooth locus of MXpn, dq which coincides with
Ω1 “ ω2 ` iω3.

2.2. The Hitchin system. We recall here the spectral construction given in [Hi2, BNR]. Let pp1, . . . , pnq be
a base of GLpn,Cq-invariant polynomials with degppiq “ i; for instance, we could take pip´q “ p´1qitrp^i´q.
The Hitchin map is the projection

hX,n : MXpn, dq ÝÑ BX,n :“
Àn´1

i“0 H
0pX,Kiq

pE,ϕq ÞÝÑ pp1pϕq, . . . , pnpϕqq .

Note that dimpBX,nq “ n2pg ´ 1q ` 1 “ dimpMXpn, dqq{2.
Consider the total space |K| of the canonical bundle and the obvious algebraic surjection π : |K| Ñ X .

The pullback bundle π˚K Ñ |K| comes naturally equipped with a tautological section λ. Given an element
b P BX,n, with b “ pb1, . . . , bnq, we construct the spectral curve Xb Ă |K| by considering the vanishing locus
of the section of π˚Kn

λn ` pπ˚b1qλn´1 ` ¨ ¨ ¨ ` pπ˚bn´1qλ` π˚bn P H0p|K|, π˚Knq.

It follows that the restriction of π : |K| Ñ X to Xb yields a ramified degree n cover that, by abuse of
notation, we also denote with

π : Xb ÝÑ X.

For generic b, the spectral curve Xb is smooth, but it can be singular, reductive and even non-reduced. Since
the canonical divisor of the symplectic surface |K| is zero and Xb belongs to the linear system |nX |, one can
compute the genus of Xb, yielding

(2.2) g pXbq “ 1 ` n2pg ´ 1q.

Furthermore, using Riemann-Roch, we see that π˚OXb
is a rank n vector bundle of degree

degpπ˚OXb
q “ ´npn´ 1qpg ´ 1q.

Given a torsion-free rank 1 sheaf F over Xb of degree δ ` d, where

(2.3) δ :“ npn´ 1qpg ´ 1q,
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we have that EF :“ π˚F is a vector bundle on X of rank n and degree d. Since π is an affine morphism, the
natural O|K|-module structure on F , given by understanding F as a sheaf supported on |K|, corresponds to
a π˚O|K| “ Sym‚pK˚q-module structure on EF . Such structure on EF is equivalent to a Higgs field

ϕF : EF ÝÑ EF bK,

as we know from [BNR, Si2]. This stablishes a one-to-one correspondence between torsion-free rank 1 sheaves
on Xb and Higgs bundles pEF , ϕF q such that

hX,npEF , ϕF q “ b.

The pair pXb,Fq is said to be the spectral data of the Higgs bundle pE,ϕq.
Furthermore, since this correspondence is done in [Si2] in a relative setting and semistability and stability

are preserved under the spectral correspondence [Si2, Corollary 6.9], one has an isomorphism between the
Hitchin fibre and the moduli space of rank 1 torsion free sheaves on Xb of degree δ. This moduli space is

precisely the compactified Jacobian (of degree δ ` d) of Xb, which we denote by Jac
δ`d

pXbq. Hence

(2.4) h´1
X,npbq – Jac

δ`d
pXbq.

2.3. Fourier–Mukai on compactified Jacobians of integral curves. In this section we review autodu-
ality of compactified Jacobians of integral curves with planar singularities and the associated Fourier-Mukai
transform given by Arinkin in [Ar] thanks to the construction of a Poincaré sheaf.

By construction, the spectral curve Xb has planar singularities as it is contained in |K|. Therefore, when

Xb is integral, Arinkin’s duality becomes a duality of the corresponding Hitchin fibres h´1
X,npbq – Jac

δ`d
pXbq.

Suppose that Xb is integral. Then every semistable rank 1 torsion free sheaf on Xb is indeed stable and

Jac
δ`d

pXbq is a fine moduli space with universal family Ub Ñ Xb ˆJac
δ`d

pXbq. Denote by U0
b its restriction

to Xb ˆ JacδpXbq. Before constructing the Poincaré sheaf, we first construct the Poincaré bundle using Ub

and U0
b .

Given a flat morphism f : Y Ñ S whose geometric fibres are curves, we can define the determinant of
cohomology (see [KM] and [Es, Section 6.1]) as follows. If F is an S-flat sheaf on Y , the determinant of
cohomology Df pEq is an invertible sheaf on S, constructed locally as the determinant of complexes of free

sheaves, which is locally quasi-isomorphic to Rf˚E . Consider the triple product Xb ˆ Jac
δ`d

pXbq ˆ JacpXbq

and the projection f23 : Xb ˆJac
δ`d

pXbq ˆJacδ`dpXbq Ñ Jac
δ`d

pXbq ˆJacδ`dpXbq, which is flat and whose
fibres are curves. Consider as well the corresponding obvious projections f12 and f13. The Poincaré line

bundle Pb Ñ Jac
δ`d

pXbq ˆ JacδpXbq is the invertible sheaf

Pb :“ Df23

`
f˚
12Ub b f˚

13U
0
b

˘´1
b Df23

`
f˚
13U

0
b

˘
b Df23 pf˚

12Ubq .

The restriction of the Poincaré bundle Pb to the point associated to M P JacδpXbq, that is, Pb,M :“

Pb|Jac δ`d
pXbqˆtMu

, is the line bundle over Jac
δ`d

pXbq given by

(2.5) Pb,M “ Df2pUb b f˚
1 Mq´1 b Df2pf˚

1Mq b Df2pUbq,

where we have considered the obvious projections f1 : Xb ˆ Jac
δ`d

pXbq Ñ Xb and f2 : Xb ˆ Jac
δ`d

pXbq Ñ

Jac
δ`d

pXbq.

Our Poincaré bundle is constructed over Jac
δ`d

pXbq ˆ Jacδ`dpXbq. Of course, one can perform a similar

construction over Jacδ`dpXbq ˆ Jac
δ`d

pXbq, which coincides with Pb after restricting both to Jacδ`dpXbq ˆ

Jacδ`dpXbq. Gluing both line bundles over Jacδ`dpXbq ˆ Jacδ`dpXbq, one can define the line bundle

P
7
b Ñ

´
Jac

δ`d
pXbq ˆ Jac

δ`d
pXbq

¯7

,

where
´
Jac

δ`d
pXbq ˆ Jac

δ`d
pXbq

¯7

:“
´
Jacδ`dpXbq ˆ Jac

δ`d
pXbq

¯
Y

´
Jac

δ`d
pXbq ˆ Jacδ`dpXbq

¯
.

Consider the injection

j :
´
Jac

δ`d
pXbq ˆ Jac

δ`d
pXbq

¯7

ãÑ Jac
δ`d

pXbq ˆ Jac
δ`d

pXbq,
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and define the Poincaré sheaf, as

Pb :“ j˚P
7
b .

Denote by π1 (resp. π2) the projection Jac
δ`d

pXbqˆJac
δ`d

pXbq Ñ Jac
δ`d

pXbq onto the first (resp. second)
factor. Using Pb as a kernel, one can consider the integral functor

(2.6)
Θb : Db

´
Jac

δ`d
pXbq

¯
ÝÑ Db

´
Jac

δ`d
pXbq

¯

E‚ ÞÝÑ Rπ2,˚pπ˚
1 E

‚ b Pbq
.

Theorem 2.1 ([Ar]). The moduli space of rank 1 torsion free sheaves over Jac
δ`d

pXbq is Jac
δ`d

pXbq itself.
Furthermore Θb is a derived equivalence.

3. Narasimhan-Ramanan pBBBq-branes

3.1. Construction of pBBBq-branes. In this section we construct a pBBBq-brane on MXpn, dq. By defi-
nition, this is [KW] a pair pN, pF ,∇F qq given by:

(1) A hyperholomorphic subvariety N Ă MXpn, dq, i.e. a subvariety which is holomorphic with respect
to the three complex structures I1, I2 and I3 (cf. (2.1)).

(2) A hyperholomorphic sheaf pF ,∇F q supported on N, i.e. a sheaf F equipped with a connection
whose curvature ∇F is of type p1, 1q in the complex structures I1, I2 and I3.

Remark 3.1. Notice that a flat connection is trivially of type p1, 1q in any complex structure.

We start with the support of our pBBBq-brane. Inside the Jacobian JacpXq “ Jac0pXq consider the
subgroup JacpXqrns of n-torsion elements,

JacpXqrns :“ tL P JacpXq | Ln – OXu.

Recall that, as an abstract group, we have JacpXqrns – Z
2g
n . It acts on the moduli space of Higgs bundles

by tensorisation, i.e. as

(3.1)
γ : MXpn, dq ÝÑ MXpn, dq

pE,ϕq ÞÝÑ pE b Lγ , ϕq.

Choose, once and for all, a non-trivial element

γ P JacpXqrns,

and denote the corresponding line bundle by Lγ . Every construction in this paper is carried out for such a
choice of γ.

Denote byMXpn, dqγ the subvariety of points fixed by γ P JacpXqrns under (3.1). It is a hyperholomorphic
subvariety since the tensorisation by line bundles is holomorphic in the three complex structures of MXpn, dq
(see [GR] for a proof in the case of SLpn,Cq-Higgs bundles, that can be easily adapted to the case of GLpn,Cq).

Remark 3.2. Since we are working with GLpn,Cq-Higgs bundles (not fixing the determinant) one can ask
why don’t we consider the same action, but of JacpXq in MXpn, dq. In fact, it is straightforward to see
that there are fixed points under tensorisation by L P JacpXq if and only if L has finite order. Hence the
description of MXpn, dqγ is precisely the same.

Let n “ n1 ¨ m, and suppose γ P Zn has order m. Associated to Lγ there is a unique smooth projective
curve Xγ , defined as the spectral cover of X given as the vanishing locus in the total space |Lγ | of Lγ of
the section θm ´ 1 “ 0, where θ P H0p|Lγ |, p˚

γLγq is the tautological section, being pγ : |Lγ | Ñ X the
projection.Let pγ still denote the restriction to Xγ of the projection |Lγ | Ñ X , by

pγ : Xγ Ñ X.

Observe that it is a unramified regular m-cover of X . Notice the difference between these covers and the
ones appearing in the Hitchin system: the later ones are always ramified and the corresponding spectral
curves are always subvarieties of the total space of K. Notice also that p˚

γLγ is trivial over Xγ since the
nowhere vanishing section θ : OXγ

Ñ p˚
γLγ gives a canonical trivialisation.

The following is the fundamental result describing the fixed point subvariety MXpn, dqγ . The proof for
vector bundles is done in [NR] for the locus of simple bundles, and then extended to all moduli space in
Proposition 3.46 of [Na]. The adaptation for Higgs bundles is in [HT].
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Theorem 3.3 ([NR, Na, HT]). Let pE,ϕq represent a point in MXpn, dq. Assume n “ n1 ¨ m and let
γ P JacpXqrns be a non-trivial element of order m. Then pE,ϕq is fixed by γ if and only if it is the
pushforward of a semistable rank n1 Higgs bundle pF, φq over Xγ , that is,

pE,ϕq – ppγ,˚F, pγ,˚φq.

Consider the moduli space MXγ
pn1, dq of rank n1 and degree d Higgs bundles over Xγ . Since it is

compatible with the other complex structures, the pushforward under pγ gives rise to a hyperholomorphic
morphism which is surjective onto MXpn, dqγ by Theorem 3.3,

(3.2)
p̌γ : MXγ

pn1, dq ÝÑ MXpn, dqγ

pF, φq ÞÝÑ ppγ,˚F, pγ,˚φq.

By [NR], two points in semistable vector bundles over Xγ are pushed forward to isomorphic vector bundles
on X if and only if they are in the same Zm-orbit. A analogous result holds for Higgs bundles, as well, hence
we have an isomorphism

MXpn, dqγ – MXγ
pn1, dq{Zm.

Assumption 1. From now on, until the end of Section 5, we will be assuming that γ P JacpXqrns has
maximal order n.

In particular, we have the following corollary.

Corollary 3.4. If γ P JacpXqrns has order n, then we have an isomorphism

MXpn, dqγ – MXγ
p1, dq{Zn.

Since MXγ
p1, dq – T ˚ JacdpXγq, it naturally fibres over the Jacobian,

MXγ
p1, dq ÝÑ JacdpXγq.

Recall the norm map Nm : JacdpXγq Ñ JacdpXq, given by NmpOpDqq “ OppγpDqq. It is obviously invariant
under the action of the Galois group, so it factors through the quotient by Zn. Combined with the previous
projection, we get

g : MXγ
p1, dq{Zn ÝÑ JacdpXq.

We will use these maps to construct flat (hence hyperholomorphic) bundles in MXγ
p1, dq and MXγ

p1, dq{Zn.

There are natural embeddings X ãÑ Jac1pXq and Xγ ãÑ Jac1pXγq. For d ‰ 1, fix a point x0 P X ,

and rx0 P Xγ with pγprx0q “ x0. This allows us to generalize the embeddings for all d, X ãÑ JacdpXq and

Xγ ãÑ JacdpXγq.

Let L Ñ X be a line bundle on the base curve with a flat connection ∇L. Since π1pJacdpXqq is the

abelianization of π1pXq, there exists a unique (up to isomorphism) flat line bundle p qL, ∇̌Lq that restricts to

pL,∇Lq in X Ă JacdpXq. Consider the flat (thus hyperholomorphic by Remark 3.1) line bundle g˚p qL, ∇̌Lq
on MXγ

p1, dq{Zn and denote by pL ,∇L q its pushforward under the isomorphism of Corollary 3.4, which
is a hyperholomorphic sheaf supported on MXpn, dqγ . This pair is therefore a pBBBq-brane on MXpn, dq,
which we call a basic Narasimhan-Ramanan pBBBq-brane associated to γ P JacpXqrns and to L Ñ X . We
denote it by

pBBBq
γ
L
:“ pMXpn, dqγ , pL ,∇L qq .

Analogously, given a line bundle F Ñ Xγ with a flat connection ∇F , let p qF , ∇̌Fq be the (unique up to iso-

morphism) flat line bundle on JacdpXγq that restricts to pF ,∇F q inX ãÑ JacdpXγq. Note that f˚p qF , ∇̌F q is a
flat line bundle onMXγ

p1, dq, hence hyperholomorphic by Remark 3.1. Taking the pushforward under the hy-

perholomorphic morphism p̌γ , we obtain the hyperholomorphic sheaf pF ,∇F q :“ pγ,˚f
˚p qF , ∇̌F q supported

on MXpn, dqγ . As before, this defines a pBBBq-brane, the non-basic Narasimhan-Ramanan pBBBq-brane
associated to γ P JacpXqrns and to F Ñ Xγ , which we denote by

pBBBq
γ
F
:“ pMXpn, dqγ , pF ,∇F qq .
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3.2. Spectral data of γ-invariant Higgs bundles. Recalling the Hitchin fibration, hX,n : MXpn, dq Ñ
BX,n, we denote its restriction to the fixed point set MXpn, dq and the image of the later by

hγ : MXpn, dqγ Ñ B
γ
X,n :“ hX,n pMXpn, dqγq Ă BX,n.

Also, we denote by Bγ
red the subscheme of Bγ

X,n given by those b such that the associated spectral curve, Xb,
is reduced.

Denoting by Kγ the canonical bundle of Xγ , one can consider the Hitchin base for the curve Xγ ,

BXγ ,n “
n´1à
i“0

H0pXγ ,K
i
γq,

Since the n-covering pγ : Xγ Ñ X is étale, we have that p˚
γK – Kγ and, then, this yields

(3.3)
BX,n ÝÑ BXγ ,n

b ÞÝÑ p˚
γb.

Lemma 3.5. The map (3.3) is injective and its image is BZn

Xγ ,n
, the fixed point locus under the action of

the Galois group Zn of pγ .

Proof. This is clear since pγ is an étale covering, thus is a local diffeomorphism. Hence for every x P X ,
dpγpxq : TxXγ Ñ TpγpxqX is an isomorphism. Therefore the map dpγ : TXγ Ñ TX between the tangent

bundles is surjective. Hence, for each i, p˚
γ : Ki “ ΛiTX˚ Ñ ΛiTX˚

γ “ Ki
γ is basically given by dual of

dpγ , it follows that p˚
γ : Ki Ñ Ki

γ is injective. From this it follows (again using that pγ is surjective) that

p˚
γ : H0pX,Kiq Ñ H0pXγ ,K

i
γq is injective for every i, and therefore (3.3) is injective as well. �

Let ξ “ expp2πi{nq P Zn be the standard generator of the Galois group Zn of the cover pγ : Xγ Ñ X . We
will use the following notation repeatedly: given a section φ of the canonical line bundle Kγ of Xγ (i.e., φ is
a Higgs field for a line bundle in Xγ), write

φk :“ ξk,˚φ,

for k “ 0, . . . , n´ 1. Also, we denote the induced morphism the Jacobian by

ξ̂k : JacdpXγq ÝÑ JacdpXγq
L ÞÝÑ ξk,˚L.

Define
χ : H0pXγ ,Kγq ÝÑ BXγ ,n

φ ÞÝÑ
´
p1p

Àn´1

k“0 φkq, . . . , pnp
Àn´1

k“0 φkq
¯
.

Notice that two sections φ, φ1 P H0pXγ ,Kγq map to the same point under χ if and only if φ1 “ φk for some
k “ 0, . . . , n´ 1. It follows that

(3.4) Impχq – H0pXγ ,Kγq{Zn,

with the Galois group Zn acting by pullback.
Since Xγ Ñ X is an unramified cover, one naturally has |Kγ | – |K| ˆX Xγ . Denote by

q : |Kγ | Ñ |K|

the obvious projection.

Proposition 3.6. Let γ P JacpXqrns be of maximal order. Then:

(i) For every b P B
γ
X,n, the curve Xrb Ă |Kγ | determined by rb “ p˚

γb is the spectral curve associated with

pp˚
γE, p

˚
γϕq, where hX,npE,ϕq “ b.

(ii) The following diagram is Cartesian

(3.5) Xrb
πb̃ //

qb

��

Xγ

pγ

��
Xb π

// X,

where qb coincides with the restriction of q.
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(iii) Let φ P H0pXγ ,Kγq, b “ hX,nppγ,˚φq and rb “ p˚
γb. Let also τ “ q˚λ be the tautological section of

π˚
b̃
Kγ over |Kγ |. Then Xrb is given by the vanishing of the section

n´1ź

k“0

pτ ´ φkq

in |Kγ |. Hence

(3.6) Xb̃ “
n´1ď

k“0

φkpXγq.

and it is singular and reducible. Moreover, Xrb is reduced if and only if φ is not fixed by any element of
the Galois group.

(iv) For every b P Bγ
X,n given by φ P H0pXγ ,Kγq as in (iii) and such that φ is not fixed by any element o

the Galois group Zn, one has that

(3.7) Xb “ qb ˝ φpXγq,

so one naturally has a morphism

(3.8) νφ :“ q ˝ φ : Xγ Ñ Xb.

which constitutes a normalisation map. Hence the corresponding spectral curve Xb is integral and
singular, with singular divisor singpXbq of length npn´ 1qpg ´ 1q.

(v) For φ P H0pXγ ,Kγq not fixed by any element of Zn, the curve in |Kγ | ˆH0pXγ ,Kγq given by

(3.9) rX “
n´1ğ

k“0

φipXγq ˆ tφku

is the normalisation of Xrb, where the normalisation morphism is induced by t : |Kγ | ˆH0pXγ ,Kγq Ñ

|Kγ |. Furthermore, there exists a morphism rq : rX Ñ Xγ making the following diagram

X̃
t //

rq
��

Xb̃

qb

��
Xγ νφ

// Xb

Cartesian.

Proof. (i) Let γ P JacpXqrns be of maximal order and pE,ϕq P MXpn, dq, so that

(3.10) pE,ϕq – ppγ,˚F, pγ,˚φq,

where pF, φq is a Higgs line bundle over Xγ . Let b “ hX,npE,ϕq P BX,n, so that b “ pp1pϕq, . . . , pnpϕqq, and
let Xb Ă |K| be the corresponding spectral curve, defined by

λn ` π˚p1pϕqλn´1 ` ¨ ¨ ¨ ` π˚pnpϕq “ 0.

Let now
p˚
γb “ pp˚

γp1pϕq, . . . , p˚
γpnpϕqq P BXγ ,n.

Since p˚
γpipϕq “ pipp

˚
γϕq, it is clear that

(3.11) hXγ ,npp˚
γE, p

˚
γϕq “ p˚

γb.

This proves the statement.
To see (ii), note that Xrb is defined by

τn ` p˚
γπ

˚p1pϕqτn´1 ` ¨ ¨ ¨ ` p˚
γπ

˚pnpϕq “ 0,

where τ “ p˚
γλ. Note that τ is indeed the tautological section of p̃˚Kγ in |Kγ | “ |p˚

γK|.

So, the image of Xrb under dpγ
t : Kγ Ñ K is Xb, and we call this map qb. Hence, we have maps

πrb : Xrb Ñ Xγ and qb : Xrb Ñ Xb, which moreover induce a morphism pπrb, rpq : Xrb Ñ Xγ ˆX Xb. By the
universal property of fibred products, it is enough to define a morphism

Xγ ˆX Xb Ñ Xrb
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making the diagram below commutative

Xγ ˆX Xb

$$■
■■

■■
■■

■■
■

q

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

��✼
✼
✼
✼
✼
✼
✼
✼
✼
✼
✼
✼
✼
✼
✼
✼
✼

Xrb qb
//

��

Xb

��
Xγ

// X.

To do this, embed Xγ ˆX Xb ãÑ |Kγ | “ Xγ ˆX |K| and check that the image is contained in Xrb. It
follows from this commutative diagram that qb coincides with the restriction of q under the identification
Xrb “ Xγ ˆX Xb.

(iii) From (3.10), we have that pp˚
γE, p

˚
γϕq –

Àn´1

k“0pξk,˚F, φkq, hence from (3.11), we must have (3.6).
From (3.6) and (ii) proven above we conclude the following. If φ is not fixed by any element of the Galois

group, all the φk are different and then Xb̃ is reduced and has precisely n irreducible components, each of
which is mapped isomorphically to Xγ by πb̃ (which is smooth and irreducible by maximality of the order
of γ).

On the other hand, if there is an element of the Galois group fixing φ, then φk “ φk1 for some k and k1,
and Xb̃ is a non-reduced curve.

(iv) Recall from (3.6) that the φipXγq are the irreducible components of Xrb, and note that they all have
the same image under qb : Xrb Ñ Xb, as

φipyq “ φpξipyqq

for any y P Xγ . Then, since the image of qb is Xb, so is the image of one irreducible component

φpXγq ãÑ Xrb
qbÝÑ Xb,

and (3.7) follows.
From (iii) we have that when φ is not fixed by any element of the Galois group, then Xrb is reduced and

so is Xb, by Cartesianity of (3.5). Since Xrb is an n : 1 cover, the projection of each irredicible component,
as in (3.8), is generically an isomorphism. It is not an isomorphism because otherwise Xb ÝÑ X would be
unramified. We conclude that Xγ normalizes Xb. Since Xγ is irreducible and the normalisation of Xb, then
Xb is irreducible as well. Since Xγ is smooth with genus npg ´ 1q ` 1 as it is an unramified n-cover of X ,
while the genus of Xb is n

2pg´1q `1, by (2.2). It follows that the singular divisor singpXbq of Xb has degree
δ, that is, the difference of the genus of Xb and Xγ :

degpsingpXbqq “ npn´ 1qpg ´ 1q “ δ.

(v) The description (3.9) of the normalisation of Xrb follows from the description of Xrb “
Ť

i φkpXγq.
Note that the composition

φkpXγq ˆ tφku
t

ÝÑ φkpXγq
qbÝÑ Xb

coincide with νφk
. Observe now that νφk

“ q ˝ φk “ νφ ˝ ξk. Then, setting rq “ pq1
0, q

1
1, . . . , q

1
n´1q for

q1
i “ ξi ˝ πγ , we have that (6.6) commutes, �

After studying the spectral curves in Proposition 3.6, one can describe their loci in the Hitchin base.

Proposition 3.7. Let γ P JacpXqrns have maximal order n.

(i) One has the isomorphism

B
γ
X,n – H0pXγ ,Kγq{Zn –

ˆ n´1à
i“0

H0pX,KLi
γq

˙
{Zn,

where the Galois group acts by pullback in H0pXγ ,Kγq, and by multiplication under ξi on H0pX,KLi
γq.

In particular,

dimpBγ
X,nq “ npg ´ 1q ` 1.
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(ii) Xb is non-reduced if and only if φ is fixed by an element of the Galois group. Hence, under the previous
isomorphism B

γ
red is the dense subscheme given by the image of the points of H0pXγ ,Kγq not fixed by

any element of the Galois group.

Proof. (i) By (3.11) and p˚
γpipϕq “ pipp

˚
γϕq “ pip

Àn´1
i“0 φiq, we conclude that p˚

γ maps Bγ
X,n to Impχq. This

is an isomorphism by Lemma 3.5, since the elements in Impχq are Zn-invariant. Thus, the first description
of Bγ

X,n follows from (3.4). The second description follows from this and the fact that, considering the

pushforward under pγ (which being a finite morphism, does not change H0),

H0pXγ ,Kγq –
n´1à
i“0

H0pX,KLi
γq.

The dimension of Bγ
X,n follows from dimH0pXγ ,Kγq “ gpXγq “ npg ´ 1q ` 1

(ii) By (3.5), Xb is reduced if and only if Xrb is, and the later is reduced whenever φi “ φj for some i ‰ j,
i.e., whenever φ is fixed by some element of the Galois group. Then, (ii) follows easily from (i). �

From all of the above, we deduce the following. Let

hXγ ,1 : MXγ
p1, dq ÝÑ H0pXγ ,Kγq

be the Hitchin map on MXγ
p1, dq i.e. the projection of T ˚ JacdpXγq Ñ H0pXγ ,Kγq, and let

hγ : MXpn, dqγ ÝÑ B
γ
X,n

be the restriction of the Hitchin map of MXpn, dq to MXpn, dqγ .

Corollary 3.8. There is a commutative and Zn-equivariant diagram

(3.12) MXγ
p1, dq

p̌γ //

hXγ,1

��

MXpn, dqγ

hγ

��
H0pXγ ,Kγq

pp˚

γ q´1˝χ

// Bγ
X,n.

Let b P Bγ
red, and take φ P H0pXγ ,Kγq such that p˚

γb “ χpφq. Then the diagram above restricts to

(3.13)
n´1ğ

i“0

pJacdpXγq ˆ tφiuq
p̌γ

ÝÝÝÑ h´1
γ pbq.

The Galois group Zn permutes the components of the source. Hence

(3.14) h´1
γ pbq – JacdpXγq,

where the identifications between the different components in the source of (3.13) the Galois group action.

Proof. The top arrow is defined in (3.2), where we recall that we are considering γ of maximal order. By
Lemma 3.5, the bottom arrow is well defined. Recalling that (3.3) is injective, commutativity follows since,
for any φ P H0pXγ ,Kγq, one has for every invariant polynomial pi, that

p˚
γpippγ,˚φq “ pipp

˚
γpγ,˚φq “ pi

´ à
i

φi

¯
.

Equivariance by the action of Zn follows form the Zn-equivariance of the vertical arrows and the Zn-
invariance of the horizontal arrows. The preimage in (3.12) of the fibre of b P B

γ
red is

Ť
i h

´1
Xγ ,1

pξi,˚φq,

which are disjoint as the points in Bγ
red correspond to those φ not fixed by Zn. Finally, (3.14) follows from

commutativity, equivariance, Corollary 3.4 and (i) of Proposition 3.7. �
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Associated to φ P H0pXγ ,Kγq projecting to b P B
γ
red we have constructed in (3.8) the normalisation

morphism νφ. By construction, we have the following commutative diagram

(3.15) Xγ

νφ

  ❇
❇❇

❇❇
❇❇

pγ

��

Xb

πb}}④④
④④
④④
④④

X

It follows from (3.8), that for every φi “ ξi,˚φ projecting to the same b P Bγ
red, one has

(3.16) νφi
“ νφ ˝ ξi.

Consider the pushforward morphism

(3.17) ν̌φ : JacdpXγq ÝÑ Jac
δ`d

pXbq
E ÞÝÑ νφ,˚E

where we recall that δ is given by (2.3). If φ, φk P H0pXγ ,Kγq, with φk “ φ˝ ξk, are any two representatives
of the class b P Bγ – H0pXγ ,Kγq{Zn, then the corresponding morphisms ν̌φ and ν̌φk

have the same image

Impν̌φq “ Impν̌φk
q

due to (3.16).

Proposition 3.9. Let b P Bγ
red. Then,

(i) the intersection of the fixed point subvariety MXpn, dqγ with the Hitchin fibre is

h´1
γ pbq “ Impν̌φq – JacdpXγq.

(ii) the restrictions to h´1
γ pbq of the line bundle L and the sheaf F are respectively identified, under the

isomorphim (3.14), with the bundles Nm˚ qL and
Àn´1

i“0 ξ̂
i
˚

qF .

Proof. (i) The identification h´1
γ pbq “ Impν̌φq follows easily from the commutativity of (3.15) and the fact

that, after Corollary 3.4, every point in h´1
γ pbq corresponds with the pushforward under pγ of a line bundle

on Xγ . Then, recall (3.14) which agrees with the fact that Impν̌φq – JacdpXγq since ν̌φ is injective as it is the
pushforward under the normalisation map of a curve. Note that Corollary 3.8 implies that the identification

between JacdpXγq ˆ tφu and JacdpXγq ˆ tξi,˚φu made by ξ̂i, corresponds with the identification between
Impνφq and Impνφi

q.
(ii) Recall from (3.13) and (3.14) that the Hitchin fibre h´1

X,npbq is given by the quotient

ˆ n´1ğ

i“0

JacdpXγq ˆ tξi,˚φu

˙
{Zn – JacdpXγq.

Recall as well that L is given by g˚ qL where g is given by the factorization of the norm map Nm through
the quotient by Zn and the trivial projection T ˚ JacdpXγq Ñ JacpXγq. Since L is a line bundle, note that
L |h´1

X,n
pbq is a line bundle as well, it is indeed the descent line bundle given by Zn-invariant line bundle in

Ů
i Jac

dpXγq ˆ tξi,˚φu corresponding to Nm˚ qL on each component. This proves the statement for L .

Recall that F is given by p̌γ,˚f
˚F and recall from (3.13) that h´1

X,npbq is the image under p̌γ of
Ů

i Jac
dpXγqˆ

tξi,˚φu. Since f is the trivial projection T ˚ JacdpXγq Ñ JacdpXγq, the restriction of f˚ qF to each JacdpXγqˆ

tξi,˚φu is simply qF . Then, the restriction of F to the image under p̌γ of
Ů

i Jac
dpXγq ˆ tξi,˚φu, corresponds

with the direct sum of the pushforward of qF under the isomorphisms

ξ̂i : JacdpXγq ˆ tξi,˚φu Ñ JacdpXγq ˆ tφu.

�
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Remark 3.10. Since, for any i, the ξ̂i are automorphisms of JacdpXγq with inverse ξ̂´i, we have that the

pushforward under ξ̂i corresponds with the pullback under ξ̂´i. Also, note that these constructions commute
with dualization

ξ̂i˚
qF – }ξi˚F .

Remark 3.11. Since the dual of the norm map corresponds to p̂γ under dualization, we have that

Nm˚ qL – }p˚
γL.

We observe as well that this bundle is invariant under the action of ξ̂i, as

ξ̂i˚
}p˚
γL – ­ξi˚p˚

γL – }p˚
γL.

4. Hecke pBAAq-branes

In a hyperkähler variety with Kähler structures ppI1, ω1q, pI2, ω2q, pI3, ω3qq. By definition [KW], a pBAAq-
brane consists of a pair pΣ, pW,∇W qq, where

(1) Σ is a complex Lagrangian subvariety for the holomorphic 2-form Ω “ ω2 ` iω3;
(2) pW,∇W q is a flat bundle supported on Σ.

In this section we construct a family of pBAAq-branes over the open subset determined by reduced spectral
curves, which are mapped under the Hitchin fibration to the same locus of the Hitchin base as our pBBBq-
branes pBBBq

γ
L
and pBBBq

γ
F
. Its support is a subvariety of MXpn, dq, depending on γ P JacpXqrns and

on a holomorphic line bundle J P Jacδ`dpXγq. Denote it by Hecγ,Jred ; see (4.5). The basic idea of its
fibrewise description is the following (cf. Theorem 4.6). Take a point on b P Bγ

red. As we know, the Hitchin

fibre h´1
X,npbq is the compactified Jacobian Jac

δ`d
pXbq. Consider a normalisation νφ : Xγ Ñ Xb, where

χpφq “ p˚
γb, and the induced pullback map ν̂φ : Jacδ`dpXbq Ñ Jacδ`dpXγq. Suppose J is in the image of

the pullback induced by pγ : Xγ Ñ X , hence it is fixed by the Galois group action on Jacδ`dpXγq. Then

the intersection of Hecγ,Jred with h´1
X,npbq will be the fibre of ν̂φ over J . By (3.16), and since ξ˚J – J , this

fibre is independent of the choice of the representative φ of the class defined by b. If J does not descend to

X , then it is not fixed by the Galois group, and the intersection of Hecγ,Jred with h´1
X,npbq will be the union of

the fibres of ν̂φ over the orbit of J under the Galois group. Again by (3.16), this union is independent of
the choice of φ.

We will also see that the Higgs bundles lying in Hecγ,Jred can be constructed as Hecke transformations of

naturally associated Higgs bundles lying in MXpn, δ`dqγ . Hence, roughly speaking, our subvarieties Hecγ,Jred

can be obtain as global “Hecke transformations” of the support of the Narasimhan-Ramanan pBBBq-branes
over MXpn, δ`dq. This justifies the notation for these subvarieties, as well as the name we have given to the

corresponding branes, as Hecke pBAAq-branes. In fact, we shall also prove that each Hecγ,Jred is a Lagrangian
subvariety, hence, when equipped with the trivial line bundle, becomes a pBAAq-brane, which we denote by

pBAAq
γ,J
red .

Notice here a kind of duality on a fibre of the Hitchin map over a point on Bγ
red. For the Narasimhan-

Ramanan pBBBq-branes, we considered the spectral data embedded in Jac
δ`d

pXbq under the pushforward
morphism (3.17) induced by νφ. For the Hecke pBAAq-branes we consider the fibre of the pullback morphism
again induced by νφ. Indeed, for degree d “ 0 (or multiple of n), we will associate, in Section 5, to each

brane pBBBqγ
L

or pBBBqγ
F
, a pBAAq-brane pBAAqγ,Jred where J is naturally associated (via the Hitchin

section) to L or F . Moreover, we will prove there that these pair branes are indeed dual branes in the sense
of mirror symmetry.

4.1. Construction of the subvarieties. In this subsection we construct the subvarieties which will sup-
port our pBAAq-branes. As always, let γ P JacpXqrns be of maximal order. Recalling that Bγ

X,n –

H0pXγ ,Kγq{Zn, we denote by Hγ
red the preimage of Bγ

red. This coincides with

H
γ
red “ tφ P H0pXγ ,Kγq |φ is not fixed by any element of Znu.

Define the tautological morphism constructed with the sections of Kγ

Φ : Xγ ˆH
γ
red ÝÑ PpKγq ˆH

γ
red

py, φq ÞÝÑ prφpyq : 1s, φq,
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and note that the closed subset ΦpXγ ˆH
γ
redq Ă PpKγq ˆH

γ
red is the family of curves in PpKγq parametrized

by Hγ
red, where the curve parametrized by φ is precisely φpXγq. Recalling that Kγ – Xγ ˆX K, so PpKγq –

Xγ ˆX PpKq, we denote by q the obvious projection PpKγq Ñ PpKq. Consider the closed subset of PpKq ˆ
H

γ
red,

Σγ :“
´
q ˆ 1H

γ

red

¯
˝ ΦpXγ ˆH

γ
redq,

and note that this defines a family of curves Σγ Ñ H
γ
red, which is flat since both Φ and q are flat morphisms.

Furthermore, (3.7) implies that the restriction to φ P H
γ
red Ă H0pKγq is the spectral curve Xb, where

p˚
γb “ χpφq,

(4.1) Σγ |φ “ qpφpXγqq “ Xb.

Hence, the geometric fibres of Σγ are reduced by (iv) Proposition 3.6. Since Σγ is a flat, finitely presented
family of curves, with geometrically reduced fibres, it follows by an unpublished result of Mumford [BLR,

Theorem 2, Section 8.2] that the associated relative Jacobian Jacδ`d
H

γ
red

pΣγq Ñ H
γ
red exists and it is fine i.e. it

is the parametrization space of a universal family of line bundles Uγ
red Ñ Σγ ˆH

γ
red

JacHγ
red

pΣγq. Note that the

trivial family Xγ ˆH
γ
red satisfies as well the previous conditions, so the relative Jacobian Jacδ`d

H
γ

red

pXγ ˆH
γ
redq

exists as well. Since the family Xγ ˆH
γ
red is trivial, we have

Jacδ`d
H

γ

red

pXγ ˆH
γ
redq – Jacδ`dpXγq ˆH

γ
red,

and it is trivially an open subset of Jacδ`dpXγq ˆH0pXγ ,Kγq – MXγ
p1, δ ` dq. Later on, the choice of the

notation δ ` d for the degree will become clear.
By construction, Σγ comes equipped with the morphism ν :“ pq ˆ 1H

γ

red

q ˝ Φ of H0pKγq-schemes

(4.2) ν : pXγ ˆH
γ
redq ÝÑ Σγ ,

which coincides fibrewise with (3.8),

νφ : Xγ ˆ tφu ÝÑ Σγ |φ “ Xb.

Since the pullback morphism is functorial for line bundles, associated to (4.2) one can define

(4.3)
ν̂ : Jacδ`d

H
γ

red

pΣγq ÝÑ Jacδ`d
H

γ

red

pXγ ˆH
γ
redq – Jacδ`dpXγq ˆH

γ
red

L Ñ Σγ |φ ÞÝÑ ν˚
φL Ñ pXγ ˆ tφuq.

Consider the projection π : PpKq Ñ X given by the structural morphism of K Ñ X . Note that,
Σγ Ă PpKq ˆH

γ
red comes naturally equipped with the projection

Π “ pπ ˆ 1H
γ

red

q : Σγ Ñ X ˆH
γ
red.

It follows from the fibrewise description of Σγ (4.1) that Π is a ramified n-cover. Observe that pπ ˆ
1H

γ
red

q˚K Ñ PpKq ˆ H
γ
red has a tautological section λ and let us abuse of notation to denote by λ the

tautological secion restricted to Σγ Ă PpKq ˆ H
γ
red. Recall the universal family of line bundles U

γ
red Ñ

Σγ ˆH
γ
red

JacHγ
red

pΣγq. It follows from the spectral correspondence that

pVγ ,Ψγq :“
´
Π ˆH

γ

red

1Jac

¯
˚

pUγ
red, λq ÝÑ pX ˆH

γ
redq ˆH

γ

red

Jacδ`d
H

γ
red

pΣγq,

is a family of stable rank n degree d Higgs bundles parametrized by JacHγ

red

pΣγq. From moduli theory, this

provides a morphism to the moduli space of Higgs bundles

(4.4) s : Jacδ`d
H

γ
red

pΣγq ÝÑ MXpn, dq,

defined over Σγ via the spectral correspondence. Observe that the image of s is contained in MXpn, dqˆBB
γ

by construction, and that it is an n to 1 map onto its image since for every φk “ ξk,˚φ, one has that

spJacδ`dpΣγ |φqq “ spJacδ`dpΣγ |φk
qq.

Associated to every line bundle J Ñ Xγ of degree d ` δ, we define, using (4.4) and (4.3), the subvariety
of MXpn, dq given by

(4.5) Hecγ,Jred :“ s
`
ν̂´1ptJ u ˆH

γ
redq

˘
.
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By construction, Hecγ,J lies inside MXpn, dq ˆB Bγ , so it fibres naturally over Bγ under the Hitchin
fibration, whose restriction we denote by hγ

J
,

(4.6) h
γ
J
: Hecγ,Jred ÝÑ B

γ
red.

One has the following fibrewise description of Hecγ,Jred , consider b P B
γ
red given by φ P H0pKγq, and let

φk “ ξk,˚φ, then

Hecγ,Jred |b “

$
&
%pE,Φq P MXpn, dq ˆB Bγ

ˇ̌
ˇ̌
ˇ̌

pE,Φq “ πb,˚L for any line
bundle L Ñ Xb satisfying
ν˚
φL – ξi,˚J for some i.

,
.
- .

Notice that if J descends to X , then ξi,˚J – J is independent of i.

In fact, locally on B
γ
red, Hec

γ,J
red can be realised in terms of Hecke transforms of families of bundles as

follows. Consider the family
X̃ “ pXγ ˆH

γ
redq {Zn ÝÑ B

γ
red.

Let X ÝÑ B
γ
red be the family of spectral curves over Bγ

red. Note that X “ Σγ{Zn. Moreover, we have a
Cartesian diagram:

(4.7) Xγ ˆH
γ
red

ν //

��

Σγ

��
X̃

n
// X

where n is the normalisation morphism.
The following two results follow from the preceding considerations.

Lemma 4.1. Xγ ˆH
γ
red is étale over X̃ .

Proposition 4.2. Let J P JacpXγq. Then, there exists a cover U of Bγ
red such that for any open set U P U

Hecγ,Jred ˆB
γ

red

U –
n´1ď

i“0

n̂´1
U pξi,˚J ˆ Uq.

In the above
n̂ : Jacδ`d

B
γ
red

pX q ÝÑ Jacδ`d
B

γ
red

pX̃ q

is the pullback morphism, and n̂U is its restriction over U .

4.2. Properties of Hecγ,Jred . We now study the properties of Hecγ,Jred . Particularly relevant are the proofs

that Hecγ,Jred are indeed Lagrangian subvarieties of MXpn, dq and the proof that the Higgs bundles lying on
them arise as Hecke transformations of certain associated Higgs bundles representing points inMXpn, δ`dqγ .

Proposition 4.3. The subvariety Hecγ,Jred is contained in the stable locus of MXpn, dq.

Proof. It follows by construction, since we are considering only spectral data given by reduced and irreducible
spectral curves. �

Consider the pullback map between the moduli spaces of Higgs bundles over X and over Xγ ,

(4.8)
p̂γ : MXpn, dq ÝÑ MXγ

pn, ndq
pE,Φq ÞÝÑ pp˚

γE, p
˚
γΦq,

which is well defined since pullback by finite étale maps of solutions to Hitchin equations are solutions as
well.

Recall the unipotent locus described in [FP, Section 4]. We now study its relation with Hecγ,Jred .

Proposition 4.4. We have

p̂γ

´
Hecγ,Jred

¯
Ă

n´1ď

i“0

Uni ξ
i,˚

J

Xγ
pn, ndq.

In particular, if J descends to X, then

p̂γ

´
Hecγ,Jred

¯
Ă UniJXγ

pn, ndq.
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Proof. This can be seen from the spectral data, as by [FP, Proposition 4.5]

UniJXγ
pn, ndq X h̃´1pb̃q “ tL̃ Ñ Xb̃ : ν̃˚L̃ “ q˚J u.

Now, by Cartesianity of eqrefeq cartesian diagram spectral in Proposition 3.6, the spectral data of p˚
γpE, φq

is the pullback of the spectral data of pE, φq. Thus

p̂γ

´
Hecγ,Jred

¯
X h̃´1

Xγ ,1
prbq “

!
L̃ Ñ Xb̃ : L̃ “ p̃˚L,L Ñ Xb, ν

˚
φL “ J

)
.

But, thanks to (v) Proposition 3.6, we have

ν̃˚p̃˚L “ q˚ξkij ,˚J .

We have thus proven

p̂γ

´
Hecγ,Jred

¯
X h̃´1

Xγ ,n
pb̃q Ă Uni

ξ˚

k
J

Xγ
pn, ndq X h̃´1

Xγ ,n
pb̃q.

�

Proposition 4.4 has important consequences, as the holomorphic 2-form vanishes in Hecγ,Jred .

Proposition 4.5. The subvariety Hecγ,Jred is isotropic.

Proof. Let ωX P Ω0p
Ź2

T ˚MXpn, dqq be the symplectic form on MXpn, dq associated with the complex

structure JacpXqrns1, and likewise for ωXγ
P Ω0p

Ź2
T ˚MXγ

pn, ndqq. We need to check that the stalks of
ωX on all stable points pE, φq P MXpn, dqq vanish, which by Proposition 4.3 are all points. Recall that ωX

is defined on the tangent space TpE,ϕqMXpn, dq – H1pC‚q by the pairing

x¨, ¨yX : H0pX,EndE bKXq bH1pX,EndEq ÝÑ H0pX,Cq – C.

In a similar fashion, one defines ωXγ
by pairing the spaces H0pXγ ,EndẼ b Kγq and H1pXγ ,EndẼq. Let

recall from (4.8) that the pullback map p̂γ . By [FP, Proposition 4.5], p̂γpE,ϕq “ pẼ, ϕ̃q is stable. Thus for
every v, w P TpE,ϕqMXpn, dq one may consider

ωXγ
pdp̌γv, dp̌γwq “ xp˚

γv, p
˚
γwyXγ

“ p˚
γxv, wyX “ pdp̌γqtωXpv, wq,

where the first and last equality follow from the identification TpE,ϕqMXpn, dq – H1pC‚q. By Proposition

4.4 and [FP, Proposition 4.2], pdp̌γqtωXpv, wq “ 0 “ p˚
γxv, wyX . Since xv, wyX P C “ H0pX,Cq, and pγ is

a local isomorphism, it follows that the globally constant function xv, wyX vanishes locally, so it must be
globally zero. Hence isotropicity follows. �

We now describe the fibres of the fibration (4.6) restricted to the locus of reduced spectral curves, showing

that the points in Hecγ,Jred are Hecke transforms of certain γ-invariant Higgs bundles determined by J , what
justifies the choice of the notation Hec. For every b P Bγ

red given by φ P H0pXγ ,Kq, define

(4.9) pEJ , ϕφq :“
`
pγ,˚J , pγ,˚ν

˚
φλ

˘
,

where λ is the tautological section restricted to Xb. By Theorem 3.3 these bundles are γ-invariant.

Theorem 4.6. The fibre of (4.6) over b P Bγ
red is a union of torsors over H0pXb,O

˚
singpXbqq. In fact

phγ
J

q´1pbq –
nJ ´1ğ

i“0

H0pXb,O
˚
singpXbqq,

where nJ is number of distinct points in the orbit of J under the Galois group Zn.
Moreover, the Higgs bundles pE,ψq P phγ

J
q´1pbq are Hecke transforms, at the divisor πbpsingpXbqq on X,

of the γ-invariant Higgs bundles pEJ , ϕφq, i.e. one has the short exact sequence

(4.10) 0 ÝÑ E ÝÑ EJ ÝÑ OπbpsingpXbqq ÝÑ 0,

and

(4.11) ψ “ ϕφ|E .
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Proof. Recall from (3.8) that νφ : Xγ Ñ Xb is a normalisation map. Hence, by [Gr, Proposition 21.5.8], we
consider the following short exact sequence of sheaves on Xb.

0 ÝÑ O˚
Xb

ÝÑ νφ,˚O
˚
Xγ

ÝÑ O˚
singpXbq ÝÑ 0

and the induced long exact sequence in cohomology, which is

0 ÝÑ H0pXb,O
˚
Xb

q ÝÑ H0pXb, νφ,˚O
˚
Xγ

q ÝÑ H0pXb,O
˚
singpXbqq ÝÑ H1pXb,O

˚
Xb

q ÝÑ H1pXb, νφ,˚O
˚
Xγ

q ÝÑ 0,

as H1pXb,O
˚
singpXbqq “ 0, since O˚

singpXbq is a torsion sheaf.

Since νφ is a finite morphism,H0pXb, νφ,˚O
˚
Xγ

q – H0pXγ ,O
˚
Xγ

q – C
˚ – H0pO˚

Xb
q and alsoH1pXb, νφ,˚O

˚
Xγ

q –

H1pXγ ,O
˚
Xγ

q. Therefore, we get the short exact sequence

(4.12) 0 ÝÑ H0pXb,O
˚
singpXbqq ÝÑ H1pXb,O

˚
Xb

q ÝÑ H1pXγ ,O
˚
Xγ

q ÝÑ 0,

where the second morphism corresponds to the pullback map ν̂φ : JacpXbq Ñ JacpXγq for via νφ. By (4.12),
the kernel of ν̂φ is isomorphic to H0pXb,O

˚
singpXbqq. Since the preimage under ν̂φ of any line bundle on

Jacδ`dpXγq is (non-canonically) isomorphic to ker ν̂φ. After (3.16) we have ν̂´1
φ pJ q “ ν̂´1

b,j pξpi´jq,˚J q, so
they are exactly nJ of them. Then first statement follows.

Since every pE,ϕq P phγ
J

q´1pbq is given by a spectral data L Ñ Xb such that ν˚
φL – J , one has that

(4.13) 0 ÝÑ L ÝÑ νφ,˚J ÝÑ OsingpXbq ÝÑ 0.

Then, (4.10) holds after taking the pushforward under πb of (4.13), were we observe that πb,˚νφ,˚J “
pγ,˚J “ EJ since (3.15) commutes. Finally, (4.11) is a consequence of the inclusion L Ă νφ,˚J of sheaves
in |K|. �

Remark 4.7. Proposition 4.2 is the version of (4.10) in terms of families of spectral data.

Remark 4.8. If J is the pullback of a line bundle on X , then nJ “ 1 since it is invariant under the Galois
group. Then phγ

J
q´1pbq is a torsor for H0pXb,O

˚
singpXbqq. Notice that this case only occurs when d is a

multiple of n (hence can assume d “ 0), since degpJ q “ δ ` d.

The next result shows that, again if J descends to X , then the Hitchin section restricted to Bγ
red maps

to Hecγ,Jred , thus providing a section of (4.6).

Proposition 4.9. Suppose d is a multiple of n. Consider a line bundle L Ñ X of degree pδ ` dq{n.

The Hitchin section associated to L intersects every fibre of Hec
γ,p˚

γ L

red ÝÑ B
γ
red, providing a section of this

fibration.

Proof. One can consider, for every b P Bγ
red, the Higgs bundle obtained from the spectral data π˚

b L Ñ Xb.

By the commutativity of (3.15), it is contained in Hec
γ,p˚

γ L

red . �

Since we already know, after Proposition 4.5, that Hecγ,Jred is isotropic, Lagrangianity follows after showing
that is is mid-dimensional.

Theorem 4.10. Hecγ,Jred is a Lagrangian subvariety.

Proof. Thanks to Theorem 4.6 the dimension of the fibres of (4.6) is equal to the dimension ofH0pXb,O
˚
singpXbqq.

We have that dimH0pXb,O
˚
singpXbqq equal to the degree of the singular divisor singpXbq of Xb, and by (iv) of

Proposition 3.6 this is npn´1qpg´1q. From (i) and (ii) Proposition 3.7 dimB
γ
red “ dimB

γ
X,n “ npg´1q `1.

So we have a mid dimensional subvariety, as the dimension of the fibers and the base of (4.6) are additive
since we lie in the stable, and therefore smooth, locus. It is moreover isotropic by Proposition 4.5, thus
Lagrangian. �

For every γ P JacpXqrns of maximal order and every line bundle J Ñ Xγ of degree δ ` d, we have thus

constructed a Lagrangian subvariety Hecγ,Jred of the moduli space of Higgs bundles MXpn, dq, which lies in
the locus given by reduced spectral curves. Taking the trivial flat bundle on it, we obtain a pBAAq-brane,

pBAAq
γ,J
red :“

´
Hecγ,Jred , pO,∇Oq

¯
,

which we call the Hecke pBAAq-brane associated to γ P JacpXqrns and J Ñ Xγ (restricted to the locus of
reduced spectral curves).
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5. Mirror symmetry in the locus of reduced spectral curves

In this section we study the duality between the Narasimhan-Ramanan pBBBq-branes and the Hecke
pBAAq-branes that we have constructed in the preceding sections. For a choice of Lagrangian section of the
Hitchin fibration, one can construct a relative Poincaré sheaf over the locus of reduced spectral curves, and
mirror symmetry is expected to be realised by a Fourier–Mukai transform associated to it. Since the duality
is not yet well understood in the Hitchin fibres corresponding to non-reduced curves, we will restrict our
study to the locus of reduced spectral curves.

In this section, we perform a Fourier–Mukai transform of the restriction of the Narasimhan-Ramanan
pBBBq-branes pBBBq

γ
L

and pBBBq
γ
F

to a Hitchin fibre associated to a reduced curve. We will see that
the support of the transformed sheaf is precisely the intersection of the Hecke pBAAq-brane with the corre-
sponding Hitchin fibre. By functoriality of the relative Fourier–Mukai transform, the fibrewise Fourier–Mukai
transform that we perform corresponds to the restriction to a given fibre of the relative one.

In this section we address only the case of trivial degree d “ 0. We do so because, in this case there exist
global Lagrangian sections of the Hitchin fibration hX,n : MXpn, 0q Ñ BX,n, the so-called Hitchin sections.
This allow us to perform the relative Fourier–Mukai transform without using a gerbe (or using a trivial one).
For d non-multiple of n, there is non such global Lagrangian section, hence a gerbe is required to perform
the relative Fourier-Mukai (cf. [HT]). Another option for such d is to consider instead the moduli spaces
of parabolic Higgs bundles, since, for an appropriate choice of weights, there is a Hitchin section, hence the
duality can be performed without the gerbe (cf. [GO]).

Consider the Hitchin section associated to a square root of the canonical bundle K1{2, i.e. take for
every spectral curve πb : Xb Ñ X , the line bundle π˚

bK
pn´1q{2 on Xb. We consider here the Fourier–Mukai

associated to this Hitchin section, so π˚
bK

pn´1q{2 will be the distinguished point in our Hitchin fibre. Note

that p˚
γK – Kγ , so p

˚
γK

1{2
K is a square root of Kγ , giving rise to an identification between the abelian variety

Jac0pXγq and the torsor JacδpXγq.
From (iv) Proposition 3.6, we have that, for any b P B

γ
red, the spectral curve Xb is reduced, irreducible

and has only planar singularities. We find ourselves in the situation described in Section 2.3, and, thanks to

[Ar], there exists a Poincaré sheaf Pb Ñ Jac
δ
pXbq ˆ Jac

δ
pXbq giving rise to the derived equivalence Θb of

(2.6).

We recall that the Poincaré sheaf Pb is constructed from the Poincaré bundle Pb Ñ Jac
δ
pXbq ˆJacδpXbq.

We provide first some technical results concerning Pb. Since Xγ is smooth, the jacobian Jac0pXγq is a
smooth abelian variety known to be self-dual and one can naturally define a Poincaré bundle over the
product Jac0pXγq ˆ JacδpXγq. As δ “ npn´ 1qpg´ 1q is a multiple of n, the choice of a point x0 P X defines

an isomorphism between Jac0pXγq and JacδpXγq defined via tensoring by OXγ
pp´1

γ px0qq, where we recall
that pγ : Xγ Ñ X is an n-th cover.

Denote by rPγ the Poincaré bundle over Jac0pXγq ˆ JacδpXγq. Recall from (3.17) the pushforward mor-
phism ν̌φ induced from the normalisation map νφ : Xγ Ñ Xb, and consider as well the pullback map

ν̂φ : JacδpXbq Ñ JacδpXγq.

One sees that both pν̌φ ˆ 1Jacq
˚
Pb and p1ĄJac ˆ ν̂φq˚ rPγ are bundles over Jac0pXγq ˆ JacδpXbq where 1ĄJac

and 1Jac are the identity morphisms in Jac0pXγq and JacδpXbq. Similarly to [FP, Lemma 5.2], one can prove
that they are indeed isomorphic.

Proposition 5.1. One has that

pν̌φ ˆ 1Jacq
˚
Pb – p1ĄJac ˆ ν̂φq˚ rPγ .

Proof. After a certain adaptation, the proof is analogous to that of [FP, Lemma 5.2]. We include it in the
present paper for the sake of clarity.

Note that pν̌φ ˆ 1Jacq
˚
Pb is a family of topologically trivial line bundles over Jac0pXγq parametrized by

JacδpXbq. Since rPγ Ñ Jac0pXγq ˆ Jac0pXγq is a universal family for these objects, there exists a map

g : JacδpXbq Ñ Jac0pXγq,

such that

pν̌φ ˆ 1Jacq
˚
Pb – p1ĄJac ˆ gq˚ rPγ .
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We claim that this map is g “ ν̂φ but to see it, we need some preliminary statements.

For each M P JacδpXbq, recall the description of Pb,M given in (2.5). Recall as well the projections

f1 : Xb ˆ Jac
δ
pXbq Ñ Xb and f2 : Xb ˆ Jac

δ
pXbq Ñ Jac

δ
pXbq, and take the obvious projections rf1 :

Xγ ˆ Jac0pXγq Ñ Xγ and rf2 : Xγ ˆ Jac0pXγq Ñ Jac0pXγq. One has the following commuting diagrams,

Xγ ˆ Jac0pXγq
νφˆν̌φ //

rf1
��

Xb ˆ Jac
δ
pXbq

f1

��
Xγ

νφ // Xb,

and

Xγ ˆ Jac0pXγq
νφˆν̌φ //

rf2
��

Xb ˆ Jac
δ
pXbq

f2
��

Jac0pXγq
ν̌φ // Jac

δ
pXbq.

We know from [Es, Proposition 44 (1)] that the determinant of cohomology commutes with base change,
i.e.

ν̌˚
φDf2 “ D rf2pνφ ˆ ν̌φq˚.

Let us denote by rUγ Ñ Xγ ˆ Jac0pXγq the universal bundle of topologically trivial line bundles over Xγ .

Observe that, after Section 2.3, the Poincaré bundle rPγ satisfies

rPγ,N “ D rf2p rUγ b rf˚
1Nq´1 b D rf2p rf˚

1 Nq b D rf2p rUγq.

Recall that Ub Ñ Xb ˆ Jac
δ
is the universal sheaf of degree δ torsion free sheaves on Xb and consider the

pullback pνφ ˆ ν̌φq˚Ub which is a sheaf over Xγ ˆJac0pXγq. Given G P Jac0pXγq, observe that the restriction
of pνφ ˆ ν̌φq˚Ub to Xγ ˆ tLu coincides with

ppνφ ˆ ν̌φq˚
Ubq |XγˆtGu –

`
p1Xγ

ˆ ν̌φq˚pνφ ˆ 1Jacq
˚
Ub

˘
|XγˆtGu

– ppνφ ˆ 1Jacq
˚Ubq |Xγˆtν̌φpGqu

– ν˚
φ

`
Ub|Xbˆtν̌φpGqu

˘

– ν˚
φ

´
νφ,˚p rUγ |XγˆtGu

¯
.

Then, we see that rUγ is a subfamily of pνφ ˆ ν̌φq˚Ub, fitting in the exact sequence

(5.1) 0 ÝÑ rUγ ÝÑ pνφ ˆ ν̌φq˚
Ub ÝÑ Qb ÝÑ 0,

where Qb is the (constant) family of sky-scraper sheaves supported on ν´1
φ psingpXbqq.

The additive property of the determinant of cohomology [Es, Proposition 44 (4)] applied to (5.1) gives

D rf2ppνφ ˆ ν̌φq˚Ubq – D rf2p rUγq b D rf2pQbq.

Given any line bundle N over Xγ , we have that Qb b rf˚
1N is isomorphic to Qb itself, hence

D rf2

´
Qb b rf˚

1N
¯

– D rf2 pQbq .

Also, one has the following commutative diagram
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Using these properties, we can show for any M P JacδpXbq that

rPγ,gpMq – ν̌˚
φPb,M

– ν̌˚
φ

´
Df2 pUb b f˚

1Mq
´1

b Df2pf˚
1Mq b Df2 pUbq

¯

– ν̌˚
φDf2 pUb b f˚

1Mq
´1

b ν̌˚
φDf2pf˚

1Mq b ν̌˚
φDf2 pUbq

–D rf2 ppνφ ˆ ν̌φq˚ pUb b f˚
1Mqq

´1
b D rf2pνφ ˆ ν̌φq˚pf˚

1 Mq b D rf2 ppνφ ˆ ν̌φq˚Ubq

–D rf2

´
pνφ ˆ ν̌φq˚Ub b rf˚

1 ν
˚
φM

¯´1

b D rf2

´
rf˚
1 ν

˚
φM

¯
b D rf2 ppνφ ˆ ν̌φq˚Ubq

–D rf2p rUγ b rf˚
1 ν

˚
φMq´1 b D rf2pQb b rf˚

1 ν
˚
φMq´1 b D rf2

´
rf˚
1 ν

˚
φM

¯

b D rf2p rUγq b D rf2pQbq

–D rf2p rUγ b rf˚
1 ν

˚
φMq´1 b D rf2pQbq

´1 b D rf2

´
rf˚
1 ν

˚
φM

¯
b D rf2p rUγq b D rf2pQbq

–D rf2p rUγ b rf˚
1 ν

˚
φMq´1 b D rf2

´
rf˚
1 ν

˚
φM

¯
b D rf2p rUγq

– rPγ,ν˚

φ
M

– rPγ,ν̂φpMq.

Then, g “ ν̂φ and this finish the proof. �

Consider the projections to the first and second factors

Jac0pXγq ˆ JacδpXγq

rπ1

vv♠♠♠
♠♠♠

♠♠
♠♠
♠♠
♠

rπ2

((◗◗
◗◗◗

◗◗◗
◗◗

◗◗◗

Jac0pXγq JacδpXγq,

and, using rPγ Ñ Jac0pXγq ˆ JacδpXγq, define the integral functor

Θγ : DbpJac0pXγqq ÝÑ DbpJacδpXγqq

E‚ ÞÝÑ Rrπ2,˚prπ˚
1 E

‚ b rPuq.

One can now study the image under Θb of the complexes constructed by pushforward via the embedding

ν̌φ : Jac0pXγqq Ñ Jac
δ
pXbq. Let us denote the inclusion of the Jacobian into the compactified Jacobian by

h : JacδpXbq ãÑ Jac
δ
pXbq.

Theorem 5.2. There exists an isomorphism

ΘbpRν̌φ,˚E
‚q – Rh˚ν̂

˚
φΘγpE‚q.

Proof. First of all, note that Rν̂φ,˚E
‚ is a complex whose sheaves are all supported in Impν̂φq, and this does

not intersect JacδpXbq. Therefore,

supppπ˚
1Rν̂φ,˚E

‚q X
´
Jac

δ
pXbq ˆ Jac

δ
pXbq

¯7

“ Impν̂φq ˆ JacδpXbq,

which is contained in Jac
δ
pXbq ˆ JacδpXbq Ă

´
Jac

δ
pXbq ˆ Jac

δ
pXbq

¯7

.

Recall from Section 2.3 the injection j and note that the following diagram commutes,

´
Jac

δ
pXbq ˆ Jac

δ
pXbq

¯7
� � j // Jac

δ
pXbq ˆ Jac

δ
pXbq

Jac
δ
pXbq ˆ JacδpXbq

?�

OO

(
� i

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
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Since Pb “ j˚P
7
b, one can see that

Pb b π˚
1Rν̂φ,˚E

‚ – i˚Pb b π˚
1Rν̂φ,˚E

‚.

Applying the projection formula yields

Pb b π˚
1Rν̂φ,˚E

‚ – Ri˚pPb b i˚π˚
1Rν̂φ,˚E

‚q.

Consider the obvious projections

Jac
δ
pXbq ˆ JacδpXbq

π1

1

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

π1

2

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

Jac
δ
pXbq JacδpXbq.

Recalling the inclusion h : JacδpXbq ãÑ Jac
δ
pXbq, one has that

‚ h ˝ π1
2 “ π2 ˝ i,

‚ π1
1 “ π1 ˝ i.

As a consequence of this,

ΘbpRν̂φ,˚E
‚q “Rπ2,˚pPb b π˚

1Rν̂φ,˚E
‚q

–Rπ2,˚Ri˚pPb b i˚π˚
1Rν̂φ,˚E

‚q

–Rh˚Rπ
1
2,˚pPb b pπ1

1q˚Rν̂φ,˚E
‚q.

Consider also

Jac0pXγq ˆ JacδpXbq

rπ1

1

vv♠♠♠
♠♠♠

♠♠
♠♠
♠♠
♠

rπ1

2

((◗◗
◗◗

◗◗◗
◗◗

◗◗◗
◗

Jac0pXγq JacδpXbq,

and, recalling the projections rπ1 and rπ2, observe that

‚ rπ1
2 “ π1

2 ˝ pν̌φ ˆ 1Jacq,
‚ rπ1

1 “ rπ1 ˝ p1ĄJac ˆ ν̂φq,
‚ π1

1 ˝ pν̌φ ˆ 1Jacq “ ν̌φ ˝ rπ1
1, and

‚ rπ2 ˝ p1ĄJac ˆ ν̂φq “ ν̂φ ˝ rπ1
2.

Finally, thanks to Proposition 5.1 and that all the maps involved are flat, one has the following,

ΘbpRν̂φ,˚E
‚q “Rh˚Rπ

1
2,˚ppπ1

1q˚Rν̂φ,˚E
‚ b Pbq

–Rh˚Rπ
1
2,˚pRpν̌φ ˆ 1Jacq˚prπ1

1q˚
E

‚ b Pbq

–Rh˚Rπ
1
2,˚Rpν̌φ ˆ 1Jacq˚pprπ1

1q˚E‚ b pν̌φ ˆ 1Jacq˚Pbq

–Rh˚Rπ
1
2,˚Rpν̌φ ˆ 1Jacq˚pprπ1

1q˚E‚ b p1ĄJac ˆ ν̂φq˚ rPγq

–Rh˚Rrπ1
2,˚pprπ1

1q˚E‚ b p1ĄJac ˆ ν̂φq˚ rPγq

–Rh˚Rrπ1
2,˚p1ĄJac ˆ ν̂φq˚prπ˚

1 E
‚ b rPγq

–Rh˚ν̂
˚
φRrπ2,˚prπ˚

1 E
‚ b rPγq

–Rh˚ν̂
˚
φRrπ2,˚prπ˚

1 E
‚ b rPγq

–Rh˚ν̂
˚
φΘγpE‚q,

and the proof is complete. �

In the notation of [Mu2, Definition 2.3]), a sheaf is WITn if its Fourier–Mukai transform is a complex
supported in degree n. After Theorem 5.2 one has the following.

Corollary 5.3. Let E be a sheaf on Jac0pXγq which is WITn with respect to Θγ . Then ν̌φ,˚E is a WITn

sheaf with respect to Θb.
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We recall from [Mu2] that topologically trivial line bundles are WIT´m, where m is the dimension of
the abelian variety. In fact, as complexes supported in degree ´m, a the fourier–Mukai transform of a
topologically trivial line bundle J̌ is the sky-scraper sheaf at the point given by J̌ .

Given L and F , respectively, degree 0 line bundles on the base X and on Xγ , the branes pBBBq
γ
L
and

pBBBq
γ
F

consist of a hyperholomorphic line bundle L and a hyperholomorphic vector bundle F supported
on the fixed point locus MXpn, 0qγ . We know from Proposition 3.9 that L restricted to a Hitchin fibre

associated to a reduced spectral curve, is Nm˚ qL while the restriction of F is
À

i ξ
i
˚

qF . As sheaves over

MXpn, 0q, they correspond, respectively, with ν̌φ,˚ qL and
À

i ν̌φ,˚ξ
i
˚

qF .

Recall that the identification between Jac0pXγq and JacδpXγq is determined by our choice of the Hitchin

section that determines the relative Poincaré sheaf. In that case, we see that Θγp qFq is the complex supported

in degree dim JacpXγq “ npg ´ 1q ` 1 given by the skyscraper sheaf supported in pF :“ F b p˚
γK

pn´1q{2.

Since the dual of the norm map Nm corresponds to the pullback under pγ , then ΘγpNm˚ qLq is the complex

supported in degree dimJacpXγq given by sky-scraper sheaf at pL :“ p˚
γL b p˚

γK
pn´1q{2.

We have thus proved the following.

Theorem 5.4. Let b P B
γ
red. The Fourier–Mukai transform of the restriction of pBBBq

γ
L

to the Hitchin

fibre h´1
X,npbq is the trivial sheaf supported on Hecγ,L̂red X h´1

X,npbq,

Θbpν̌φ,˚ qLq – ν̂˚
φOL̂

– Oν̂
´1

φ
pL̂q.

Analogously, the transform of pBBBq
γ
F

restricted to h´1
X,npbq is is the trivial sheaf supported on Hecγ,F̂red X

h´1
X,npbq,

Θb

˜
à
i

ν̌φ,˚ξ
i
˚

qF
¸

–
à
i

ν̂˚
φOξi,˚F̂

–
à
i

Oν̂´1

φ
pξi,˚F̂q.

6. The case of non maximal order

In the previous sections we have been dealing with branes corresponding to γ P JacpXqrns of maximal
order n. In this final section we shall briefly consider the cases where γ has order m. The main interest in
hence when 1 ă m ă n, so that n is not a prime number. Different kinds of pBBBq-branes appear depending
on m, and we analise their support and argue what their duals should be. The main difficulty to carry
out the full analysis is the lack of a natural hyperholomorphic bundle. The strategy is very similar to the
maximal rank case, and crucially uses the construction of branes associated with parabolic subgroups from
[FP, Section 6].

6.1. The pBBBq-branes. Let n “ n1 ¨ m, and let γ P JacpXqrns be an order m element. With the same
notation as in Section 3 we have the corresponding line bundle Lγ , and the associated étale m-cover pγ :
Xγ Ñ X , with Galois group isomorphic to Zm. Let ξ “ expp2πi{mq be the standard generator.

Recall that, by Theorem 3.3, pushforward defines a surjective morphism

p̌γ : MXγ
pn1, dq ÝÑ MXpn, dqγ

where MXγ
pn1, dq is the moduli space of rank n1 degree d Higgs bundles on Xγ .

We next investigate how the Hitchin maps of both moduli spaces relate to one another. Recall the Hitchin
map hXγ ,n : MXγ

pn, dq Ñ BXγ ,n on the moduli space of Higgs bundles over Xγ .

Lemma 6.1. Then there is a commutative diagram

(6.1) MXγ
pn1, dq

hXγ,n

��

ǫ // MXγ
pn, d1q

hXγ,n

��
BXγ ,n1

ǫ1

// BXγ ,n

where ǫ is extension of the structure group and d1 is determined by the latter.
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Proof. This is due to the following fact: if i : G1 ãÑ G2 is a subgroup of a complex reductive Lie group,
then, the following diagram commutes:

Crg2sG2

��

i˚

// Crg1sG1

��
Crg2s

i˚

// Crg1s.

�

Consider the embedding e : GLpn1,Cq ãÑ GLpn,Cq

(6.2) Y
e

ÞÑ

¨
˚̊
˚̊
˝

Y 0 . . . . . . 0

0 ξ ¨ Y
. . .

...
...

. . .
. . .

0 ξm´1Y

˛
‹‹‹‹‚
.

Remark 6.2. Note that the image of the above map is contained in the Levi subgroup L of (for example) the
parabolic subgroup P consisting of matrices with non-zero block diagonal entries and all remaining upper
triangular entries. We fix L and P, and let P “ L˙ U with U the unipotent radical of P.

Let ξ “ expp2πi{mq P Zm be the standard generator of the Galois group Zm of the cover pγ : rXγ Ñ X .
Define

ǫ : MXγ
pn1, dq ÝÑ MXγ

pn1,mdq

pF, φq ÞÝÑ
´Àm´1

k“0 ξ
k,˚E,

Àm´1

k“0 ξ
k,˚φ

¯

Note that ǫ is the morphism induced by extension of the structure group via (6.2). Then, by Lemma 6.1,
there is a commutative diagram

(6.3) MXγ
pn1, dq

hXγ,n1

��

ǫ // MXγ
pn,mdq

hXγ,n

��
BXγ ,n1

ǫ1

// BXγ ,n.

The elements of BXγ ,n1 will be denoted b, and those of BXγ ,n by b̃. The following proposition is proved
similarly to Proposition 3.6.

Proposition 6.3. Let γ P JacpXqrns be of order m. Then:

(1) For every b P B
γ
X,nzt0u, there exists b P BXγ ,n1 such that b̃ “ p˚

γb P BĂXγ ,n
satisfies b̃ “ ǫ1pbq.

Moreover ǫ1pb
1
q “ ǫ1pbq if and only if b

1
“ ξi,˚b for some i “ 0, . . . ,m ´ 1.

(2) The curve Xb is the spectral curve of a given rank n1 Higgs bundle on Xγ pF, φq such that pE,ϕq “
pγ,˚pF, φq, and accordingly, Xξi,˚b is the spectral curve corresponding to ξi,˚pF, φq.

(3) The curve Xrb Ă |KXγ
| determined by rb “ p˚

γb is the spectral curve associated with pp˚
γE, p

˚
γϕq, where

hpE,ϕq “ b. It is a generically reduced curve with m irreducible components Xi i “ 1, . . . ,m defined
by

Xi “ Xξi´1,˚b

isomorphic to Xb. The normalisation

X̃b̃

ν̃bÝÑ Xb̃

satisfies

X̃b̃ –
m´1ğ

i“0

Xi –
m´1ğ

i“0

Xξi,˚b.
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(4) the following diagram is Cartesian

(6.4) Xrb
πb̃ //

rp
��

Xγ

pγ

��
Xb π

// X.

(5) For every b P Bγ
X,nzt0u, the corresponding spectral curve Xb is singular and its normalisation is Xb.

It fits in a commutative diagram

(6.5) Xb̃

πb̃ //

p̃b

��

Xγ

pγ

��

Xb

i

>>⑥⑥⑥⑥⑥⑥⑥

νb   ❆
❆❆

❆❆
❆❆

Xb πb

// X.

Xb is generically integral, and the genericity condition is the same as the one for Xb to be smooth.
Its singular locus has length

degpsingpXbqq “ npn´ n1qpg ´ 1q.

(6) the following diagram is Cartesian

(6.6) X̃b̃

ν̃b

��❅
❅❅

❅❅
❅❅

❅

q̃b

��

Xb̃

p̃b

��

Xb

νb   ❆
❆❆

❆❆
❆❆

Xb

(7) dimB
γ
X,n “ pn1q2mpg ´ 1q ` 1.

Proof. The proof is very similar to the one of Proposition 3.6. Let us discuss cartesianity of (6.6). Consider
the larger diagram

X̃b̃

ν̃b

��❅
❅❅

❅❅
❅❅

❅

q̃b

��

Xb̃

πb̃ //

p̃b

��

Xγ

pγ

��

Xb

νb   ❆
❆❆

❆❆
❆❆

Xb πb

// X.

The rightmost diagram is Cartesian and the leftmost is easily seen to be commutative. Moreover, it is easy
to see that q̃b is a Zm-Galois cover. Hence it is enough to see that ν˚

b π
˚
b Lγ trivializes over Xb. This is the

case, as by commutativity

ν˚
b π

˚
b Lγ “ i˚p̃˚

b π
˚
b Lγ “ i˚π˚

b̃
p˚
γLγ “ OXb

.
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�

Let Bγ
red be the locus corresponding to integral curves.

Proposition 6.4. Let b P B
γ
red. Then the intersection of the fixed point subvariety MXpn, dqγ with the

Hitchin fibre is
h´1
γ pbq – νb,˚ Jacκ

`
Xb

˘
,

where κ “ d ` ppn1q2 ´ n1qmpg ´ 1q.

Proof. By Proposition 6.3 (2), the spectral data of elements in MXγ
pn1, dq is given by

Jacnpn1´1qpg´1q`dpXbq.

By commutativity of diagram (6.5), νb,˚ Jacnpn1´1qpg´1q`dpXbq is the spectral data for pγ,˚MXγ
pn1, dq. By

Theorem 3.3, we need only check that for L P Jacnpn1´1qpg´1q`dpXbq

deg νb,˚L “ pn2 ´ nqpg ´ 1q ` d.

Since
deg νb,˚L “ degL` degpsingpXbqq,

we may conclude by Proposition 6.3 (5) �

6.2. The pBAAq-brane. In this subsection we construct a Lagrangian submanifold of MXpn, dq, which is
conjecturally the support of a pBAAq brane dual to a pBBBq brane whose support is MXpn, dqγ .

Let P “ L ˙ U be the parabolic subgroup defined in Remark 6.2. Fix W Ñ X a rank n degree d bundle.
For b P Bγ

red, denote by

nb : rXb ÝÑ Xb

the normalisation of the spectral curve. By Proposition 6.3, we have isomorphisms rXb – Xξi,˚b for all

i “ 1, . . . ,m. Moreover, if we denote by ξ̃ the generator of the Galois group of X̃b̃ ÝÑ Xb, we have a
commutative diagram

(6.7) rXb

–
!!❉

❉❉
❉❉

❉❉
❉❉

– // Xξi,˚b

ξ̃i

��
Xb.

From now on we will identify rXb and Xb, and use the identifications in (6.7).

Assumption 2. Assume that for all b P Bγ
n, there exists

(6.8) Lb P Jacδ`dpXbq

such that πb,˚νb,˚Lb “ W , where δ ` d “ npn´ 1qpg ´ 1q ` d.

Define

(6.9) Hecγ,W “

$
&
%pE,Φq P MDol

X,n ˆB B
γ
X,n

ˇ̌
ˇ̌
ˇ̌
If pE, φq “ πb,˚L

for some L Ñ Xb

then n˚
bL “ Lb

,
.
-

Remark 6.5. To understand the above assumption, let us compare with the maximal order case. In this case
W “ pγ,˚ξ

j,˚F for some j “ 1, . . . , n, and some F P JacpXγq (possibly descending to X , but not necessarily).

Proposition 6.6. Hecγ,W is a manifold.

Proof. Let Bred
Xγ ,n

:“ p˚
γB

γ
red, and let Bred

Xγ ,n1 be its preimage under ǫ1 defined in (6.1).

Over Bred
Xγ ,n1 , consider the families Σ̃ Ă PpKγq ˆ Bred

Xγ ,n1 of spectral curves for MXγ
pn1, dq, and Σ Ă

PpKXq ˆ Bred
Xγ ,n1 of spectral curves for MXpn, dq with Σb “ Xb for b P Bγ

red such that p˚
γb “ ‘iξ

i,˚b. Then,

we have a normalisations morphism

ν : JacBred

Xγ,n1
pΣ̃q ÝÑ JacBred

Xγ,n1
pΣq.
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Moreover, Assumption 2 is equivalent to assuming that there exists an element

L P JacBred

Xγ,n1
pΣ̃q

such that under the spectral correspondence composed with pushforward

s : JacBred

Xγ,n1
pΣ̃q

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

s // MXγ
pn1, dq

p̌γ

��
MXpn, dq

we have that p̌γ ˝ spLq parametrizes a family of Higgs bundles with underlying bundle W .
So

Hecγ,W “ p̌γ ˝ spν̂´1Lq.

�

In order to prove that the above manifold is isotropic, we compare it with some branes inside MXγ
pn, dmq.

We first need a lemma:

Lemma 6.7. Let

Li “ pξ´iq˚
Lb P JacpXξi,˚bq

be the pullback of L1 :“ Lb to Xξi,˚b under the isomorphisms defined in (6.7). There is an equality

p˚
γW “

m´1à
i“0

ξi,˚V

where V “ πb,˚Lb P MXγ
pn1, dq.

Let Ei “ ξi,˚V bK
pm´iqpn1q2

Xγ
; on Xγ , and consider the variety

(6.10) Uni
pn1,...,n1q
Xγ

pEq “

$
&
%pE,ϕq

ˇ̌
ˇ̌
ˇ̌

D σ P H0pX,E{Pq :
ϕ P H0pX,Eσppq bKq;
Eσ{U :“ EL –

Às
i“1 Ei.

,
.
- .

These varieties were studied in [FP, Section 6].

Lemma 6.8. Let b P Bγ
X . Let Li be as in Lemma 6.7, and define

L̂i “ Li b π˚
b
K

pm´iqpn1q2

Xγ
P Jac

´
Xξi,˚b

¯
.

For each ordering J “ pj1, . . . , Jmq of t1, . . . ,mu, let

L̂
J
b “ pL̂1 bKpn1q2pj1´mq, . . . , L̂m bKpn1q2pjm´mqq P JacpX̃b̃q.

Then

Uni
pn1,...,n1q
Xγ

pEq X JacpXb̃q “
ď

JPOrdm

ˆ̃ν´1L̂J
b .

Proof. We just need to note that the bundles L̂i satisfy condition [FP, Assumption 1] for the manifold

Unin
1,...,n1

Xγ
pEq. With that, we may apply [FP, Proposition 6.6] to conclude. �

Proposition 6.9. Let

p̂γ : MXpn, dq ÞÑ MXγ
pn,mdq

be the morphism defined by pullback. Identify

pHecγ,W q X JacpXbq “ ν̂´1pLbq.

and

Uni
pn1,...,n1q
Xγ

pEq X JacpXb̃q “
ď

JPOrdm

ˆ̃ν´1L̂J
b .
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Let J0 “ pm,m ´ 1, . . . , 1q. Then

ν̂´1pLbq

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

� � p̂γ // ˆ̃ν´1L̂
J0

b

ν̂´1pLbq{Zm

+
�

88qqqqqqqqqq

In particular, Hecγ,W is isotropic.

Proof. Let L P JacpXbq be a spectral data for pE,ϕq P Hecγ,W . By Cartesianity of (6.4), we know that

L̃ “ p̃˚
bL P JacpXb̃q is the spectral data for pẼ, ϕ̃q :“ p˚

γpE,ϕq. Also, Cartesianity of (6.6) implies that

ν̃˚L̃ “ q̃˚
b ν

˚
b Lb “ pL1, . . . ,Lmq,

for Li as in Lemma 6.7. Note that

pL1, . . . ,Lmq “ L̂
J0

b , pL1, . . . ,Lmq ‰ L̂J
b for all J P OrdmzJ0.

By Lemma 6.8, we thus have that

p̂γpHecγ,W q Ă ν̂´1
b L

J0

b Ă Uni
pn1,...,n1q
Xγ

pEq.

Note that by Proposition 6.3 (4) L1, L2 P JacpXbq satisfy L̃1 “ L̃2 if and only if L1 “ L2 b π˚
b Lγ . Since

Xb{X is a ramified cover, it follows that p̂γ factors through the quotient map.
Isotropicity is proved as in Proposition 4.5. �

We can finally prove the main theorem of this section, whose proof mimics that of Theorem 4.10 and is
thus omitted.

Theorem 6.10. The manifold Hecγ,W is Lagrangian.
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