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IFS theory

Iterated Function Systems (IFS) were originally introduced as a theo-
retical framework for the study and generation of fractal sets and their
applications. Although significant developments had already taken
place in previous decades—notably Mandelbrot’s work on fractals aris-
ing from complex functions and other geometrically constructed sets—it
was not until the 1980s that the pioneering contributions of J. Hutchin-
son and M. Barnsley established the theoretical foundations of what is
now known as the Hutchinson—Barnsley theory. This framework rig-
orously demonstrates the existence of a compact attractor set and an
invariant measure supported on that attractor.
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Dynamical Systems defined by IFS

Typically, an IFS is a family of self-maps f; : X — X, j e J,
defined on a set X (usually a metric or topological space). We
denote such a system by R = (X, f;)jeJ.

For a single dynamical system T': X — X, each point z € X
generates a unique orbit x, T'(z), T?(x), ..., whose long-term
behavior can be analyzed through asymptotic notions such as
the w-limit set, the non-wandering set, or recurrence.

In contrast, for an IFS, the iteration process is non-autonomous.
To iterate a point x € X, one must choose a sequence (j1, j2,...) €
JY and compute z, £, (z), fj,(f;,(x)), ... Thus, where does
the asymptotic behavior reside in this non-autonomous setting?
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Dynamical Systems defined by IFS

Actually, the only points which are dynamically significant in X
are the cluster points of compositions

fir (i (- - (fir (%))

for iy, io,...,1; € J and k arbitrary large!
To capture that special points J. Hutchinson introduced the frac-
tal operator F' : K*(X) — K*(X) given by

F(B):=| ] f;(B), Be K*(X).
jedJ

It happens that yi, := fi, (fi,(--- (fi.(z)))), x € B is precisely an
element of F*(B).
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Dynamical Systems defined by IFS

The geniality of Hutchinson’s approach lies in considering a clas-
sical dynamical system F': K*(X) — K*(X), whose w-limit set
coincides with the union of the w-limits of all orbits generated by
the IFS.

Under a contractivity assumption, Hutchinson demonstrated that
F' is a contraction with respect to the Hausdorff distance. Con-
sequently, the w-limit of F' is a unique fixed point A € K*(X),
referred to as the attractor of the IFS. This attractor can be ob-
tained by iterating F' on any nonempty compact set B:

A= lim F*(B).

k—o0

This result establishes the first part of the Hutchinson—Barnsley
theory for contractive IFSs.
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Dynamical Systems defined by IFS

It is straightforward to see that

A= lim F¥X) =[] F*(X)

k—o0

provides an alternative representation of the attractor set. We
will not discuss several technical topics, such as the code space,
code map, and semi-conjugation via skew maps. Nevertheless,
these concepts constitute powerful tools for the study of IFS.
Briefly, we define the code map

(i) = lim f;, (fir (- (fin (X)),

where i = (iy,ia,...) € ¥ = JN (the full shift space).
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Dynamical Systems defined by IFS

One can then construct a skew-productmap S : X x ¥ — X x X
defined by

S($a Z) = (fh (:E)a U(i))v
where o (i) = (ig,13,...) denotes the one-sided shift map. This
defines a new autonomous dynamical system whose projection

onto the first coordinate of S* yields the orbits of the original IFS.
For example:

Sg(x’i) = (fls(fm (fh (:L‘))), (i4’i5’ - ))

Moreover, it can be shown that the original IFS is semi-conjugate
to a standard IFS on the shift space.
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Dynamical Systems defined by IFS

Classical examples are the middle-third Cantor set, which is the
attractor of the IFS: Consider J = {1,2}, X = [0,1] and the
functions ¢; : X — X given by

{cfn () =
$a(x) =

w8 wly

2
+ 2.
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Dynamical Systems defined by IFS

0
BU
0 1/3 2/3 1
By By
0 19 2/9  1/3 2/3  7/9 s/9 1
B, B, By B,

Figure: Construction of the middle-third Cantor set: By = [0, 1],
By = F([0,1]),B2 = F?([0,1]), etc.
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Dynamical Systems defined by IFS

We also have the Sierpinski triangle S, which is the attractor
of the IFS where X = T is an equilateral triangle with vertices
(0,0), (1,0) and (1/2,4/3/2), J = {1,2,3} and the IFS given by
the functions ¢; : T' — T given by

1(ey) = (3.5)
G2(0,) = (5 +3.3)
Gaay) =5+ 14+,
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Dynamical Systems defined by IFS

Figure: lterate n = 1, F(T') = ¢1(T) u ¢2(T) U ¢3(T) for the Sierpinski
set S
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Dynamical Systems defined by IFS

The iterates F™(T') are:

AL G

Figure: lterates n = 0,1, 2,3 and 10, of F, approximating the
Sierpinski set .S
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Stochastic view of IFS

For a dynamical system T': X — X, where each point z € X
generates a single orbit (x, T'(x), T?(x),...), the stochastic as-
pects of the dynamics are studied within the framework of er-
godic theory. In this context, one seeks invariant measures, that
is, probability measures p satisfying

u(B) = u(T~'(B)) VBeX.

Such measures encode the long-term statistical behavior of or-
bits through the Birkhoff Ergodic Theorem.

The natural question that arises is how to extend this framework
to the case of an IFS.
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Stochastic view of IFS

For a contractive IFS the orbit asymptotic behavior is indepen-
dent of the initial point = (here lies a big difference from ergodic
theory):

z, [ (2), fi2 (Fin (),

it depends strongly on the choices ji, js, . . .. Therefore, the nat-
ural way to introduce randomness is to put a fixed probability for
each symbol

P(]k = J) =pj€ [07 1]7

where > p; = 1.
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Stochastic view of IFS
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Stochastic view of IFS

For a contractive IFS, J. Hutchinson introduced the notion of an
IFS with probabilities (IFSp). An IFSpis an IFS R = (X, f;)jes
endowed with a family of probabilities (p;);cs, where each sym-
bol j € J is chosen at each iteration with probability p,;. Thus,
one writes R = (X, fj,pj)jeJ-

By analogy with the invariance equation u(B) = u(T~*(B)), one
defines the Markov operator M : P(X) — P(X) by

= Y pjulf;'(B), VBc X
jedJ
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Stochastic view of IFS

Given an initial distribution 1 on X, the sequence

gy M (), M?(p), ..

generates a stochastic process whose distribution at time & cor-
responds to that of

where the indices i1,149,...,7, € J are independently chosen
according to the respective probabilities p;.
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Stochastic view of IFS

In his seminal article, J. Hutchinson proved that for an IFSp
R = (X, f;,pj)jes, the Markov operator M : P(X) — P(X) is
a contraction in the space of probability measures with respect
to the Monge-Kantorovich distance. Consequently, for any initial
distribution 1, the stochastic process p, M (u), M?(u),... con-
verges to a unique probability measure v satisfying M (v) = v
(stationary), which is referred to as the invariant measure for
the IFSp (or Hutchinson measure).
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Stochastic view of IFS

Moreover, assuming p; > 0 for all j, one can show that

supp(v) = A.

This completes the second part of the theory, since the station-
ary distribution v assigns positive probability to every dynami-
cally significant point, i.e., to all points in the attractor.
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Stochastic view of IFS

We say that an IFSp R = (X, f;,p;) es satisfy the Hutchinson—
Barnsley theory if the following theorem is valid

Theorem 1 (folklore)

Q For any B € K*(X) the sequence F*(B), k > 0 converges a single
setA € K*(X) (the attractor set) satisfying F(A) = A, where
F: K*(X) > K*(X) is the fractal operator;

@ For any initial distribution 1. the stochastic process p, M (i), M2 (p), . . .
converges to a unique probability v satisfying M (v) = v (the invariant measure),
where M : P(X) — P(X);

© supp(v) = A.

Since the 1980s, considerable effort has been devoted to ex-
tending this theorem to various levels of generality.
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Today’s overview

The first formulation

The first formulation of the Hutchinson—-Barnsley theory was in-
troduced by J. Hutchinson in the article Fractals and Self-Similarity
(1981). In this work, (X, d) denotes a complete metric space,
J = {1,...,n} represents a finite set of maps, each f; is a con-
traction, and p; € (0,1) are finite, positive, and constant proba-
bilities. Over the past decades, the following parameters have
been generalized:
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Today’s overview

Generalizations overview

@ The space X may be metric/topological, complete/compact; one may
also consider powers of X with maps f; : X™ — X, as well as
variations of metric structures.

@ The regularity of each map f;, which may include generalized
contractions, weakly hyperbolic maps, or contractions enriched with
non-expansive maps.

© The space of symbols .J, which may be countable, possibly infinite,
measurable, or compact infinite.

@ The nature of the probabilities, which may be constant or dependent on
the location; in the latter case, the regularity of this dependence must
be considered.

© The type of set theory employed, whether crisp or fuzzy.

@ The nature of the algebra, either the standard algebra (R, +, -) or the
max-plus (tropical) algebra (R v {—0}, P, ®), including possible
variations.

@ The relational properties and domains of the maps, including local IFSs
and (multi)graph-directed IFSs.
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IFS Theories Diagram
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Recent developments

We now present selected results from joint work with our re-
search group, primarily in the continuous setting, under the as-
sumption of certain contractivity conditions and IFSs with a com-
pact set of maps.
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Recent developments

The Hutchinson—Barnsley theory for IFSm

The results here are related to the paper [0S26], The Hutchinson-
Barnsley theory for IFSs with general measures which is a col-
laboration with prof. Rafael R. Souza, to appear in JMAA.

Definition 2

AnIFSisamap 7: A x X — X which is continuous.
Sometimes we denote the maps as 7(\, z) = 7)\(z), to simplify
the notation.
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Recent developments

The Hutchinson—Barnsley theory for IFSm

Definition 3

For each IFS R = (X, 7) we define the fractal operator by
Fr : K*(X) — K£*(X) by

Fr(B) :=1(A x B) = UxeaTA(B),

forany B € K*(X).
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The Hutchinson—Barnsley theory for IFSm

Definition 4

An IFS with measures, IFSm for short,isanIFS7: A x X — X
endowed with a continuous family of measures ¢ : X — P(A).

We denote any IFSm by R = (X, 7, ¢) (compact notation), where
AelAandg: X — P(A).
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The Hutchinson—Barnsley theory for IFSm

Definition 5
To each IFSm we assign a transfer operator B, : C'(X) — C(X)
defined by

By(f)(x) := fAf(T(/\,w))dqx(A) (1)

forany f e C(X).
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The Hutchinson—Barnsley theory for IFSm

By duality, B, induces a new operator in P(X):

Definition 6

To each IFSm we assign a Markov operator

T,:= Bf : P(X) — P(X) defined by duality, for any s € P(X

by
§x f(@)dTy(n):=Sy Bq i=J §p F(r(A\2))dge (N du(z)

forany f e C(X). A probablllty S 73( ) is called invariant
(with respect to the IFSm) if T, (1) = p.

)
(@)
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The Hutchinson—Barnsley theory for IFSm

LetR = (X, ,q) be a normalized IFSm, under mild
assumptions there exists a unique compact set A called
fractal attractor and a unique probability ur called invariant or
Hutchinson measure, such that

Q@ Fr(Ar) = Agr and for any nonempty compact set B < X
we have Ff(B) — Ag, w.r.t. the Hausdorff distance;

Q T,(ur) = pr and for any probability v € P(X) we have
qu(y) — ur, W.r.t. the Monge—Kantorovich distance;

Q supp(ur) = Ar.
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The Hutchinson—Barnsley theory for IFSm

In the paper we provide several sets of conditions regarding the
joint regularity of 7, and ¢., including non expansive and even-
tually contractive settings:

M1. there exists s > 0 such that, for any pair x and y in X, we
have {, |f((\,2)) — f(r(A\,9))| dgs(\) < s d(z,y) for any
map f € Lip1(X);

H2. there exists r > 0, such that, the map 7(-, z) € Lip,.(A),
uniformly with respect to x;

H3. there exists ¢ > 0, such that, the map ¢ : X — P(A) isin
Lip,(X);

H4. ¢,(A) > 0 for any open subset A < A and z € X.
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The Hutchinson—Barnsley theory for IFSm

Note that M1 holds for example if the following stronger assump-

tion is assumed:

C1. the map 7(\, -) € Lip,(X), with s < 1, uniformly with
respect to .

On the other side, the following assumption is weaker that C1,

and will be needed for some of our further results:

W1. the map 7(,-) € Lip;(X), uniformly with respect to A.

Elismar R. Oliveira An Overview of IFS with App. to Therm. Form.



The Hutchinson—Barnsley theory for IFSm
Thermodynamic formalism for IFSm
Final remarks: three recommended papers

Recent developments

The Hutchinson—Barnsley theory for IFSm

The next theorem can be found in Lewellen 1993 (also Mendivil
1998) but we provide a different and simpler proof.

Theorem 8

Consider an IFSm R := (X, 1) satisfying C1. Then, F is
s-Lipschitz contractive. In particular, there exists a unique
invariant set Ar.
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The Hutchinson—Barnsley theory for IFSm

Recent developments

From Mendivil 1998 we know that in the case of IFSm where the
family of measures ¢ : X — P(A) is constant, then there exists
a unique invariant probability uz for the IFSm (also from Arbieto,
Junqueira and Santiago 2016 for weakly hyperbolic IFS, but still for a constant
¢.). We will now extend this result in fairly greater generality:

Theorem 9

Consider an IFSm R := (X, 1, q) satisfying the conditions M1,
H2 and H3 above. ThenT, is s + r - t-Lipschitz.

So, if s+r-t < 1 then the existence of the invariant measure, and
consequently the second part of Theorem 7 holds via Banach
contraction theorem.
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The Hutchinson—Barnsley theory for IFSm

Some of our results will remain valid if the uniform contraction
holds for composition of maps: We have the following assump-
tion, weaker than C1:

CP1. thereis M > 1 and 0 < s < 1 such that the map
7y (+) € Lip,(X), uniformly with respect to A\M.

Elismar R. Oliveira An Overview of IFS with App. to Therm. Form.



The Hutchinson—Barnsley theory for IFSm
Thermodynamic formalism for IFSm
Final remarks: three recommended papers

Recent developments

The Hutchinson—Barnsley theory for IFSm

The same conclusion in the next theorem holds under the stronger
(but simpler) hypotheses C1, H2, H3, H4. However we choose
to prove that under less restrictive conditions.

Theorem 10

Under hypothesis W1, CP1, H2, H3 and H4, we have

supp(ur) = Ar.

This result conclude the proof of Theorem 7.
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The Hutchinson—Barnsley theory for IFSm

Assume (X, d) a compact metric space, (X, ) a uniformly con-
tractible IFS, and the family of measures is given by

dgz(\) = NP dp ()

for a Lipschitz potential A : A x X — R and a fixed probability v €
P(A) whose support is A. From [MO25] (also from [LMMS15]
for the Holder version) we can always find A : A x X — R co-
homologous to A (i.e., there exists a continuous function h and a
constant ¢ such that A(\, z) = A\, 2)+h(r\(z))—h(z)—c)), also
Lipschitz continuous, such that z — §, eA*®)dv(\) = 1. Thus,
¢ can always be assumed to be a probability for any = € X.
One can show that the condition H3 is satisfied for

t:= diam(A)e”A”“’Lip(A) s
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The thermodynamic formalism problem

The thermodynamic formalism was introduced by D. Ruelle in
1967 ([Rue67]). The modern formulation — expressed in terms
of symbolic dynamical systems and building on earlier work of P.
Walters on g-measures in the 1970s — was established by Parry
and Pollicott in 1990 ([PP90]). See also Fan and Lau [FL99] for
a first application to place dependent IFSp.
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Holonomic entropy and pressure

We now present some results from [BOS23]. One the holonomic
probabilities associated with an IFS. These are measures that
satisfy the variational principle for pressure with respect to the
variational entropy. More precisely, given an IFS (X, (¢5)e7),
one defines the set of holonomic probabilities by

Hie f1e e | [ 16sto) - @) e ) = o

where f e C(X,R).
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Holonomic entropy and pressure

The transfer operator B, is given by

By(f)(x) = L £(63(2)) dan(j), Vrre X.

and the pressure function

P(A) = sup  inf {Lmijmdn},

eH feC(X;R)
>0

where, A >0, e P(J)anddg,(0) = A(¢j(x))du(j), satisfies
the following variational principle (proved in [BOS23]):
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Holonomic entropy and pressure

P(4) = sup {hg(n) + L logAdH} , J

where the variational entropy of II with respect to the a priori
probability 1 is defined as

W) = inf UX n Buld) dH} ,

feC(X,R) f
>0

where

Bu(f)(x) = Lf(%(x)) i), VreX.
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Recent developments

Equilibrium states

One can prove that the variational entropy is usc obtaining, as
consequence of it, that:

Theorem 11 (Existence of Equilibrium States)

LetR be an IFSm, ¢ : X — R a positive continuous function
and . a probability on ©. Then, the set of equilibrium states for
(v, ) is not empty.
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Pressure differentiability

One can show a uniqueness result for the equilibrium state.
In order to do that we will need to consider the functional p :
C(X,R) — R, which A = exp(y), given by

p(p) = Plexp(p)). 3)

It is immediate to verify that p is a convex and finite valued func-
tional. We say that a Borel signed measure v € M (X) is a
sub-gradient of p at ¢ if it satisfies the following sub-gradient
inequality

p(n) = p(p) +v(n— ) forany ne M(X).

The set of all sub-gradients at ¢ is called sub-differential of p
at ¢ and denoted by dp(p).
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Recent developments

Pressure differentiability

Theorem 12 (Pressure Sub-differentiability)
For any fixed ¢ € C(X,R) we have

@ the signed measure v € op(y) if, and only if,
v(n) < dp(p)(n) foralln e C(X,R);

Q the set dp(yp) is a singleton if, and only if, d*p(y) is the
Gateaux derivative of p at .
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Uniqueness of equilibrium states

Corollary 13 (Unigueness of equilibrium states)

LetR be an IFS, i) : X — R a positive continuous function, 1. a
probability on © and ®(v) = v (the projection push-forward
map) for v € H (R), where v is given by disintegration with
respect to w. If the functional p defined is Gateaux differentiable
at ¢ = log, then

#{®(n) : [ is an equilibrium state for ¢} = 1.

The proof consists in proving that for any equilibrium state /i for
1 we have ®(1) = dp(y).
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Some open questions are:

@ IS there a RPF theorem for the (non-normalized)IFSm
setting, or one can at least prove something like [MO25]? If
yes, we could improve [BOS23] and apply [0S26].

@ In [0S26] we prove the Hutchinson-Barnsley theory of a
normalized IFSm. Is the invariant probability ergodic (Elton
86, Forte 93, Arbieto 17)?

© What could be more general than an IFSm? Are there any
applications?

© Can the H-B theory for mplFS and IFZS be completed?
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The theory of idempotent IFSs, more precisely the max-plus al-
gebra has been successfully used to study Thermodynamic for-
malism. In the setting of expanding transformations , the preprint
[2Y25], “Tropical thermodynamic formalism” by Zhigiang and Sun
provides a good example. They investigate the zero-temperature
large deviation principle for equilibrium states in the context of
distance-expanding maps. The logarithmic-type zero-temperature
limit in the large deviation principle induces a tropical algebra
structure, which motivates our study of the tropical adjoint Bousch
operator £* since the Bousch operator £ 4 is tropical linear and
corresponds to the Ruelle operator R 4.
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The Bousch operator L4(g)(z) = maxpy)—, A(y) + g(y) has
a tropical or max-plus eigen value/function (m, V') (sometimes
called sub-action) satisfying L4(V')(xz) = m+V (z). Hence, equiv-
alent to

max A(y) + V(y) = V(T(y)) = m,

T(y)==

where m = TI(HE)iX f Adyp. This is the ergodic optimization anal-
)= Jx
ogous to the Hamilton-Jacobi equation in the Aubry-Mather the-

ory. If we consider the IFS formed by the contracting inverse
branches ¢; of the expanding map 7" the equation becomes

max A(j(x)) +V(9(x)) = V(z) = m,

and shows why holonomic measures are important in IFS er-
godic optimization.
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Also, in the joint work [MO25] we consider two compact met-
ric spaces J and X and a uniform contractible IFS {¢; : X —
X | j € J}. For a Lipschitz continuous function A on J x X and for
each 3 > 0 we consider the Gibbs probability p, ,. The goal is to
study a large deviation principle for such family of probabilities
as f — +oo and its connections with idempotent probabilities.
In the non-place dependent case (A(j,z) = 4;, Yz € X) we will
prove that (p,,) satisfy a LDP and —I (where [ is the deviation
function) is the density of the unique invariant idempotent proba-
bility for a mplIFS associated to A. In the place dependent case,
we prove that, if (p,, ) satisfy a LDP, then —1 is the density of an
invariant idempotent probability.
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Regarding the classical level-2 thermodynamic formalism, [LO24]
study the dynamical system given by the push-forward map ¥ :
M — M onthe space M of Borel probabilities over @ = {1,...,m}".
For a continuous potential A : M — R, an a priori measure
1Ty, and a convolution operation on M, one define a Level-2 IFS
Ruelle operator and prove the existence of an eigenfunction and
an eigenprobability IT € 9. Under normalization of A, one obtain
T-invariant probabilities and define their variational entropy and
pressure.

Examples show how Level-2 eigenprobabilities in 9t naturally
extend classical Level-1 Thermodynamic Formalism results.
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Finally, in the recent preprint [LMO26], we demonstrate how
idempotent probabilities can be employed to define level-2 idem-
potent pressure functions and entropy, thereby opening new av-
enues for applications and revealing novel phenomena such as
phase transitions, non-uniqueness of equilibrium states, and more.
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Theorem 14 (LMO26)

If¢: C(P(X),R) — R is an idempotent pressure function, then
there exists a unique upper semi-continuous (u.s.c.) function
h:P(X) — Ryax Such that

l(g) = sup [h(p)+ g(u)], (4)
HeP(X)

forany g € C(P(X),R). Reciprocally, if h : P(X) — Rpax iS
bounded above, and it is not identically —co then equation (4)
defines an idempotent pressure function.

Elismar R. Oliveira An Overview of IFS with App. to Therm. Form.



The Hutchinson—Barnsley theory for IFSm
Thermodynamic formalism for IFSm

R | )
ecent developments Final remarks: three recommended papers

Final remarks

Definition 15

Let (X, d) be a compact metric space, ¢ : C(P(X),R) — R be
an idempotent pressure and hy : P(X) — R be the unique
u.s.c. function satisfying (4). We say that &, is the density
entropy associated to the idempotent pressure function /.
Moreover, given ¢, we call any probability v € P(X) attaining
the supremum, that is,

U(g) = he(v) + g(v), (5)

an equilibrium state associated to the idempotent pressure
function 4.
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