
Fast Probabilistic C
onsensus on a Set

Rafael Cizeski Nitchai
PhD

FCUP
UA
UM

2024

3rd
CYCLE

Fast Probabilistic
Consensus on a
Set
Rafael Cizeski Nitchai
Doctoral Program in Applied Mathematics
Department of Mathematics,
Faculty of Sciences of the University of Porto, University of Aveiro and
University of Minho

2024

Fast Probabilistic
Consensus on a
Set
Rafael Cizeski Nitchai
Doctoral Program in Applied Mathematics
Department of Mathematics
2024

Supervisor
Serguei Popov, Senior researcher, Centre of Mathematics of the
University of Porto

Co-supervisor
Jorge Milhazes de Freitas, Full Professor, Faculty of Sciences of
the University of Porto

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors, Prof.
Serguei Popov and Prof. Jorge Freitas, and contributor, Prof. Sebastian Muller, for their
invaluable guidance, unwavering support, and insightful feedback throughout the course
of my research. Their expertise and encouragement have been instrumental in shaping the
direction and completion of this thesis.

A special thanks goes to Prof. Alberto Saa, FAPESP (Project 2013/09357-9), and CMUP
for their generosity in lending the computational resources that allowed my simulations to
be run. Their support was crucial to the successful completion of the numerical aspects of
my research.

I would like to extend my heartfelt thanks to my colleague and friend, Dr. Lucas
Amorim, who have been a constant source of encouragement, advice, and camaraderie. His
willingness to discuss ideas and provide feedback has made this journey more enriching
and enjoyable.

A special mention goes to my family for their endless love, patience, and belief in me. To
my aunt and uncle, Dra. Leyza Dorini and Dr. Fabio Dorini, thank you for your unwavering
support and understanding during the most challenging times.

I would like to acknowledge the funding and resources provided by Fundação para
Ciência e Tecnologia and CMUP, without which this research would not have been possible.
Your support has been crucial in allowing me to pursue and realize my academic goals.

Finally, I want to extend my deepest appreciation to Dra. Olivia Saa and Eliel. Their
love, companionship, and unwavering support have been the foundation that kept me going
through every challenge and success along the way. You are, without a doubt, the most
important part of this journey, and I couldn’t have done it without you by my side.

Thank you all for being part of this journey.

Abstract

The fast probabilistic consensus (FPC) is a leaderless voting consensus protocol that allows
a set of nodes to agree on a value of a single bit. FPC is robust and efficient in Byzantine
infrastructures and presents a low communicational complexity. In this paper, we introduce
a modification of the Fast Probabilistic Consensus protocol (FPC) capable of achieving
consensus on a maximal independent set of a graph —hence named Fast Probabilistic
Consensus on a Set (FPCS)— that still preserves the robustness, effectiveness, and low
communicational complexity of FPC.

This thesis shows that FPCS effectively resolves the problem (with high probability) of
achieving consensus on a maximal independent set of a graph of conflicts (i.e. a maximal set
of nonconflicting transactions), even when a significant proportion of nodes is malicious.
These nodes intend to delay the consensus or even completely break it (meaning that nodes
would arrive at different conclusions about the maximal independent set).

Our study refers to a specific implementation of cryptocurrencies, but the results hold
for more general majority models.

Keywords: Distributed systems, Consensus protocols, Byzantine infrastructures

Resumo

O Fast Probabilistic Consensus (FPC) é um protocolo de consenso por votação sem líder
que permite a um conjunto de nós concordar sobre o valor de um único bit. O FPC é
robusto e eficiente em infraestruturas bizantinas e apresenta uma baixa complexidade
comunicacional. Neste trabalho, introduzimos uma modificação do protocolo FPC capaz de
alcançar consenso em um conjunto independente máximal de um grafo — daí o nome Fast
Probabilistic Consensus on a Set (FPCS) — que ainda preserva a robustez, eficácia e baixa
complexidade comunicacional do FPC.

Esta tese demonstra que o FPCS resolve de forma eficaz (com alta probabilidade) o
problema de alcançar consenso em um conjunto independente máximo de um grafo de
conflitos (ou seja, um conjunto máximo de transações não conflitantes), mesmo quando uma
proporção significativa de nós é maliciosa. Esses nós têm a intenção de atrasar o consenso
ou até mesmo quebrá-lo completamente (o que significa que os nós chegariam a diferentes
conclusões sobre o conjunto independente máximo).

Nosso estudo se refere a uma implementação específica de criptomoedas, mas os resulta-
dos são aplicáveis a modelos de maioria mais gerais.

Palavras-chave: Sistemas distribuídos, Protocolos de consenso, Infraestruturas bizantinas

Contents

List of Figures xi

1 Introduction 1
1.1 How this thesis is structured . 2

2 State of the Art 7
2.1 SIFT: Design and Analysis of a Fault-Tolerant Computer for Air- craft Control 7
2.2 Reaching Agreement in the Presence of Faults 8
2.3 The Byzantine Generals Problem . 8
2.4 The Consensus Problem in Unreliable Distributed Systems 9
2.5 Impossibility of Distributed Consensus with One Faulty Process 10
2.6 Another Advantage of Free Choice: Completely Asynchronous Agreement

Protocols . 11
2.7 The correctness proof of Ben-Or’s randomized consensus algorithm 12
2.8 FPC-BI: Fast Probabilistic Consensus within Byzantine Infrastructures 12

3 Fast Probability Consensus on a Set (FPCS) 15
3.1 Notation . 15
3.2 Protocol . 19

4 Solving n-spends with FPCS 23
4.1 A lower bound for k . 30
4.2 What if nodes’ visions are slightly different? . 31

4.2.1 A simple model for the discovering process 34
4.3 Numerical analysis . 36

4.3.1 Analysing the effects of the proportion of malicious nodes 37
4.3.2 Circumventing failures by increasing the number of queries 37
4.3.3 The importance of randomness . 38

5 Generalization for arbitrary graphs 41
5.1 Star Graphs . 41
5.2 General case . 43

6 Conclusion 53

x Contents

Bibliography 55

Appendix A Appendix 59
A.1 Proofs of Chapter 4 . 59

A.1.1 Lemma 4.0.4 . 59
A.2 Proofs of Chapter 5 . 60

A.2.1 Lemma 5.2.5 . 60
A.2.2 Lemma 5.2.7 . 61

List of Figures

3.1 Graph representation of the example described in the text. The edges between
transactions indicate that there is a common input. 16

3.2 Graph representation of a set with 6 transactions where all of them are in
conflict with each other. 17

3.3 The intervals of control I (u)
q,t for a transaction u which has a proportion of

likes among honest nodes p(u)t > 1 → µ (in blue), and I (w)
q,t for a transaction w

such that p(v)t < µ (in red). Notice that these intervals are separated from the
support [β,1 → β] of Xt. 18

3.4 Representation of step (vi) of the protocol. The graph represents the node’s
vision at time t. The numbers represent the order according to the hash
function. In the first subfigure, the transactions in yellow represent the set B;
in the second subfigure, transactions in green represent B↑ and transactions in
red represent N(B↑, A(n)

t); in the last subfigure, transactions in blue represent
B↑↑, the chosen maximal independent set of the round. 21

4.1 The intervals of control for a transaction u which has a proportion of likes
among honest nodes p(u)t > 1 → µ (in blue), and for a transaction v such that
p(v)t < µ (in red). Notice that these intervals are separated from the support
[β,1 → β] of Xt. 24

4.2 The interval of control (in blue) of a transaction u ↓ Tt with p(u)t = 1/2 is
always separated from the boundary of [β, 1 → β] by a distance hc := (1 → q →
2β)/2. 25

4.3 In Case 1, every time Xt falls on the right of I (vt)
q,t (in blue), an honest node is

likely to assign 0 to the auxiliary opinion of every transaction. 26

4.4 In Case 2, every time Xt falls on the left of I (vt)
q,t (in blue), an honest node

might also like a transaction w if the upper boundary of I (w)
q,t (in red) is also

on the right of Xt. 27

4.5 Effects of q on the performance of the protocol. Logarithmic scale. 37

4.6 Effects of k on the performance of the protocol. Logarithmic scale. 38

4.7 Finalization and agreement rate for different values of q and β. 39

xi

xii List of Figures

4.8 Agreement failures (in percentage) and agreement rate of a double spend
T = {u,v} where malicious nodes reply with the same opinion to a query
from every node. 40

5.1 The interval of control (in blue) of a transaction u ↓Tt with p(u)t = 1/(2(1→ q))
and of a transaction v ↓ N(u). Notice that the sum of the intervals covers the
whole support of Xt. 42

Chapter 1

Introduction

Distributed consensus is a fundamental problem in the field of computer science, particularly
within distributed systems. It involves multiple agents, or nodes, in a network agreeing on a
single data value or decision, despite the possibility of faults or adversarial behavior by some
of these nodes. The challenge of achieving consensus in such environments has profound
implications for ensuring the reliability, security, and performance of distributed applications.
As distributed systems have become increasingly prominent in today’s technology landscape,
the study of consensus mechanisms has grown in importance, driven by the demand for
resilient, scalable, and secure infrastructures.

The significance of distributed consensus is most evident in the context of Distributed
Ledger Technologies (DLTs), such as blockchains. DLTs rely on consensus algorithms to
achieve agreement on the state of a ledger, which is often shared among a large number of
decentralized participants. These technologies have revolutionized the way data is stored,
validated, and secured, offering new paradigms for financial transactions, supply chain
management, digital identity, and beyond. In DLTs, consensus mechanisms are not just a
technical requirement; they are the cornerstone that enables trustless systems to operate
without a central authority.

One of the primary use cases for DLTs is in cryptocurrencies, where consensus algorithms
like Bitcoin’s Longest Chain Rule [43] or Ethereum’s Casper protocol [13] ensure that all par-
ticipants in the network agree on the sequence of transactions in the ledger. This consensus
is crucial to prevent double-spending, where the same digital asset could be used more than
once, and to maintain the integrity of the financial system in a decentralized manner.

Beyond cryptocurrencies, DLTs are finding widespread application in areas such as
supply chain management, where consensus ensures the accuracy and transparency of
product tracking data across multiple stakeholders. For example, each step of a product’s
journey from manufacturer to consumer can be recorded on a blockchain, with consensus
algorithms guaranteeing that the data remains tamper-proof and universally accepted among
all parties involved. This capability is vital for industries that require traceability and
compliance, such as pharmaceuticals and food production.

DLTs also have a significant impact on digital identity management, where consen-
sus mechanisms help create secure, verifiable identities that are not reliant on centralized

1

2 Introduction

databases. By leveraging consensus, these systems can prevent identity fraud and enable
secure, privacy-preserving authentication across a variety of platforms and services. This
approach is increasingly important in the digital economy, where the need for secure and
interoperable identity solutions continues to grow.

Another critical use case is in decentralized finance (DeFi), which utilizes smart contracts
on DLTs to create financial instruments without intermediaries. In this context, consensus
algorithms play a vital role in validating transactions and executing agreements in a manner
that is transparent, auditable, and immune to manipulation by any single participant. The
reliability of these financial services hinges on the robustness of the underlying consensus
protocols.

The importance of distributed consensus in these scenarios cannot be overstated. Achiev-
ing consensus in a distributed environment is challenging due to issues like network latency,
asynchrony, and the presence of potentially malicious actors. Traditional approaches to
consensus, such as those used in centralized systems, do not scale well in decentralized
settings where trust must be established without relying on a single point of control. This has
led to the development of innovative probabilistic and Byzantine fault-tolerant algorithms
that are specifically designed to address these challenges in the context of DLTs.

The study and development of consensus algorithms are essential to the future of not
only blockchain-based applications but also a wide range of distributed systems that demand
resilience and robustness against failures and adversarial conditions. As the landscape of
digital technologies continues to evolve, the role of distributed consensus will only grow in
importance, driving innovations that enhance the security, transparency, and efficiency of
decentralized platforms.

In this thesis, we present a comprehensive introduction and analysis of the Fast Prob-
abilistic Consensus on a Set (FPCS) protocol. Our study focuses on the intricacies of this
protocol and its application within different graph structures. We delve into the theoretical
aspects of FPCS, providing detailed estimates for the probability of successfully achieving
consensus on a maximal independent set in the context of complete graphs. Additionally, we
extend our analysis to explore the protocol’s behavior under a different security threshold
when applied to arbitrary graphs, highlighting the conditions and scenarios under which
consensus can be reliably reached.

1.1 How this thesis is structured

Chapter 2 in this thesis provides an overview of fundamental research on the problem of
distributed consensus, starting with the fault-tolerant computer system SIFT. Developed for
critical aircraft control applications, SIFT employs simple majority voting and introduces
concepts such as fault tolerance, redundancy, and flexible synchronization. The chapter then
moves on to more theoretical works, analyzing the seminal paper by Lamport, Shostak, and
Pease on achieving agreement in the presence of faults. This paper establishes the crucial
condition that the number of processors must be at least three times the number of faulty
processors plus one to ensure consensus and introduces the Byzantine Generals Problem.

1.1 How this thesis is structured 3

This problem, a metaphor for the challenges of consensus in systems with potentially mali-
cious components, highlights the difficulties in guaranteeing agreement when generals (or
processes) can send contradictory information. Algorithms using oral and signed messages
to reach consensus are presented, with the latter being capable of achieving consensus
regardless of the number of generals, as long as forgery is detectable.

The chapter further explores the challenges of consensus in unreliable distributed systems
through Fischer’s work. The paper emphasizes the importance of consensus problems
for ensuring system reliability and examines various approaches, including voting. The
impossibility of consensus in fully asynchronous systems with even a single process failure
is discussed, highlighting the limitations of deterministic methods. To overcome these
limitations, the chapter introduces a probabilistic solution proposed by Ben-Or. Ben-Or
introduces asynchronous protocols that use randomness to reach consensus, bypassing
previous impossibility results. Despite their potential inefficiency in terms of communication
rounds, these protocols demonstrate the viability of probabilistic methods for achieving
reliable consensus in failure-prone systems. The chapter then provides an analysis of
Aguilera and Toueg’s proof of correctness for Ben-Or’s randomized consensus algorithm.
This analysis shows that the algorithm remains correct even if less than half of the processes
fail and addresses potential issues with using a “global coin” to speed up the algorithm,
highlighting the complexity of designing randomized consensus protocols in adversarial
environments.

The following chapter introduces FPCS, an advanced voting-based consensus protocol
designed as an evolution of the FPC-BI protocol and the main focus of the thesis. While
FPC-BI addresses the problem of reaching consensus on the value of a single bit, FPCS
extends it to reach consensus on an Maximal Independent Set (MIS for short) of a graph of
conflicting transactions. This extension is crucial for UTXO-based DLTs, where transactions
sharing the same output are considered in conflict. Conflicts in these systems may arise due
to malicious behavior or, more commonly, due to the asynchronous nature of transaction
propagation on the network.

The chapter begins by establishing the notation and definitions used in the FPCS protocol.
It introduces the concept of a conflict graph, where nodes represent transactions, and edges
represent conflicts between transactions. The concept of cryptographic hash functions (CHF)
are defined to establish a total order in the set of transactions. It is assumed that the CHF
is pseudo-random and exhibits the diffusion property, meaning that any small change in
the input results in a new random output. The chapter also introduces the notion of “liking”
a transaction, which indicates a node’s preference for one transaction over its conflicting
transactions. The FPCS protocol operates in rounds, assuming the existence of a “global
coin”, a public sequence of random numbers, to guide decision-making.

The FPCS protocol is then described in detail. In each round, nodes randomly query
other nodes about their known transactions and which ones they “like.” Nodes update their
“views” — the set of known transactions — and form their “opinions” — indicating which
transactions they “like” — based on the gathered information. Nodes use the global coin
and CHF to determine which transactions to include in their opinions, ensuring that the set

4 Introduction

of transactions they “like” always forms an MIS. The goal of the FPCS protocol is to reach
consensus among nodes on an MIS within the set of transactions, even in the presence of
malicious nodes that may not adhere to the protocol.

The next chapter demonstrates the application of FPCS to solve the n-spend problem, a
common scenario in UTXO-based DLTs where all transactions in a conflict set spend at least
one common UTXO. The chapter focuses on complete conflict graphs, where each pair of
transactions is in conflict, representing the topology of an n-spend. A theorem is presented,
stating that, with high probability, FPCS will reach consensus on a single MIS in the conflict
graph, provided that the number of queries (k) is sufficiently large and the proportion of
malicious nodes (q) is below a certain threshold. The proof of the theorem relies on several
lemmas that provide probabilistic estimates for maintaining and achieving a “pre-consensus”
state, where a significant majority of nodes “like” the same set of transactions. The chapter
also derives a lower bound for the value of k required to ensure the correctness of the
protocol.

Through numerical analysis, the chapter further explores the influence of the proportion
of malicious nodes (q) and the number of queries (k) on the protocol’s performance. Sim-
ulations, modeling malicious nodes as being controlled by a single omniscient adversary,
show that as q increases, the protocol’s efficiency decreases, leading to more rounds needed
to reach consensus. However, increasing k can mitigate this issue, reducing termination
failures and allowing more nodes to reach consensus in fewer rounds. The chapter also
investigates the role of randomness in the protocol’s robustness, showing that removing
randomness from specific components can lead to consensus failures. Two scenarios are
analyzed: a double-spending scenario where the support of the global coin is reduced until it
becomes deterministic and a scenario where the random ordering of transactions is removed.
Simulations show that, in both cases, the protocol may fail to reach consensus.

Chapter 5 extends the analysis of FPCS to arbitrary conflict graphs, considering more
complex attack scenarios where malicious nodes can manipulate the set of transactions
itself, not just their voting preferences. The chapter begins by exploring a limiting case
using star graphs where the standard security threshold (q < β < 1/3) is insufficient to
guarantee consensus. This case demonstrates that malicious nodes can exploit the conflict
graph’s structure to influence the protocol’s outcome, even if they control a relatively small
proportion of nodes. To address this issue, the chapter proposes an adjusted security
threshold (q < β < 1/4), ensuring that the support of the global coin is large enough to
counter the influence of malicious nodes.

Under this new security threshold, the chapter presents a theorem for the general case,
stating that, with high probability, FPCS will reach consensus on a single MIS in an arbitrary
conflict graph, provided that k is sufficiently large. The proof of the theorem relies on
several lemmas that analyze the conditions and probabilities of achieving “pre-consensus”
in different scenarios, depending on the size and structure of the conflict graph. The chapter
shows that, in each round, nodes are likely to converge to a “pre-consensus” on a significant
subset of transactions on which they are still undecided, eventually leading to full consensus
on a single MIS.

1.1 How this thesis is structured 5

In conclusion, this thesis significantly contributes to the field of distributed consensus by
providing a comprehensive analysis of FPCS, a new probabilistic consensus protocol. We
demonstrate the effectiveness of FPCS in addressing practical challenges in UTXO-based
DLTs, such as n-spends, and generalize the results to arbitrary conflict graphs, covering
a broader range of attack scenarios. The theoretical analysis, combined with numerical
simulations, provides strong evidence of FPCS’s robustness, efficiency, and applicability in
failure-prone distributed environments.

Chapter 2

State of the Art

2.1 SIFT: Design and Analysis of a Fault-Tolerant Computer for
Air- craft Control

Written by Wensley et. al. [57], this paper discusses the development and design of a highly
reliable, fault-tolerant computer system called SIFT (Software Implemented Fault Tolerance).
SIFT is specifically intended for critical aircraft control applications where system failures
can have severe consequences. The primary objective of SIFT is to create a computer system
that can tolerate faults and continue operating reliably, even in the presence of hardware
failures.

SIFT achieves fault tolerance through a software-centric approach, which includes mech-
anisms for error detection, analysis, and system reconfiguration. The architecture of the SIFT
system consists of multiple processing units connected via a specially designed redundant
bus system. These processing units are standard off-the-shelf minicomputers, while standard
microcomputers handle the input and output operations. By executing tasks redundantly
across different processing units, SIFT can compare results and use a voting mechanism to
ensure correctness. SIFT uses a majority voting approach, assuming that if a majority of
units produce the same output, it is likely correct. This method allows the system to tolerate
failures in individual units without affecting the overall operation. However, while majority
voting is effective against simple faults, its limitations in handling more complex Byzantine
faults were recognized in subsequent research.

A significant feature of the SIFT system is its approach to synchronization. Unlike
traditional systems that require tight synchronization, SIFT allows for independent execution
by separate processors with only loose synchronization. This is achieved through fault-
tolerant synchronization methods, which reduce the need for precise timing alignment
between processors.

To prevent the spread of faults, SIFT employs fault isolation techniques. This means
that if a fault occurs in one unit, it does not propagate to other units, thus containing the
problem. Furthermore, SIFT can reconfigure itself by reallocating tasks away from faulty
units to maintain system integrity and ensure continued operation. The reliability of the SIFT
system is rigorously analyzed using Markov models, which help predict system behavior

7

8 State of the Art

and confirm that it meets the stringent reliability requirements essential for flight control
computers.

To ensure the correctness and reliability of both the hardware and software components,
SIFT utilizes formal verification methods. These methods provide a mathematical proof of
correctness, ensuring that the system operates as intended under all expected conditions.

In summary, SIFT is designed to be a robust and highly reliable computer system for
aircraft control applications. By leveraging software-based fault tolerance, redundancy, and
flexible synchronization, SIFT aims to provide an ultrareliable solution that meets the critical
demands of modern aviation safety and efficiency.

It is important to highlight that while SIFT is mainly associated with Wensley, two of the
co-authors are Leslie Lamport and Robert Shostak, known for their significant contributions
to the field of distributed consensus.

2.2 Reaching Agreement in the Presence of Faults

The realization that simple majority voting—like the one employed on SIFT—are insufficient
in certain scenarios, led Lamport, Shostak, and Pease to address in this paper [46] the
challenge of achieving consensus among a set of isolated processors, some of which may
be faulty, communicating only through two-party messages. The goal is to develop an
algorithm that allows nonfaulty processors to agree on consistent values, even if some
processors lie or withhold information. The authors show that this problem is solvable only
if the number of processors n is at least three times the number of faulty processors m plus
one, i.e., n ↔ 3m + 1 . They also demonstrate that under a weaker assumption, where faulty
processors can refuse to pass on information but cannot falsify it, agreement can be achieved
regardless of the number of processors, using cryptographic methods to ensure message
authenticity.

The paper begins by explaining the need for such algorithms in fault-tolerant systems,
such as synchronizing clocks or agreeing on sensor data. In cases where a simple major-
ity cannot be trusted due to faulty processors, the authors propose more complex voting
schemes involving multiple rounds of information exchange. They illustrate their concepts
with scenarios involving different numbers of processors and faults, leading to the develop-
ment of interactive consistency algorithms that can reliably achieve consensus. The study
highlights the importance of achieving consistent agreement in distributed systems and sets
the foundation for further research into more efficient and adaptable algorithms.

2.3 The Byzantine Generals Problem

In their subsequent paper [34] in this topic, Lamport, Shostak, and Pease explores again the
challenge of achieving consensus in a distributed computing system where some compo-
nents may behave maliciously or unreliably, a scenario they illustrate with the metaphor of
Byzantine generals trying to agree on a common battle plan. Each general can communicate

2.4 The Consensus Problem in Unreliable Distributed Systems 9

only through messengers, and one or more generals may be traitors who send conflicting
information to prevent the loyal generals from reaching an agreement.

The primary objective is to design an algorithm that ensures all loyal generals reach the
same decision (either attack or retreat), even in the presence of traitors. The authors establish
two critical conditions: firstly, that all loyal generals must agree on the same plan of action,
and secondly, that if the commanding general is loyal, all loyal lieutenants must follow his
order. The study reveals that if communication is limited to oral messages, the problem is
solvable only if more than two-thirds of the generals are loyal. This means that with three
generals, a single traitor can prevent agreement, but with four generals, one traitor can be
managed.

The authors present several algorithms to address the problem, depending on the sys-
tem’s assumptions. One solution, based on oral messages, requires each general to send and
receive messages to and from every other general in multiple rounds, using majority voting
to decide on the action. Another, more robust solution involves signed messages, ensuring
that once a general receives a message, its authenticity and content cannot be tampered with,
making it possible to reach consensus regardless of the number of generals, as long as the
system can detect forgery and ensure message delivery.

The paper further discusses how these algorithms can be applied to real-world systems to
enhance reliability. For instance, in computer systems requiring high reliability, such as flight
control systems or distributed databases, using these consensus protocols can prevent faulty
components from leading to system-wide failures. However, achieving this level of reliability
comes at a high cost in terms of time and communication overhead, as these algorithms
require multiple rounds of message exchanges and robust mechanisms for detecting and
managing faults.

In conclusion, the Byzantine Generals Problem highlights the complexities of achieving
fault-tolerant consensus in distributed systems and provides foundational algorithms that
have shaped the development of reliable computing and fault-tolerant protocols.

2.4 The Consensus Problem in Unreliable Distributed Systems

In this paper Fischer [25] explores the fundamental challenges of achieving consensus among
processes in distributed systems, where some processes may be unreliable or faulty. The
problem is crucial for fault-tolerant distributed computing because it ensures that non-faulty
processes can still reach a consensus, which is necessary for the system to function reliably
despite failures.

Fischer reviews various agreement problems, which involve ensuring that all processes
in a system agree on a particular piece of data. This agreement is vital in many contexts, such
as in distributed databases where transactions must be consistently committed or aborted,
in replicated file systems, and in systems like flight control, where modules must agree on
critical decisions like whether to abort a landing.

A basic approach to achieving consensus involves voting and adopting the majority value.
However, in the presence of faulty processes, this method can fail, as a single faulty process

10 State of the Art

can send conflicting votes, leading reliable processes to disagree. To address this, researchers
have developed more complex protocols that involve multiple rounds of communication to
filter out faulty behavior and ensure consistency among the non-faulty processes.

Fischer discusses different models of computation and types of faults, including crash
faults, where a process simply stops functioning, and Byzantine faults, where a process
behaves arbitrarily and possibly maliciously. He explains that solving these problems
depends heavily on the assumptions made about the system, such as whether failures are
detectable and whether processes run synchronously or asynchronously. In synchronous
systems, processes can rely on timing to detect faults, but in asynchronous systems, where
no timing guarantees exist, detecting faults becomes much more challenging.

The paper outlines various theoretical results, including the conditions under which
consensus can be achieved. For example, it is shown that without authentication, a solution
to the Byzantine Generals Problem is possible only if less than one-third of the processes are
faulty. Fischer also presents results showing that in a fully asynchronous system, achieving
consensus is impossible if even a single process can fail, highlighting the difficulties of fault
tolerance in distributed systems.

Overall, Fischer’s survey provides a comprehensive overview of the consensus prob-
lem in distributed systems, highlighting both the challenges and the theoretical solutions
developed over the years to address these issues in unreliable environments.

2.5 Impossibility of Distributed Consensus with One Faulty Pro-
cess

As one of the most influential in the field of Distributed Consensus, this paper [26] by Michael
J. Fischer, Nancy A. Lynch, and Michael S. Paterson addresses the problem of achieving
consensus in asynchronous distributed systems with the possibility of process failures. The
central challenge is for all nonfaulty processes to agree on a binary value, even when some
processes may fail or behave unreliably.

The paper proves a significant result: in a completely asynchronous system, it is impossi-
ble to guarantee consensus if even a single process can fail. This is true even under minimal
failure conditions where the only issue is the sudden stopping (crash) of one process. The
proof does not consider more complex failures like Byzantine faults, where a process might
behave arbitrarily or maliciously, but focuses on the basic case where messages are always
delivered correctly and in order.

The proof relies on the asynchronous nature of the system, where no assumptions are
made about the relative speeds of processes or the timing of message delivery. Without
synchronized clocks or the ability to detect failures reliably, any protocol aiming to achieve
consensus might encounter situations where it cannot progress towards a decision, leading
to nontermination. The result shows that any such protocol has a “window of vulnerability,”
during which a single fault can cause the system to remain indecisive indefinitely.

To demonstrate a practical application of these concepts, the paper also presents a proto-
col that successfully achieves consensus in cases where no processes fail during execution

2.6 Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols 11

and a majority of processes are initially active. This protocol operates in two stages: first,
processes construct a graph of communication links, and then they decide based on the
values communicated through this graph. The protocol’s correctness is guaranteed as long
as a majority of the processes are nonfaulty and remain active throughout its execution.

The findings emphasize the need for more refined models of distributed computing that
account for practical constraints, such as partial synchrony or probabilistic guarantees of
termination, to circumvent the impossibility result and develop robust consensus protocols.
These insights have shaped subsequent research in distributed computing, leading to new
approaches and algorithms that consider partial synchrony or probabilistic consensus to
cope with the inherent limitations of asynchronous systems.

2.6 Another Advantage of Free Choice: Completely Asynchronous
Agreement Protocols

Michael Ben-Or presents in this paper [9] a probabilistic solution to the consensus problem in
asynchronous distributed systems, where processes may fail or behave unreliably. The study
builds on previous work by Fischer, Lynch, and Paterson. Ben-Or introduces a protocol that
overcomes this limitation by using randomness, ensuring that a decision will be reached
with high probability, provided a majority of the processes remain operational.

In the proposed protocol, processes exchange information in rounds. Each process starts
with a binary input value and communicates through messages. If a process receives enough
consistent information from other processes, it can make a decision. If no consensus is
reached in a round, processes randomly choose their next actions, which leads to a situation
where, eventually, all nonfaulty processes will agree with high probability. This randomness
prevents the adversary from indefinitely delaying consensus.

Ben-Or’s protocol also addresses the Byzantine Agreement problem, where faulty pro-
cesses can behave arbitrarily or even maliciously. By using a similar probabilistic approach,
the protocol can reach consensus as long as the number of faulty processes is less than
one-fifth of the total number of processes. The key innovation is the use of randomness,
which allows the protocol to succeed even in the presence of Byzantine faults, a scenario
where deterministic protocols would typically fail.

Although the proposed protocols are not the most efficient—potentially requiring a large
number of communication rounds—their ability to reach consensus in an unpredictable
and faulty environment highlights the strength of probabilistic methods. The study shows
that, in contrast to deterministic approaches that are limited by the impossibility results,
probabilistic protocols can offer a viable path to achieving reliable consensus in distributed
systems.

12 State of the Art

2.7 The correctness proof of Ben-Or’s randomized consensus algo-
rithm

This paper by Marcos K. Aguilera and Sam Toueg [2] provides a detailed analysis and proof
of Ben-Or’s randomized consensus algorithm, which is used in asynchronous distributed
systems where processes may fail by crashing. The algorithm is significant because it was
the first to achieve consensus with high probability, circumventing earlier impossibility
results by using randomization. Despite its simplicity, a full correctness proof that considers
a strong adversary—one that can observe the state of processes and messages—had not been
provided until this work.

The authors demonstrate that Ben-Or’s algorithm remains correct under the assumption
that fewer than half of the processes can fail (i.e., f < n/2 , where n is the total number of
processes, and f is the number of faulty ones). They show that consensus can be achieved
even if a strong adversary tries to manipulate the system. The paper also discusses a potential
issue with using a “global coin” to speed up the algorithm. While global coins are often used
to synchronize random decisions across processes, the authors found that in certain scenarios,
such as when n/3 ↗ f < n/2 , using a global coin can actually prevent the algorithm from
terminating, highlighting the complexity and subtlety of designing randomized consensus
protocols in adversarial environments. The work concludes that while Ben-Or’s algorithm
is robust under certain conditions, care must be taken in its implementation, particularly
regarding the use of shared randomness.

2.8 FPC-BI: Fast Probabilistic Consensus within Byzantine Infras-
tructures

Proposed by Serguei Popov and William J. Buchanan [50], this paper introduces a novel
consensus protocol designed for use in environments where some nodes may be controlled
by an adversary. This protocol, called Fast Probabilistic Consensus within Byzantine Infras-
tructures (FPC-BI), is leaderless and maintains low communication complexity, making it
suitable for large-scale, decentralized systems like cryptocurrencies.

FPC-BI operates under the assumption that a portion of the nodes may act maliciously,
aiming to delay or disrupt the consensus process. Despite this, the protocol achieves consen-
sus with high probability by leveraging random numbers, functioning as global coins, either
from a trusted source or generated via decentralized methods, to guide decision-making.
This randomness helps overcome adversarial influence, ensuring that honest nodes can
reach a consistent decision on the value of a bit, which could relate to the validity of a trans-
action. A noteworthy aspect of FPC-BI is its resilience; it does not require perfect consensus
on the values of these global coins—an approximate agreement is sufficient to drive the
decision-making process.

The protocol’s design ensures that consensus is achieved efficiently, even when a signifi-
cant number of nodes are Byzantine, by adjusting parameters to optimize the likelihood of

2.8 FPC-BI: Fast Probabilistic Consensus within Byzantine Infrastructures 13

fast convergence to a single consensus state. The use of probabilistic methods and decen-
tralized randomness provides a robust framework that enhances the security and reliability
of distributed ledger systems, making FPC-BI a valuable tool for maintaining integrity in
environments prone to faults and attacks.

Chapter 3

Fast Probability Consensus on a Set
(FPCS)

The Fast Probabilistic Consensus on a Set (FPCS) is an advanced voting consensus protocol
designed as an evolution of the FPC-BI. Both protocols share several key characteristics: they
operate in rounds, are probabilistic in nature, achieve termination, integrity, and agreement
with high probability, and assume the existence of a global coin.

While FPC-BI addresses the classical problem of achieving consensus on the value of
a bit, FPCS extends this to achieving consensus on a Maximal Independent Set (MIS) of
a graph of conflicting transactions. This extension is crucial for managing more complex
scenarios, particularly in UTXO-based Distributed Ledger Technologies (DLTs)—like Bitcoin,
Cardano, Kaspa, and IOTA—where transactions sharing the same output are considered to
be in conflict.

Conflicts in these systems can arise from malicious behavior but are more commonly
the result of faulty node behavior, and concurrency issues in UTXO-based smart contracts,
and transaction duplicates in DAG-based DLTs with low block times. Despite these varied
origins, our results remain unaffected as we consider a proportion q of nodes to be Byzantine,
meaning their behavior is arbitrary, encompassing both malicious and faulty nodes.

Consider a scenario with three transactions: u (consuming UTXOs u1 and u2), v (consum-
ing u1), and w (consuming u2). Then, u conflicts with both v and w , while v does not conflict
with w. To update their ledgers, nodes must choose between accepting the set {u} or the
set {v,w} as legitimate. Each round of the FPCS protocol generates a set of transactions to
be liked by the nodes, which may change significantly in the initial rounds. However, the
protocol is designed to stabilize after a few rounds, with nodes consistently liking similar
transactions, eventually triggering a stop criterion and rendering the consensus final.

3.1 Notation

Consider a set of N nodes denoted by N = {1, . . . , N} and a set of conflicting transactions
Tt = {u1, . . . ,uTt}, which we call the conflict set. As the time dependency suggests, we assume
that the conflict set can change over time. The exact dynamics of how new transactions

15

16 Fast Probability Consensus on a Set (FPCS)

emerge will not be explored and we consider it can happen arbitrarily, nevertheless new
transactions must always be liked1 by at least one node. In particular, we assume that nodes
themselves can issue new conflicting transactions, which can potentially be seen as a vector
of attack. For our purposes, we assume that a transaction is composed of a unique transaction
identifier (“Id”, for short), a set of inputs – often referred to as UTXOs (unspent transaction
outputs) – and a set of outputs.

We also assume that outputs are unequivocally associated to a transaction that generated
it, meaning that, by construction, a single output will be generated by exactly one transaction.
Additionally, a transaction will never consume the same UTXO more than once. Let Uy be the
set of outputs consumed by a certain transaction y ↓ Tt, and Vy be the set of transactions that
generated Uy. We denote that the past cone Py of a transaction y as Py = y ↘ Vy ↘ {Px}x↓Vy .

We say two transactions x,y ↓ Tt are in conflict if there is a UTXO being consumed by
more than one transactions in the union of their past cones have a non-empty intersection
(or, in other words, if accepting both transactions would imply there is a double spending
somewhere in the ledger) and denote this by x ≃ y. If x and y are not in conflict, we write
x ⊋ y. A transaction x conflicts with a set B ⇐ T if it conflicts with every element of B and
this is represented by x ≃ B. It is natural to represent the set Tt and its conflicts as a graph
G = (Tt, Et), where given x,y ↓ Tt an edge (x,y) ↓ Et denotes that x ≃ y.

The conflict graph Tt is not necessarily complete2, but can have a more complicated
structure. For example, imagine a set of four transactions {w, x,y,z} ↓ Tt and two UTXOs,
u1,u2. Suppose that w consumes u1, x consumes u1 and u2 and both y and z consume u2;
then, w ≃ x and x ≃ {y,z} but, at the same time, w is not in conflict with y or z (see Fig. 3.1).

z

x y

w

Figure 3.1 Graph representation of the example described in the text. The edges between
transactions indicate that there is a common input.

Considering the graph representation of conflicting transactions, it is useful to introduce a
few additional definitions. Given a graph G = (V, E), we say a subset S ⇐ V is an independent
set if, for any two elements of S, there is no edge in E connecting them. Furthermore, a
maximal independent set (MIS for short) is an independent set that is not a proper subset of
any other independent set. In the previous example, the singletons, {w,y} and {w,z} are
independent sets, while {x}, {w,y} and {w,z} are maximal independent sets. Complete
graphs are a particular case that we will study closely, it represents the scenario where all
transactions in Tt have at least one input in common with every other transaction. This case
is also known in cryptocurrency literature as a n-spend.

1The precise definition of a liked transaction is given bellow
2A graph G = (V, E) is complete if, for any two vertices in V, there is an edge in E directly connecting them.

3.1 Notation 17

x1
x2

x3
x4

x5

x6

Figure 3.2 Graph representation of a set with 6 transactions where all of them are in conflict
with each other.

Depending on the network throughput, the set Tt can be very large and it is convenient
to find a global (i.e., known to all nodes) way to totally order it. A popular way to do this is
through a cryptographic hash function (CHF for short). Following the definition introduced by
Merkle [36], a CHF is a function F such that:

1. F can be applied to any argument of any size and produces a fixed-size output.

2. Given F and x, it is easy to compute F(x).

3. Given F, it is computationally infeasible to find any pair x, x↑ such that x ⇒= x↑ and
F(x) = F(x↑). We call this the no-collision condition.

For the purpose of the paper, we will also assume that the CHF is a pseudo-random
function. Pseudo-random means that the outcome of the function is deterministic, but it
“appears” (passes a wide class of statistical tests) to be uniformly distributed in the interval
[0,1]. In other words, our hash function satisfies the property that any random perturbation
in the input results in a uniformly distributed independent new output. We refer to this as
the diffusion property. Let us note that the hash function allows us to define an order on some
arbitrary data x,y: one can say that x < y if hash(x) < hash(y).

Considering discrete time t = 0,1,2 . . . (we refer to it as the round t), we define by A(n)
t the

set of transactions known by the node n at time t and call it the node’s vision. Furthermore, we
assume that the node never forgets transactions, i.e., we assume that A(n)

0 ⇐ A(n)
1 ⇐ . . . ⇐ Tt

for any n ↓N .
We say a node likes a transaction if it prefers it to its conflicting transactions. Moreover,

we define node n’s opinion at round t as the collection O(n)
t =

{
θ(n,x)

t ; x ↓ A(n)
t

}
, where θ(n,x)

t
assumes the value:

θ(n,x)
t =

1, if node n likes transaction x at time t,

0, otherwise.

For a set W ⇐ Tt, we say a nodes likes W if it likes every transaction in W, or explicitly,
θ(n,W)

t = 1 if θ(n,w)
t = 1 for all w ↓ W.

We also assume there exists a public sequence of random numbers Xt ⇑ U[β,1 → β],
which is either provided by a trusted source or generated by the nodes themselves using
some decentralized random number generating protocol. This approach is referred to as a

18 Fast Probability Consensus on a Set (FPCS)

global coin in many works on Byzantine consensus, for example, in [2, 14, 15, 27]. We assume
all random numbers and messages between the nodes are delivered on time in every round.

Our objective is to formulate a protocol that facilitates consensus among the nodes N
regarding a MIS within Tt. A designated proportion q of the nodes, referred to as malicious,
may opt not to adhere to our protocol, thereby choosing to impede or disrupt the consensus
process. For a constant c ↓ [0,1], we say the protocol is resistant up to a threshold c if, for any
q < c, consensus can be achieved with high probability.

Without loss of generality, we assume that the first (1 → q)N nodes are honest (those that
are not malicious) and define the proportion of likes among honest nodes of a transaction
u ↓ Tt as

p(u)t :=
1

(1 → q)N

(1→q)N

∑
j=1

θ
(j,u)
t . (3.1)

For a set U ↓ Tt, the proportion of likes p(U)
t is defined as the proportion of honest nodes

that like the whole set U.

We define the Interval of Control of the malicious nodes over a transaction v at round t as

I (v)
q,t := [(1 → q)p(v)t , (1 → q)p(v)t + q].

The lower/upper boundary of this interval is precisely the overall proportion of likes (i.e.,
considering both honest and malicious opinions) that the transaction has when all malicious
nodes dislike/like it.

Our results hinge on the observation that once a significant majority of honest nodes
align on a specific transaction or set of transactions, it becomes difficult for malicious nodes
to reverse this opinion. To precisely delineate the threshold for a significant majority, we
introduce the abbreviation

µ :=
β → q

2(1 → q)
.

Fig. 3.3 illustrates the concept of Intervals of Control and the relations between β and q. In
particular, we will assume that q < β, or in other words, that µ is positive.

0 1βµ q

p(w)
t

>
β → q

2

0 11 → µ1 → β 1 → q

p(u)t

>
β → q

2

Figure 3.3 The intervals of control I (u)
q,t for a transaction u which has a proportion of likes

among honest nodes p(u)t > 1 → µ (in blue), and I (w)
q,t for a transaction w such that p(v)t < µ

(in red). Notice that these intervals are separated from the support [β,1 → β] of Xt.

3.2 Protocol 19

With this in mind, we say that at time t, the system is in pre-consensus about a transaction
u ↓ Tt if either p(u)t > 1 → µ or there exists v ↓ N(u)3 such that p(v)t > 1 → µ. We denote this
event (i.e., when either of the conditions above is true) by PC t(u). For a set U ↓ Tt the system
is in pre-consensus about U if PC t(u) is true for every u ↓ U and we represent this event by
PC t(U). If PC t(u) is true for all u ↓ Tt, we simply say the system is in pre-consensus and
denote this event by PC t. Note that, under PC t, each node will have its preferred MIS, and
the intersection could be very large, but in order to prove our theorem, we need the stronger
condition that a large proportion of honest nodes like the exact same MIS. Hence, if PC t is
true and on top of that p(U)

t > 1 → µ for some maximal independent set U ⇐ Tt we say the
system is in hard pre-consensus and denote this event by PC⇓

t .

3.2 Protocol

For t = 0, the initial visions, A(n)
0 , and opinions, O(n)

0 , can be arbitrary, as long as the set
of liked transactions for each node forms a maximal independent set of the conflict graph
induced by A(n)

0 . Then, the following protocol should be executed iteratively once for every
round t ↔ 1 until the stop criterion is met:

1. At the beginning of every round t, each node n stores any new transaction it became
aware of between rounds t → 1 and t, call this set N(n)

t .

2. The node proceeds to randomly query (with uniform distribution) k nodes about their
known transactions and which ones of them are liked.

3. The node then also stores any shared-by-others transactions it was not aware of, call
this set S(n)

t .

4. The node’s vision at round t is then given by A(n)
t = A(n)

t→1 ↘ S(n)
t ↘ N(n)

t

5. The node stores the collection
{

ε(n,x)
t ; x ↓ A(n)

t

}
, where ε(n,x)

t corresponds to the num-
ber of 1-opinions the node n received from the queries in round t with respect to the
transaction x.

6. The node receives the random value Xt ⇑ U[β,1 → β].

7. The node defines an auxiliary collection of opinions
{

θ↑(x); x ↓ A(n)
t

}
, that will not be

shared and will last only until the end of the round (hence we omit the dependence on
n and t), using the following rule:

θ↑(x) =

1, if ε(n,x)

t /k > Xt

0, otherwise.

3Here we use the definition of a neighborhood from graph theory. Explicitly, for sets U,V ⇐ Tt the neighbor-
hood of U with respect to V is defined as N(U,V) := {v ↓ V; such that there exists u ↓ U for which u ≃ v}. For
simplicity we abbreviate N(U) := N(U,Tt)

20 Fast Probability Consensus on a Set (FPCS)

8. Let B :=
{

x ↓ A(n)
t ; θ↑(x) = 1

}
. The node must find a way to assign 1 only to the

opinions of a maximal independent subset of A(n)
t . To do so, it iteratively removes

from B the transaction x ↓ B with the largest hash(Idx, Xt) (this means the hash of
Idx concatenated with the random number Xt) until it obtains an independent set.
Note that using the “largest hash” is not crucial, as any deterministic rule leading to
unpredictable results is sufficient. Explicitly, it performs the following algorithm:

Algorithm 1 elim(U, Xt)
1: W = U
2: while W is not an independent set do
3: Compute

y = argmax
x↓W:⇔z↓W:z≃x

hash(Idx, Xt),

4: W = W \ {y}
5: end while
6: return W

Consider B↑ := elim(B, Xt). While this set is independent by construction, it may not
be maximal. Then, starting with B↑, the node includes iteratively the non-conflicting
transaction with the smallest hash(x, Xt) until a maximal independent set is obtained.
Explicitly, the node executes the following:

Algorithm 2 compl(U,V, Xt)
1: W = U
2: while W is not a maximal independent set do
3: Compute

y = argmin
x↓V\N(W,V)

hash(x, Xt)

4: W = W ↘ {y}
5: end while
6: return W

Let B↑↑ := compl(B↑, A(n)
t , Xt). Finally, the node assigns value 1 to the opinion θ(n,x)

t+1 of
every transaction x ↓ B↑↑ and zero to the others.

If the node’s opinion about a transaction does not change for ω rounds, then it is considered
final and will not be further modified in the subsequent rounds.

3.2 Protocol 21

Figure 3.4 Representation of step (vi) of the protocol. The graph represents the node’s vision
at time t. The numbers represent the order according to the hash function. In the first
subfigure, the transactions in yellow represent the set B; in the second subfigure, transactions
in green represent B↑ and transactions in red represent N(B↑, A(n)

t); in the last subfigure,
transactions in blue represent B↑↑, the chosen maximal independent set of the round.

Chapter 4

Solving n-spends with FPCS

Complete graphs are fundamental in graph theory, where each pair of distinct vertices is
connected by a unique edge, forming the most densely connected type of graph. In the
context of this work, this means that every transaction spend at least one UTXO in common,
and, because of that, it is popularly known in cryptocurrency context as n-spends. The
topology of this type of graphs allows us to assume very weak conditions regarding their
size. In particular, we consider that |Tt| = f (t) for any nondecreasing function f taking
the naturals into themselves. Another rather trivial characteristic is that in the complete
case, pre-consensus in a single transaction is equivalent to hard pre-consensus. Indeed, if
p(u)t > 1 → µ for some u ↓ Tt, then for any v ↓ Tt \ {u}, we have u ↓ N(v) and then, by
definition, PC t(v) is also true.

At first, we consider that every node is aware of all the conflicting transactions at every
round, i.e., A(n)

t = Tt for every t ↓ N and all n ↓N .
Defining C as the event where honest nodes achieve consensus, our main result states

that with high probability (depending on k and N), for any distribution of initial opinions, a
pre-consensus state is achieved and maintained for enough consecutive rounds so that event
C happens in the round R ↗ 2ω.

Theorem 4.0.1. For sufficiently large k, given an arbitrary distribution of the initial opinions of the
honest nodes it holds that

P[C ↖ {R < 2ω}] ↔
[
1 → (1 → Wc(N,k))ω→1

][
1 → exp

{
→ k

2
(β → q)2

}](1→q)Nω

where

Wc(N,k) =
hc

2(1 → 2β)N

(
1 → exp{→2N(1 → q)ϱ2

3}
)

ϱ3 := µ → exp

{
→ kh2

c
2

}
, (4.1)

hc := (1 → q → 2β)/2. (4.2)

23

24 Solving n-spends with FPCS

In order to prove the theorem, we need first to prove some additional lemmas. The first
one estimates the probability of a pre-consensus state being maintained after one iteration
of our algorithm. This result hinges on the fact that for transactions u,v ↓ Tt such that
p(v)t > 1→ µ and p(v)t < µ, there will be a distance larger than (β → q)/2 between the intervals
of control of these transactions and the support of Xt (see Fig. 4.1).

0 1βµ q

p(w)
t

>
β → q

2

1 → µ1 → β 1 → q

p(u)t

>
β → q

2

Figure 4.1 The intervals of control for a transaction u which has a proportion of likes among
honest nodes p(u)t > 1 → µ (in blue), and for a transaction v such that p(v)t < µ (in red). Notice
that these intervals are separated from the support [β,1 → β] of Xt.

Lemma 4.0.1. Suppose that, at round t, the system is in a state where p(v0)
t > 1→ µ for some v0 ↓ Tt.

Then, for a sufficiently large k the probability of hard pre-consensus at round t + 1 (or in other words,
that PC⇓

t+1 is true) satisfies

P[PC⇓
t+1] = P[PC t+1(v0)] ↔ 1 → exp{→2N(1 → q)ϱ2

1}.

Proof. Note that if p(v0)
t > 1 → µ the lower boundary of I (v0)

q,t is greater than 1 → (β + q)/2.

For a node n we consider the event G(1) := {ε(n,v0)
t k→1 > 1 → β} 1 that a proportion larger

than 1 → β of the queried nodes like v0. Hence,

P
[

G(1) | p(v0)
t > 1 → µ

]
↔ P[k→1Sk ↔ 1 → β],

where Sk ⇑ B(k, 1 → (β + q)/2). This latter probability can be estimated using the Hoeffding
inequality

P
[
k→1Sk ↔ 1 → β

]
↔ 1 → exp

→2k

[
1 → β →

1 → β + q

2

]2

= 1 → exp
{
→ k

2
(β → q)2

}
.

Under the event G(1), every other transaction is liked by a proportion of the queried nodes
smaller than β and, consequently, every other auxiliary opinion is equal to zero. Then, the
probability that an honest node likes transaction v0 at round t + 1 is estimated by

P
[
θ(n,v0)

t+1 = 1 | p(v0)
t > 1 → µ

]
↔ P[θ↑(v0) = 1,θ↑(v) = 0 ↙v ⇒= v0 | p(v0)

t > 1 → µ]

↔ P[G(1) | p(v0)
t > 1 → µ] ↔ 1 → exp

{
→ k

2
(β → q)2

}
. (4.3)

1The superscript on events Gs denote Lemma 1, 2, 3, etc, while subscripts denote different events within the
same Lemma

25

Now, the probability that a proportion of at least 1 → µ of the honest nodes likes
transaction v0 at round t + 1 can be estimated by the probability of a random variable
SN(1→q) ⇑ B(N(1 → q),1 → exp

{
→(k/2)(β → q)2

}
) being larger than (1 → µ). Considering

that k can be taken sufficiently large2 so that the probability of success of this binomial is
larger than 1 → µ, using again the Hoeffding inequality we find that

P[PC t+1(v0)] ↔ P
[

p(v0)
t+1 > 1 → µ

]
↔ P

[
1

N(1 → q)
SN(1→q) > 1 → µ

]

> 1 → exp{→2N(1 → q)ϱ2
1}.

We have shown that if p(v0)
t > 1 → µ and for k are sufficiently large, then p(v0)

t+1 > 1 → µ will
happen high probability. Our next objective is to prove that a pre-consensus state can, in fact,
be achieved relatively fast, given any distribution of honest nodes’ likes. For this purpose,
we distinguish between the two following cases; Case 1 represents the situation where the
proportion of likes assigned to the favorite transaction is smaller or equal to 1/2, whereas
Case 2 represents the complementary case.

First notice that, since intervals of control have length q, an interval that is centered
around 1/2 will be completely contained in the support of the random variable Xt as
long as q < 1 → 2β. Considering this condition together with q < β introduced before and
maximizing3 for q gives us the restriction q < β < 1/3 which is the security threshold
considered on the remaining of this chapter.

Now given a transaction u such that p(u)t = 1/2, its interval of control I (v)
q,t = [(1 →

q)/2, (1+ q)/2] is not only contained in the support of Xt but is separated from the boundary
of this domain by a distance hc = (1→ q→ 2β)/2 (see Fig. 4.2). Consequently, in Case 1/Case
2, the distance between the interval of control of the favorite transaction and the lower/upper
boundary of [β,1 → β] is always larger than hc.

0 11/2 1 → ββ

p(u)t

hchc

Figure 4.2 The interval of control (in blue) of a transaction u ↓ Tt with p(u)t = 1/2 is always
separated from the boundary of [β,1 → β] by a distance hc := (1 → q → 2β)/2.

Denote by vt the transaction with the highest proportion4 of honest likes at round t;
in other words, p(vt)

t ↔ p(w)
t for any w ↓ Tt. We start with Case 1. The main idea, in this

case, is that with a probability h/(2 → 4β), the random number Xt belongs to the interval
(1 → β → h/2,1 → β) that is separated from I (vt)

q,t by a distance larger than h/2, which means
that an honest node will likely assign 0 to the auxiliary opinion of vt (and every other

2This will be a recurrent argument; we investigate how large k must be in Section 4.1.
3We want our protocol to be resistant to the largest q possible.
4We assume that this maximum is unique, otherwise we could choose the one with largest hash.

26 Solving n-spends with FPCS

transaction, since they all have a smaller proportion of likes) and then, following our
protocol, choose the transaction with the smallest hash as the favorite (see Fig. 4.3).

Xt

0 11 → ββ 1/2p(vt)
t

p(w)
t

Figure 4.3 In Case 1, every time Xt falls on the right of I (vt)
q,t (in blue), an honest node is likely

to assign 0 to the auxiliary opinion of every transaction.

Lemma 4.0.2. Let p(vt)
t ↗ 1/2 be the largest proportion of honest likes among all transactions at

round t. Then, for a sufficiently large k, there exists a transaction u ↓ Tt (not necessarily vt) such
that the probability that a proportion of at least 1 → µ of honest nodes likes u at round t + 1 satisfies

P
[

p(u)t+1 > 1 → µ
]
↔ h

2(1 → 2β)

(
1 → exp{→2N(1 → q)ϱ2

2}
)

,

where

ϱ2 = µ → N exp

{
→ kh2

c
2

}

Proof. Let G(2) be the event that the random threshold Xt lies in in the interval (1 → β →
h/2,1 → β) and u = argminv↓Tt

hash(v, Xt). Since the upper boundary of I (vt)
q,t is smaller

than 1 → β → h/2, we consider Sk ⇑ B(k,1 → β → h). Now, we use Hoeffding’s inequality to
bound the probability that an honest node assigns 0 to the auxiliary opinion of vt:

P
[
θ↑(vt) = 0 | p(vt)

t ↗ 1/2, G(2)
]
↔ P

[
k→1Sk < Xt

]
(4.4)

↔ P[k→1Sk < 1 → β → hc/2]

↔ 1 → exp{→2k{1 → β → hc/2 → (1 → β → hc)}2}

↔ 1 → exp

{
→ kh2

c
2

}
.

While this estimate holds for all transactions, in some cases it is excessively conservative.
Notice, for example, that in general, the auxiliary opinion for a transaction v can take value 1
only if at least one of the N nodes likes v, while all others will be disliked with a probability
1. Consequently, the probability of an honest node assigning θ↑(v) = 0 for every transaction
and then, following the protocol, liking transaction u at round t + 1 satisfies:

P
[
θ(n,u)

t+1 = 1 | p(vt)
t ↗ 1/2, G(2)

]
↔

1 → exp

{
→ kh2

c
2

}

N

↔ 1 → N exp

{
→ kh2

c
2

}
, (4.5)

where this last term will be positive for a sufficiently large k. Considering SN(1→q) ⇑ B(N(1→
q), 1 → N exp{→kh2

c /2}) then, analogously to the previous lemma, assuming k is sufficiently

27

large, it follows that the probability of a proportion of at least 1 → µ of the honest nodes
liking transaction u at round t + 1 satisfies

P
[

p(u)t+1 > 1 → µ | p(vt)
t ↗ 1/2

]

↔ P[G(2)]P
[

p(u)t+1 > 1 → µ | p(vt)
t ↗ 1/2, G(2)

]

↔ hc

2(1 → 2β)
P

[
1

N(1 → q)
SN(1→q) > 1 → µ

]

↔ hc

2(1 → 2β)

1 → exp

→2N(1 → q)

1 → N exp

{
→ kh2

c
2

}

→ 1 + µ

2

=
hc

2(1 → 2β)

(
1 → exp{→2N(1 → q)ϱ2

2}
)

.

We now consider Case 2, i.e., if p(vt)
t > 1/2. In this situation, a random threshold smaller

than p(vt)
t (1 → q) (the lower boundary of I (vt)

q,t , the blue interval in Figure 4.4) will not only
favor vt, but can also favor another transaction w, which overall proportion can be increased
to p(w)

t (1 → q) + q (the upper boundary of I (w)
q,t , the red interval in Figure 4.4). This is not

necessarily a problem, but in order to guarantee that a large proportion of honest nodes like
the same transaction we rely on the diffusion property of the hash function.

Xt

0 11 → ββ 1/2

p(vt)
t

p(w)
t

Figure 4.4 In Case 2, every time Xt falls on the left of I (vt)
q,t (in blue), an honest node might

also like a transaction w if the upper boundary of I (w)
q,t (in red) is also on the right of Xt.

Lemma 4.0.3. Let p(vt)
t > 1/2 be the largest proportion of honest likes among all transactions at

round t. Then, for a sufficiently large k the probability that at least a proportion 1 → µ of honest nodes
likes the transaction vt at round t + 1 satisfies

P[p(vt)
t+1 > 1 → µ] ↔ kβh

2(1 → 2β)(N + kβ)

(
1 → exp{→2N(1 → q)ϱ2

3}
)

,

where

ϱ3 := µ → exp

{
→ kh2

c
2

}
.

Proof. Let G3 be the event that the random threshold Xt belongs to the interval (β, β + h/2).
Now, the lower boundary of I (vt)

q,t is greater than β + h/2. Let Sk ⇑ B(k, β + h), then, the

28 Solving n-spends with FPCS

probability that an honest node likes transaction vt conditioned on G(3)
1 is estimated again

with Hoeffding’s inequality by

P[θ↑(vt) = 1 | p(vt)
t > 1/2, G(3)

1] ↔ P[k→1Sk ↔ Xt] (4.6)

↔ P[k→1Sk ↔ β + hc/2]

↔ 1 → exp

{
→ kh2

c
2

}
.

As stated in the previous lemma, the number of auxiliary opinions that are 1 is bounded by
N. Instead of studying every possible combination of likes and dislikes of vt and its potential
competitors, we consider the event G(3)

2 that vt, at round t, has the smallest hash5 among
them. Then, by the design of the protocol, if an honest node assigns 1 to the auxiliary opinion
of vt, it will be chosen as the node’s favorite independently of its auxiliary opinion on the
competitors. By the diffusion property of the hash function, the event G(3)

2 occurs roughly
with probability 1/N. This means that, for an honest node n, it holds that

P
[
θ(n,vt)

t+1 = 1 | p(vt)
t > 1/2, G(3)

1 , G(3)
2

]
↔ P[θ↑(vt) = 1 | p(vt)

t , G(3)
1]. (4.7)

It follows that for a sufficiently large k, the probability of a proportion 1 → µ of honest nodes
liking transaction vt at round t + 1 is estimated by

P[p(vt)
t+1 > 1 → µ | p(vt)

t > 1/2]

↔ P[G(3)
1 , G(3)

2]P[p(vt)
t+1 > 1 → µ | p(vt)

t > 1/2, G(3)
1 , G(3)

2]

↔ hc

2(1 → 2β)
1
N

P

[
1

N(1 → q)
SN(1→q) > 1 → µ

]

↔ hc

2(1 → 2β)
1
N

1 → exp

→2N(1 → q)

µ → exp

{
→ kh2

c
2

}

2

=
hc

2(1 → 2β)N

(
1 → exp{→2N(1 → q)ϱ2

3}
)

.

To ensure the results remain as clean as possible, it is prudent to determine the minimum
between the probabilities of the events associated with Lemmas 4.0.2 and 4.0.3. The following
result addresses this need and the proof is provided in the Appendix6.

Lemma 4.0.4. For any positive constant c and sufficiently large k, it holds that

1
N
(1 → exp{→cϱ2

3}) ↗ 1 → exp{→cϱ2
2} (4.8)

5Rigorously, that vt = argminu↓T hash(Idu, Xt)
6We will follow this approach whenever a proof is purely mathematical.

29

Armed with these results, we now proceed to prove the theorem stated at the beginning
of this chapter.

Proof of theorem 3.1 First, we define the random variables

Ψ := min{r ↔ 1 : p(vt)
t > 1 → µ},

that is the first round in which the system is in the pre-consensus state, and

τ̂n := min{r ↔ Ψ + ω : θ(n,vt)
r = · · · = θ(n,vt)

r→ω+1 = 1},

that is the first time in which vt is liked by node n for ω subsequent rounds after round Ψ.
We then define the events

D(1)
t = {Ψ = t}, D(1)

[t,s] = {Ψ ↓ [t, s]},

D(2) =

τ̂n = Ψ + ω; ↙n = 1, . . . , (1 → q)N

.

Notice that if Ψ < ω, then
C ↖ {R ↗ t + ω} ∝ D(1)

[1,t] ↖ D(2).

This way

P[C ↖ {R < 2ω}] ↔ P
[

D(1)
[1,t] ↖ D(2)

]
= P

ω→1

i=1
D(1)

i

 ↖ D(2)

 ,

since the events are disjoint, it follows that

P[C ↖ {R < 2ω}] ↔ P

ω→1

i=1
D(1)

i ↖ D(2)

 =
ω→1

∑
i=1

P
[

D(1)
i ↖ D(2)

]

=
ω→1

∑
i=1

P
[

D(2)|D(1)
i

]
P
[

D(1)
i

]
=

ω→1

∑
i=1

P
[

D(2)
]

P
[

D(1)
i

]

= P
[

D(2)
]

P
[

D(1)
[1,ω→1]

]

To calculate P[D(2)] we write

P[D(2)] = P
[

τ̂n = Ψ + ω; ↙n = 1, . . . , (1 → q)N
]

= P

[{
θ(n,vt)

Ψ+1 = · · · = θ(n,vt)
Ψ+ω = 1; ↙n = 1, . . . , (1 → q)N

}]

= P

ω⋂

i=1

(1→q)N⋂

n=1

{
θ(n,vt)

Ψ+i = 1
}

 ,

30 Solving n-spends with FPCS

To simplify the notation, define D(3)
i =

⋂(1→q)N
n=1

{
θ(n,vt)

Ψ+i = 1
}

, then

P[D(2)] = P

ω⋂

i=1
D(3)

i

 = P
[

D(3)
ω |D(3)

1 . . . D(3)
ω→1

]
. . .P

[
D(3)

2 |D(3)
1

]
P
[

D(3)
1

]
. (4.9)

But notice that if D(3)
i is true, then PC i+1 is also true, and using a similar bound to the one

used in Lemma 4.0.1 we find that

P[D(2)] ↔
[

1 → exp
{
→ k

2
(β → q)2

}](1→q)Nω

.

Now before calculating P
[

D(1)
[1,ω→1]

]
, we define

W(n,k) := min

{
hc

2(1 → 2β)

(
1 → exp{→2N(1 → q)ϱ2

2}
)

,

hc

2(1 → 2β)N

(
1 → exp{→2N(1 → q)ϱ2

3}
)}

(these are the two bounds found in Lemmas 4.0.2 and 4.0.3. It follows directly from Lemma
4.0.4 that for a sufficiently large k, it holds that

Wc(n,k) =
hc

2(1 → 2β)N

(
1 → exp{→2N(1 → q)ϱ2

3}
)

.

Then

P
[

D(1)
[1,ω→1]

]
=

ω

∑
i=1

P[Ψ = i] ↔ 1 → (1 → Wc)
ω→1.

We finally conclude that

P[C ↖ {R < 2ω}] ↔
[
1 → (1 → Wc(n,k))ω→1

][
1 → exp

{
→ k

2
(β → q)2

}](1→q)Nω

.

4.1 A lower bound for k

During the previous Section, we repeatedly used the argument that k was sufficiently large
in our reasoning. Here we find bounds for it.

In Lemma 4.0.2 we assumed k was large enough so that the probability of success of
SN(1→q) ⇑ B(N(1 → q),1 → N exp{→kh2

c /2}) to be larger than 1 → µ, this guarantees that

4.2 What if nodes’ visions are slightly different? 31

Hoeffding can be applied. Explicitly, we want

1 → N exp

{
→ kh2

c
2

}
> 1 → µ

which is equivalent to the following condition to hold for k

k >
2(log N → logµ)

h2
c

. (4.10)

Analogously, in Lemma 4.0.3 we required that k was sufficiently large so that

1 → exp

{
→ kh2

c
2

}
> 1 → µ

which is equivalent to

k > →2logµ

h2
c

.

Finally, in Lemma 4.0.4 we required k to be sufficiently large so that ϱ2 and ϱ3 to be larger
than 0. This leads us to identical conditions on k.

We conclude then, that in order for our results to work, the stronger condition (4.10)
must hold.

4.2 What if nodes’ visions are slightly different?

For the remainder of this chapter, we no longer consider that every node is aware of the
same set of transactions (i.e., the whole conflict set) at every round. Instead, we assume that
the node’s vision can be slightly different, as long as they maintain a sufficiently large – with
respect to Tt – intersection; or explicitly we consider that there is some small δ > 0 such that

∣∣∣∣∣
⋂

n↓N
A(n)

t

∣∣∣∣∣
|Tt|

> 1 → δ. (4.11)

Since, by the design of our protocol, before calculating the auxiliary opinions a node
includes in its vision any new transaction (which was issued or shared by another node),
the estimates (4.4) and (4.6) are still valid. Furthermore, since in (4.7) the probability of an
honest node n liking vt is estimated by the event of the node assigning 1 to their auxiliary
opinions —which means that these transactions were indicated by a queried node and
consequently are included in A(n)

t —then Lemmas 4.0.1 and 4.0.3 are not affected by the
condition (4.11). On the other hand, since in (4.5) we are assuming that a node assigned
θ↑(v) = 0 for every transaction v, there is the possibility that some v are still unknown to this
node and consequently the transaction with the smallest hash in the node’s vision may not
be the transaction with the smallest hash in the whole conflict set. This would invalidate the

32 Solving n-spends with FPCS

final bound in Lemma 4.0.2 and to fix it, we rely again on the diffusion property of the hash
function.

Lemma 4.2.1. Considering condition (4.11), let p(vt)
t ↗ 1/2 be the largest proportion of likes among

all transactions at round t; then, for a sufficiently large k, the probability that a proportion of at least
1 → µ of honest nodes likes a transaction u ↓ Tt (not necessarily vt) at round t + 1 satisfies

P[p(u)t+1 > 1 → µ | p(vt)
t ↗ 1/2] ↔ hc

2(1 → 2β)

(
1 → exp{→2N(1 → q)ϱ̂2

2}
)

,

where

ϱ̂2 := µ → 1 + (1 → δ)

1 → N exp

{
→ kh2

c
2

}

 .

Proof. Let G1 be the event where the random threshold Xt is in the interval (1 → β → h/2,1 →
β) and u = argminv↓Tt

hash(v, Xt). The estimate (4.4) is not affected by condition (4.11), i.e.,
it still holds that

P[θ↑(v0) = 1 | p(v0)
t > 1 → µ] ↔ 1 → exp

{
→ k

2
(β → q)2

}
.

Now consider the event G2 = {u ↓ ⋂
n↓N A(n)

t }. By the properties of the hash function, it is
immediate that P[G2] = 1 → δ. Then, the probability of an honest node liking transaction u is
bounded by

P
[
θ(n,u)

t+1 = 1 | p(vt)
t , G1

]
↔ (1 → δ)P

[
θ(n,u)

t+1 = 1 | p(vt)
t , G1, G2

]

↔ (1 → δ)

1 → N exp

{
→ kh2

c
2

}

 .

The remaining proof follows analogously to the proof of Lemma 4.0.2.

As we have shown, the difference between ϱ2 and ϱ̂2 is marginal, and consequently, it
is natural to assume that Lemma 4.0.4 will hold by replacing ϱ2 with ϱ̂2 at least for small
values of δ.

Corollary 4.2.2. Under condition (4.11), for any positive constant c, sufficiently large k, and δ < µ

we have

1
N
(1 → exp{→cϱ2

3}) ↗ 1 → exp{→cϱ̂2
2}. (4.12)

Proof. We only have to prove that ϱ3 > ϱ̂2 and that ϱ̂2 > 0, for a sufficiently large k. The first
inequality is trivial. The second one will be satisfied if, and only if,

k >
2log

(
(1→δ)N

µ→δ

)

h2
c

=

2

(
log N + log

1 → δ

µ → δ

)

h2
c

. (4.13)

4.2 What if nodes’ visions are slightly different? 33

Notice that this last condition only holds for δ < µ. Now, all logical steps taken in subsection
A.1.1, up to inequality (A.4) will hold by simply replacing ϱ2 with ϱ̂2. It remains to show
that

ϱ2
3 → ϱ̂2

2 < (1 → µ)2. (4.14)

For the remainder of this proof, abbreviate

x(k) := exp

{
→ kh2

c
2

}
,

and notice that

ϱ̂2 = µ → 1(1 → δ)(1 → Nx)

= µ → Nx + δNx

= ϱ2 + δNx.

We now expand the left-hand side of (4.14)

ϱ2
3 → ϱ̂2

2 = ϱ2
3 → [ϱ2

2 → 2ϱ2δNx + δ2N2x2]

= (ϱ2
3 → ϱ2

2) + 2ϱ2δNx → δ2N2x2. (4.15)

In the Appendix A.1.1 and Section 4.1, we already proved that for k > 2(log N → logµ)/h2
c ,

the term between parentheses in (4.14) is smaller than (1 → µ)2. Since (4.13) is a stronger
condition on k, this implies that (4.13) will be satisfied if

δNx(2ϱ2 → δNx) < 0,

or replacing the value of ϱ2 and isolating δ, if

δ <
2µ → 2Nx

Nx
.

This completes the proof. Nevertheless, we compare the two conditions on δ found. In
particular, we want the values of k for which

µ <
2µ → 2Nx

Nx
.

Replacing the value of x(k) back into the right-hand side of the last inequality, we find that

2µ → 2Nx
Nx

= 2

µ → N exp

{
→ kh2

c
2

}

N exp

{
→ kh2

c
2

}

=

2µ

N
exp

{
kh2

c
2

}
→ 2.

34 Solving n-spends with FPCS

Comparing this result with µ and solving for k yields the following condition

k >

2

(
log N + log

µ + 2
2µ

)

h2
c

which is a weaker condition than (4.13) for δ > 1/78 (and stronger otherwise).

Finally, as a corollary, we have the more general version of Theorem 4.0.1.

Corollary 4.2.3. Under condition (4.11), given an arbitrary distribution of the initial opinions of the
honest nodes it holds that

P[C ↖ {R < 2ω}] ↔
[
1 → (1 → Wc(n,k))ω→1

][
1 → exp

{
→ k

2
(β → q)2

}](1→q)Nω

,

as long as either

k >

2

(
log N + log

µ + 2
2µ

)

h2
c

and δ < 1/78; or

k >

2

(
log N + log

1 → δ

µ → δ

)

h2
c

and 1/78 < δ < µ.

4.2.1 A simple model for the discovering process

The previous corollary relies on the condition (4.11) that a sufficiently large portion of the
conflict set is known by all nodes, and one can ask whether that is reasonable. To answer that,
in this subsection, we explore a simple model for the arrival and discovery process for new
transactions that can be used as a proxy for a real-life scenario. This model is independent of
the rest of this work and the hypothesis considered here should not be carried any further.

We consider that at each round t a new set of transactions Nt is issued. For each transac-
tion u ↓ Nt and each node n ↓N independently, suppose that the probability of n receiving
u is given by r, or equivalently, following the notation introduced in the definition of our
protocol,

P[u ↓ N(n)
t] = r.

Furthermore, we also consider that the network is sufficiently efficient so that a node can
not be unaware of a transaction for two consecutive rounds. Explicitly, we consider that at
round t, for any n ↓N it holds that

Tt→1 ⇐ A(n)
t . (4.16)

4.2 What if nodes’ visions are slightly different? 35

In addition to receiving a new transaction u from the network, an honest node can include
u in its vision if it queries a second node that is already aware of the transaction. Let K(n)

t be
the set of queried nodes by n at round t, then it follows that for any u ↓ Nt

P[u /↓ A(n)
t] = P[u /↓ N(n)

t]P[u /↓ N(j)
t for all j ↓ K(n)

t] = (1 → r)k+1, (4.17)

or in other words, the probability of a node n finishing round t without knowing transaction
u is equal to the probability of n not receiving u through the network times the probability
of n querying only nodes that also have not received u.

Now, considering (4.16), we can rewrite the left hand side of condition (4.11) in the
following way

∣∣∣∣∣
⋂

n↓N
A(n)

t

∣∣∣∣∣
|Tt|

=

∣∣∣∣∣
⋂

n↓N

[
(A(n)

t \ Tt→1) ↘ Tt→1

]∣∣∣∣∣
|Tt|

=

∣∣∣∣∣

(
⋂

n↓N
A(n)

t \ Tt→1

)
↘ Tt→1

∣∣∣∣∣
|Tt|

=

∣∣∣∣∣
⋂

n↓N
A(n)

t \ Tt→1

∣∣∣∣∣+ |Tt→1|

|Tt|
=

∣∣∣∣∣
⋂

n↓N
A(n)

t \ Tt→1

∣∣∣∣∣+ |Tt→1|

|Nt ↘ Tt→1|

=

∣∣∣∣∣
⋂

n↓N
A(n)

t \ Tt→1

∣∣∣∣∣+ |Tt→1|

|Nt|+ |Tt→1|

(4.18)

Again considering (4.16) it is natural to expect that condition (4.11) will be satisfied if
|Nt| is sufficiently small when compared to |Tt→1|. In fact if

|Nt| <
δ

1 → δ
|Tt→1|

then
∣∣∣∣∣
⋂

n↓N
A(n)

t

∣∣∣∣∣
|Tt|

=

∣∣∣∣∣
⋂

n↓N
A(n)

t \ Tt→1

∣∣∣∣∣+ |Tt→1|

|Nt|+ |Tt→1|
↔

∣∣∣∣∣
⋂

n↓N
A(n)

t \ Tt→1

∣∣∣∣∣+ |Tt→1|

δ(1 → δ)→1 |Tt→1|+ |Tt→1|
↔ 1 → δ.

(4.19)

While this is a good first approach, with equation (4.17) we can easily estimate the
probability of the condition (4.11) given a set of new transactions of arbitrary size. By
looking at equation (4.18) it is clear that in order to (4.11) to hold, it is sufficient that

∣∣∣∣∣
⋂

n↓N
A(n)

t \ Tt→1

∣∣∣∣∣
|Nt|

↔ 1 → δ,

or, in other words, that at most δ|Nt| new transactions are not discovered by at least one
node at round t. Now if we abbreviate the event H(n)

t = {u /↓ A(n)
t }, then the probability that

36 Solving n-spends with FPCS

at least one node does not know u at the end of round t can be estimated using equation
(4.17) and the union bound

P[

n↓N
H(n)

t] ↗ ∑
n↓N

P[H(n)
t] = (1 → q)|N |(1 → r)k+1

4.3 Numerical analysis

In this section, we delve into three of the most critical aspects of our protocol, exploring their
influence on performance and resilience. First, we thoroughly examine how varying the the
proportion of malicious nodes, q, affects the overall performance of the system. Next, we
shift our focus to the parameter k, investigating how incrementally increasing k can lead
to significant improvements in outcomes, even in challenging or critical scenarios where
performance is most at risk. Finally we explore the role of β—and consequently the random
variable Xt—in the protocol.

To provide a comprehensive understanding, we conducted a series of simulations for
each scenario, totaling 10000 simulations per configuration. This robust dataset allows us to
explore the effects of the parameters in depth and with statistical reliability. The parameter
settings used in these simulations are detailed in the table below, which outlines the key
elements of our experimental setup, unless stated otherwise. Moreover, we impose a hard-
cap on the number of rounds before consensus, i.e., if nodes are still undecided after 100
rounds, the simulation is considered as a termination failure.

Parameter Value
N Number of nodes 1000
T Size of the conflict set 1000
q Proportion of malicious nodes 0.25
β Support of the random variable Xt 0.301
ω Number of subsequent rounds before consensus 5

p(vt)
t Largest proportion of likes between hones nodes 0.45

In these simulations, malicious nodes are modeled as though they are under the control of
a single, all-knowing adversary-—an omniscient entity that possesses complete awareness of
the system’s state at every round. This adversary can strategically manipulate the malicious
nodes with full knowledge of the protocol’s dynamics, simulating a worst-case scenario
where the system is facing a highly intelligent and coordinated opponent.

Moreover, the strategy adopted is similar to the strategy introduced by Capossele, Mueller
and Penzkofer in [16]. Explicitly, the adversary waits until all honest nodes have exchanged
opinions with one another. Then, the adversary attempts to split the honest nodes into
two equally sized groups with opposing views, aiming to maximize the variance of their
ε-values.

To achieve this, the adversary must have continuous access to the ε-values of the honest
nodes. It then responds to undecided nodes in a way that increases the variance while
keeping the median of the ε-values near 0.5.

4.3 Numerical analysis 37

Figure 4.5 Effects of q on the performance of the protocol. Logarithmic scale.

This detailed analysis will shed light on how the interplay between q and k contributes
to the robustness and efficiency of the protocol, offering valuable insights for optimizing
performance under a wide range of conditions.

4.3.1 Analysing the effects of the proportion of malicious nodes

The histograms in Fig. 4.5 show different distributions for the number of rounds taken by the
protocol as the parameter q varies from 0.10 to 0.30 (incremented by 0.05). For lower values
of q (e.g., q = 0.10), the distribution is more concentrated around fewer rounds, with a sharp
peak early on and rapid decay. As q increases, the distribution spreads out, becoming wider,
with a more even spread over a greater number of rounds. For higher q values like 0.25 and
0.30, we see a significant number of termination failures (indicated by the bars on the far
right). Nevertheless, we highlight the fact that every simulation that did not finalized in a
termination failure was successful in achieving consensus.

As both our theoretical analysis and intuitive reasoning suggest, the efficiency of the
protocol decreases as the value of q increases. This means that as the proportion of malicious
nodes rises, the protocol encounters greater difficulties in reaching a consensus within a
reasonable timeframe.

Although the malicious entity was unable to completely disrupt the consensus pro-
cess—meaning it could not successfully cause the honest nodes to reach final, differing
opinions—it was still able to significantly prolong the time required for consensus. Specifi-
cally, the adversary’s actions led to a substantial delay in the number of rounds needed for
the honest nodes to terminate the process.

4.3.2 Circumventing failures by increasing the number of queries

To investigate the effects of the number of queries, we simulate the critical scenario repre-
sented on the last histogram of Fig. 4.5, but for different values of k.

The histogram set bellow illustrates the distribution of the number of rounds for k ranging
from 50 to 200. In each of the subplots, there is a noticeable spike at exactly 100 rounds,

38 Solving n-spends with FPCS

Figure 4.6 Effects of k on the performance of the protocol. Logarithmic scale.

which we identified as a termination failure. This indicates that, for certain configurations,
some nodes are unable to reach consensus, even after 100 rounds. The height of these spikes
diminishes as k increases, which suggests that a larger k value reduces the likelihood of
nodes experiencing termination failure.

For k = 50 , a significant number of nodes fail to finalize within 100 rounds, as evidenced
by the large spike at the 100-round mark. This suggests that smaller k values are more prone
to failure. As k increases to 75, 100, 150, and finally 200, the spike at 100 rounds becomes less
prominent. In fact, at k = 200, the number of nodes that fail to terminate within 100 rounds
is considerably lower compared to k = 50. This trend suggests that increasing k contributes
to the stability of the protocol by reducing termination failure and enabling more nodes to
reach consensus in fewer rounds.

4.3.3 The importance of randomness

The proposed protocol is designed to depend on the inherent randomness of a global coin,
represented by the random variable Xt, in two of its key components. This randomness
plays a crucial role in ensuring the system’s robustness and its ability to reach consensus
among honest nodes, even in the presence of adversarial influence.

To demonstrate the significance of this randomness, in the following subsection, we
explore what happens when it is removed from specific parts of the protocol. By doing so,
we can observe how the protocol behaves in edge cases—scenarios where consensus is more
difficult to achieve or completely fails. These edge cases serve to illustrate how essential the
inclusion of randomness is to the protocol’s ability to prevent consensus from being broken.
This analysis will highlight the vulnerabilities that emerge when the protocol is deprived of
this crucial random component.

FPCS without a random threshold

To better understand the impact of the random threshold on the protocol’s performance, we
conducted a series of simulations, varying the parameters β and q, focusing on a straight-
forward case of double-spending (i.e., a conflict set with only two transactions). As β

4.3 Numerical analysis 39

Figure 4.7 Finalization and agreement rate for different values of q and β.

approaches 1/2, the support of the random variable Xt narrows, eventually reaching a point
where it becomes fixed at 1/2. In this situation, nodes will adopt the opinion of the simple
majority of their queries, occasionally relying on the elim and compl mechanisms to solidify
their decisions.

In Fig. 4.7, the left panel illustrates the finalization rate, showing how many simulations
reached consensus before round 100. The right panel depicts the agreement rate, defined as
the ratio between the largest group of nodes agreeing on a particular transaction and the
total number of honest nodes. Our results indicate an optimal value for β around 1/3, which
aligns with the theoretical value derived in the previous section.

We also note that these findings closely resemble those reported by Capossele, Mueller,
and Penzkofer. This similarity is expected, as resolving a double-spending scenario can be
viewed as a binary decision problem. In this case, our protocol (FPCS) behaves similarly to
the FPC protocol, further validating the theoretical insights drawn from both approaches.

FPCS without random ordering

Now we remove the effect of the random variable Xt from the order of transactions. Explicitly,
in step (vi) of the protocol, instead of considering hash(Idx, Xt), in its calculations, the node
should consider simply hash(Idx).

In this case, the goal of a malicious node is to use the fact that the order is known a priori
to force honest nodes to finalize with different opinions. For that, consider the case where the
conflict set is fixed (hence we omit the time dependency) and constituted only by transactions
u ↓ T such that p(u)t = 1/[2(1 → q)] and v ↓ T such that p(v)t = 1 → p(u)t = (1 → 2q)/[2(1 → q)].

The strategy the malicious nodes will adopt is to reply with the same opinion to a query
from every node, i.e. when queried by a node n that likes u or v at round t, the malicious
will reply that it likes u or v respectively. The reason why this is a viable strategy will be
explained in the next chapter.

Fig. 4.8 shows the results of 10000 simulations of this scenario for different values of
q. On the left, we see the percentage of these simulations that resulted in an agreement

40 Solving n-spends with FPCS

Figure 4.8 Agreement failures (in percentage) and agreement rate of a double spend T =
{u,v} where malicious nodes reply with the same opinion to a query from every node.

failure – i.e. iterations that finalized without all nodes in consensus – and on the right, the
boxplots for the agreement rates – i.e. the proportional size of the largest group that finalized
in consensus with respect to the total number of honest nodes – of these failures. We see
that, even though the attacker achieved an agreement failure in only 4% of the simulations
in the worst scenario (when q = 0.25), these successful attacks had the first quartile of the
agreement rate just above 0.7 and with extreme cases touching 0.5. In other words, it is
not often that this strategy results in an agreement failure, but when it does, it causes a
considerable split in the opinion of honest nodes.

Chapter 5

Generalization for arbitrary graphs

While complete graphs represent a typical form of attack, they do not constitute the most
sophisticated strategy. In more intricate situations, malicious nodes extend their influence
beyond mere voting, manipulating T itself—for instance, by introducing new conflicting
transactions—to advance their objectives. Indeed, this section commences with an explo-
ration of an edge case in which the threshold q < β < 1/3 proves insufficient to guarantee
consensus.

In this chapter, we aim to generalize our results for arbitrary conflict graphs, which
introduces certain constraints. We now assume that the conflict set is not only known by all
nodes but also fixed, meaning no new transactions are issued. Consequently, we omit the
subscript and refer to the conflict set simply as T.

5.1 Star Graphs

A Sj star graph is a complete bipartite graph constituted by one internal vertex connected to a
set of j external vertices, called leaves. Of course, the two only possible maximal independent
sets in this graph are the set of leaves and the singleton of the interior vertex.

Assume that T = Sj for some integer j ↔ 2 and designate u as the interior vertex. Consider
also that k = N or, in other words, that nodes will query every other node every round.
Assume malicious nodes will adopt the following strategy: when queried by a node that likes
u (resp. N(u)), the malicious will reply it also likes u (resp. N(u)). Moreover, consider that
p(u)t = 1/[2(1 → q)] and define as p̂(x)

t and p̃(x)
t the overall proportion of likes (i.e. including

the opinions of malicious nodes) that a transaction x ↓ T has at round t from the perspective
of a node that likes u and N(u) respectively.

Now consider the case 1/6 < q < β < 1/3 where malicious nodes control a significant,
though not critical, proportion of nodes. Then it can easily be verified that

p̃(N(u))
t = p(N(u))

t (1 → q) < β;

p̃(u)t = p(u)t (1 → q) + q > 1 → β;

p̂N(u)
t = p(N(u))

t (1 → q) + q = p(u)t (1 → q) = p̂(u)t = 1/2.

41

42 Generalization for arbitrary graphs

From the first two relations, we observe that regardless of the outcome of Xt, nodes
that liked u at the beginning of the round will see no reason to change their mind since
p̃(u)t > 1 → β > Xt > β > p̃(N(u))

t . On the other hand, nodes that originally liked N(u) will
encounter a tie p̂(u)t = p̂(N(u))

t = 1/2 and then for every x ↓ T either assign θ↑(x) = 1 if
Xt < 1/2, or assign θ↑(x) = 0 if Xt > 1/2 (see Fig. 5.1). In both cases, step 7) of our protocol
will pick between {u} and N(u), the set that contains the transaction with the smallest
hash(Idx, Xt). Due to the uniformity property of the hash function, the smallest hash will
be in N(u) with probability j/(j + 1). This implies that malicious nodes can, with high
probability, bypass the random component of the protocol and compel nodes that liked N(u)
initially to persist in liking N(u). If this situation persists for ω rounds, opinions become
final, and consensus is broken.

0 11/2 1 → ββ

p(u)tp(v)t

0 11 → ββ

p̃(u)tp̃(v)t

0 11 → ββ p̂(u)t

p̂(v)t

Figure 5.1 The interval of control (in blue) of a transaction u ↓ Tt with p(u)t = 1/(2(1 → q))
and of a transaction v ↓ N(u). Notice that the sum of the intervals covers the whole support
of Xt.

This attack is only possible because the union of the intervals of control I (u)
q,t ↘ I (N(u))

q,t
covers the whole support of Xt. An intuitive way to solve this is to decrease β (and conse-
quently enlarge the support of Xt), but by doing that, since q must be smaller than β, we are
also getting less resistant to byzantine actors.

To find a middle ground, we decrease β by a margin just enough to guarantee that the
support of Xt is larger than 2q (two times the length of an interval of control). In other words,
we want to maximize β subject to the constraints 2q < 1 → 2β and q < β. The result is the
security threshold q < β < 1/4 and it is a standing assumption on all the following results.

A fundamental property of the system under this security threshold is that, under certain
outcomes of Xt, nodes are not only likely to approve any transaction u ↓ T that has a
sufficiently large proportion of likes but also, at the same time, disapprove any transaction
in N(u).

To find exactly how large this proportion of likes has to be, notice that if u ↓ T has
p(u)t = (1 → β → q)/(1 → q) then the upper boundary of I (u)

q,t is 1 → β (which is equal to the

upper boundary of the support of Xt); on the other hand, if p(u)t = 1/[2(1 → q)], then the

5.2 General case 43

lower boundary of I (u)
q,t is 1/2. We define p⇓ as the middle point between these two values:

p⇓ :=
1
2

[
1 → β → q

1 → q
+

1
2(1 → q)

]
=

1
2(1 → q)

+
1 → 2β → 2q

4(1 → q)
.

This way if p(u)t < p⇓ or p(u)t ↔ p⇓ there will be a gap of at least size h := (1/2 → β → q)/2
between I (u)

q,t and 1 → β and 1/2, respectively. For clarity in presenting the results, it is
advantageous to define h⇓ := min{h, β → q}.

It is convenient to use p⇓ and 1 → µ to partition the set of transactions. Thus, we denote

U→
t := {u ↓ T such that p(u)t < p⇓}; (5.1)

Ut := {u ↓ T such that p⇓ ↔ p(u)t < 1 → µ}; (5.2)

U+
t := {u ↓ T such that p(u)t ↔ 1 → µ}. (5.3)

Note that, since p⇓ > 1/2 > µ, there are no conflicts between transactions in Ut and U+
t ,

otherwise a proportion at least p⇓ → µ > 0 would have to like both transactions in a conflict.
Moreover, the set U+

t possesses two additional properties delineated in the following Lemma.

Lemma 5.1.1. The set U+
t is independent. Furthermore, under PC t, it is a MIS.

Proof. For independence, suppose the contrary, namely, that there exist ui,uj ↓ U+
t such that

ui ≃ uj. Consequently, a proportion of at least 1 → µ → 1/2 > 0 nodes must like both ui and
uj, which cannot be true.

Now assume PC t is true and that U+
t is not maximal, i.e., there is v ↓ T \ U+

t such that
v ⊋ u for every u ↓ U+

t . But then p(v)t < 1 → µ since it is not in U+
t . There is also no w ↓ N(u)

such that p(w)
t > 1 → µ since the only transactions that have a proportion larger than 1 → µ

are in U+
t and by hypothesis we assumed they were not in conflict with v. In this case, PC t

must be false.

5.2 General case

Our main result relies on two key factors: firstly, in Lemma 5.2.1 we observe that pre-
consensus on a set of transactions is maintained (with high probability) from one round to
the next; and secondly, Lemmas 5.2.3, 5.2.4 and 5.2.6 show that on each round and with
positive probability, nodes will converge to a pre-consensus about a significant (with respect
to size) subset of the transactions they remain undecided about.

Lemma 5.2.1. Suppose that PC t(U) is true for a set U ⇐ T, then for sufficiently large k and N,
defining

ψ1 := µ → T exp
{
→ k

2
(β → q)2

}

it holds that
P[PC t+1(U)] ↔ 1 → exp{→2N(1 → q)ψ2

1}.

44 Generalization for arbitrary graphs

Proof. First, notice that for an honest node n ↓ N and a transaction u ↓ U, there is a gap
of size (β + q)/2 between I (u)

q,t and the support of Xt. Now consider the event H(1)
1 :=

{ε(n,u)
t k→1 > 1 → β} (we use the superscript to denote Lemma 1, 2, etc.) that a proportion

larger than 1 → β of the queried nodes like u. Hence

P[H(1)
1 |PC t(U)] ↔ P[k→1Sk ↔ 1 → β],

where Sk ⇑ B(k,1 → (β + q)/2). This later probability can be estimated using Hoeffding
inequality and we find

P[H(1)
1 |PC t(U)] ↔ 1 → exp

{
→ k

2
(β → q)2

}
.

By symmetry, for v ↓ N(U), considering the event H(1)
2 := {ε(n,v)

t k→1 < β}, it also holds that

P[H(1)
2 |PC t(U)] ↔ 1 → exp

{
→ k

2
(β → q)2

}
.

Then, if we denote by H(1)
3 the event where an honest node assigns θ↑(u) = 1 to all transac-

tions u ↓ U and θ↑(v) = 0 to all transactions v ↓ N(U), it follows that

P[H(1)
3 |PC t(U)] ↔ 1 → T exp

{
→ k

2
(β → q)2

}
. (5.4)

Finally, the probability of PC t+1(U) can be estimated by the probability of a random vari-
able SN(1→q) ⇑ B(N(1 → q),1 → T exp(→(k/2)(β → q)2)) being larger than N(1 → q)(1 → µ).
Considering that N is sufficiently large so that the probability of success of this binomial is
larger than 1 → µ, using again Hoeffding inequality, we find that

P[PC t+1(U)] > 1 → exp{→2N(1 → q)ψ2
1}.

It is worth noticing that neither the previous proof nor the estimate itself depends on
the size of U; instead, we relied on the size of the entire conflict set in the estimate (5.4).
Consequently, this result remains valid even when U = T and, in this case, we also get the
following corollary.

Corollary 5.2.2. Suppose PC t is true, then for a sufficiently large k and N, it holds that

P[PC⇓
t+1] ↔ 1 → exp{→2N(1 → q)ψ2

1}

Proof. Taking U = T in Lemma 5.2.1, H(2)
3 becomes the event where an honest node assigns

1 to the auxiliary opinions of all transactions in U+
t and 0 to the rest. As seen in Lemma

5.1.1, under PC t, U+
t is a MIS, hence algorithms elim and compl will have no effect on the

5.2 General case 45

auxiliar opinions, and the liked MIS will be U+
t itself. The remaining of the proof follows

analogously to Lemma 5.2.1.

Now, to show that on each round nodes will come to an agreement about a significant
portion of the transactions they are still undecided about, we will distinguish between three
different cases for the size of Ut ↘ N(Ut). For simplicity of notation, given a set U ⇐ T, we
define its closure as Ū := U ↘ N(U).

The first and simplest case is when |Ūt| = 0 or, in other words, when there are no clear
favorite between the transactions. In this scenario, given a favorable outcome of Xt, nodes
will assign 0 to the auxiliary opinion of all transactions with high probability, and then, using
the algorithm compl, choose the same MIS to like.

Lemma 5.2.3. If |Ūt| = 0, then for sufficiently large k and N and defining

ψ2 := µ → T exp

{
→ kh2

⇓
2

}

it holds that
P[PC⇓

t+1] ↔
h

2(1 → 2β)
(1 → exp{→2N(1 → q)ψ2

2}).

Proof. Let H(3)
1 be the event where Xt ↓ [1 → β → h/2,1 → β]. Then, for any u ↓ U→

t

P[θ↑(u) = 1|H(3)
1] ↗ P

[
Sk ↔

1 → β → h

2

k

]

↗ exp

{
→ kh2

2

}
,

where Sk ⇑ B(k, p⇓(1 → q) + q). On the other hand, for every v ↓ U+
t it holds that

P[θ↑(v) = 0|H(3)
1] ↗ P

[
Sk ↗

(
1 → β

)
k
]

(5.5)

↗ exp

{
→ k(β → q)2

2

}
,

where in this case Sk ⇑ B(k, (1 → µ)(1 → q)). Now let W be the output of compl(U+
t ,T, Xt)

and define H(3)
2 as the event where θ↑(u) = 0 for all u ↓ U→

t and θ↑(v) = 1 for all v ↓ U+
t .

Using Hoeffding again, we find

P[θ(n,W)
t+1 = 1|H(3)

1] ↔ P[H(3)
2 |H(3)

1]

↔ 1 → T exp

{
→ kh2

⇓
2

}
.

46 Generalization for arbitrary graphs

Then, for sufficiently large k and conditioning on H(3)
1 , it follows that

P[PC⇓
t+1] ↔ P[H(3)

1]P[p(W)
t+1 > 1 → µ | H(3)

1]

↔ h
2(1 → β)

P[SN(1→q) > N(1 → µ)(1 → q)]

↔ h
2(1 → β)

(1 → exp{→2N(1 → q)ψ2
2}),

where SN(1→q) ⇑ B(N(1 → q),1 → T exp{→kh2
⇓/2}).

The second case, is when |Ūt| contains a significantly large portion of transactions.
Specifically, by significantly large, we mean it is at least the size of the square root of the
number of transactions nodes are still undecided about. It is convenient to abbreviate

γt :=
⌈√

|T \ Ū+
t |

⌉
.

Lemma 5.2.4. If |Ūt| > γt, then for sufficiently large k

P[PC t+1(Ūt)] ↔
h

2(1 → 2β)
(1 → exp{→2N(1 → q)ψ2

2}).

Proof. Let H(4) be the event Xt ↓ [(1 → h)/2, (1 + h)/2]. Then for a transaction u ↓ Ut

P[θ↑(u) = 0|H(4)] ↗ P[Sk ↗ k(1 + h)/2] ↗ exp

{
→ kh2

2

}
,

where Sk ⇑ B(k, p⇓(1 → q)). On the other hand, for v ↓ N(Ut)

P[θ↑(v) = 1|H(4)] ↗ P[Sk ↔ k(1 → h)/2] ↗ exp

{
→ kh2

2

}
,

where in this case Sk ⇑ B(k, (1 → p⇓)(1 → q) + q). Moreover, the estimate (5.5) is still valid
for any transaction in U+

t . Then, for an honest node n

P[θ(n,Ut)
t+1 = 1,θ(n,N(Ut))

t+1 = 0|H(4)] ↔ 1 → T exp{→kh2
⇓/2},

and the remaining of the proof follows analogously to the previous Lemma.

The result for the final case, when 0 < |Ūt| < γt, will depend not only on a favorable
outcome of Xt but also on a favorable ordering (with respect to the order induced by the
hash function and Xt) of certain transactions, hence we will rely on the diffusion property
again. We need an additional Lemma to find a bound for the probability of this favorable
order. The proof can be found in Appendix A.2.1.

Lemma 5.2.5. Let Y1,Y2, . . . ,YM→m and X1, X2, . . . , Xm, with m < M, be samples of i.i.d. random
variables following an uniform distribution in the interval [0,1]. Then for a integer 1 ↗ c ↗ M → m,

5.2 General case 47

it holds that
P[Y(c) < X(1)] >

M → m → c + 1

M → m + 1

m
,

where Y(c) and X(1) correspond respectively to the c-th and 1-st order statistic of the samples.

Lemma 5.2.6. If 0 < |Ūt| < γt, then for sufficient large k and some random independent set W ↓ T

such that |W̄| ↔ γt, it holds that

P[PC t+1(W̄)] ↔ h
324(1 → 2β)

(1 → exp{→2N(1 → q)ψ2
2}).

Proof. Let H(7)
1 be the event Xt ↓ [1 → β → h/2,1 → β]. For any v ↓ U→

t we have that

P[θ↑(v) = 1|H(7)
1] ↗ P[Sk ↔ (1 → β → h/2)k] ↗ exp

{
→ kh2

2

}
,

where Sk ⇑ B(k, p⇓(1 → q) + q). It follows that

P[θ↑(v) = 0 for all v ↓ U→
t |H(7)

1] ↔ 1 → T exp

{
→ kh2

2

}
.

Now define V as the set of the first1 γt transactions in T \ {Ū+
t ↘ Ūt}. Consider the event

H(6)
2 where V comes before the first transaction in Ūt. From Lemma 5.2.5, we find that

P[H(7)
2] >

(
Mt → |Ūt|→ γt + 1

Mt → |Ūt|+ 1

)|Ūt|

(5.6)

↔

Mt → 2γt + 1
Mt → γt + 1

γt

, (5.7)

where Mt := |T \ Ū+
t |. But since γt =

⌈′
Mt

⌉
, then (γt → 1)2 < M ↗ γ2

t and it follows from
(5.6) that

P[H(7)
2] >

(
(γt → 1)2 → 2γt + 1
(γt → 1)2 → γt + 1

)γt

.

The function above, for all γt ↔ 4 is always larger or equal than
(

1
3

)4
= 1

81 . Now let’s study
the cases where the bound above is not applicable.

• When γt = 1 in this case, Ūt = ⫅̸.

• When γt = 2 in this case, |Ūt| ↗ 1 and Mt ↓ [3,4]. From Lemma 5.2.5, we find that, in
this case, P[H(7)

2] > 1
3 .

1According to the order induced by Xt and the hash function.

48 Generalization for arbitrary graphs

• When γt = 3 in this case, |Ūt| ↗ 2 and Mt ↓ [5,9]. From Lemma 5.2.5, we find that, in

this case, P[H(7)
2] >

(
1
4

)2
.

Combining those cases, we find that, in general, P[H(7)
2] >

(
1
3

)4
= 1

81 . Define W as the

output of compl(∅,V, Xt). Notice that no transaction in (Ut ↘ N(Ut))C is in conflict with
Ut. Moreover, for an honest node n, if θ↑(v) = 0 for all v ↓ N(Ut), then W must be in the
MIS liked by n, independently of the node’s auxiliary opinion about transactions in Ut. This
means that

P[θ(n,W)
t+1 = 1|H(7)

1 , H(7)
2]

= P[θ↑(v) = 0 for all v ↓ UC
t |H

(7)
1 , H(7)

2]

↔ 1 → T exp

{
→ kh2

2

}

Then, for a sufficiently large k, using the same reasoning as in previous Lemmas and
conditioning on H(7)

1 and H(7)
2

P[PC t+1(W)] ↔ P[H(7)
1]P[H(7)

2](1 → exp→2N(1 → q)ψ2
2)

↔ h
324(1 → 2β)

(1 → exp{→2N(1 → q)ψ2
2}).

From Lemmas 5.2.3, 5.2.4 and 5.2.6 we conclude that nodes will agree on a significant
portion of transactions they are still undecided about with probability bounded by the
minimum of the estimates given by the Lemmas. Or explicitly, at least with probability
W(k, N), defined as

W(k, N) :=
h

324(1 → 2β)
(1 → exp{→2N(1 → q)ψ2

2}).

Given W(k, N) and a set of transactions, in the next Lemma, we model this dynamics
of agreeing on a significant portion of transactions per round to find an estimate for the
probability of getting to pre-consensus before a specific round. The proof can be found in
Appendix A.2.2.

Lemma 5.2.7. Given a set V = {v1, . . . ,vT} and a function l : V ∞ N ∈ {0,1} define Vi
t := {v ↓

V : l(v, t) = i} for i = 0,1. Suppose l satisfies:

1. Let Bt be the event where |V1
t |→ |V1

t→1| ↔
√
|V0

t→1|. For any t > 0, P [Bt] ↔ W.

2. The events Bt are independent for all t ↓ [0,∞).

Let S be the random variable representing the first time such that V0
S = 0 and call t0 = 2

′
T. Then

for t ↔ 0

P[S ↗ t0 + t] ↔ 1 →
(

1 → Wt0

t0

)t

.

5.2 General case 49

Defining C as the event where honest nodes achieve consensus, our main result states
that with high probability (depending on k), for any distribution of initial opinions, a pre-
consensus state is achieved and maintained for enough consecutive rounds so that event C
happens in the round R ↗ 2ω.

Theorem 5.2.8. For sufficiently large k, given an arbitrary distribution of the initial opinions of the
honest nodes it holds that

P[C ↖ {R < 2ω}] ↔
(

1 → exp{→2N(1 → q)ψ2
1}
)

(
1 → (1 → W)t0+t→1

)

[
1 → T exp

{
→ k

2
(β → q)2

}](1→q)Nω

Proof. The proof is very similar to the complete case. For the sake of completeness, we repeat
the arguments.

First, we define the random variables

Ψ := min{r ↔ 1 : PC⇓ is true},

that is the first round in which the system is in the hard pre-consensus state, and

τ̂n := min{r ↔ Ψ + ω : θ(n,U)
r = · · · = θ(n,U)

r→ω+1 = 1},

that is the first time in which a maximal independent set U is liked by node n for ω subsequent
rounds after round Ψ. We then define the events

D(1)
t = {Ψ = t}, D(1)

[t,s] = {Ψ ↓ [t, s]},

D(2) =

τ̂n = Ψ + ω; ↙n = 1, . . . , (1 → q)N

.

Notice that if t < ω, then

C ↖ {R ↗ t + ω} ∝ D(1)
[1,t] ↖ D(2) ∝ D(1)

[2,t] ↖ D(2).

This way

P[C ↖ {R < 2ω}] ↔ P
[

D(1)
[2,ω→1] ↖ D(2)

]
= P

ω→1

i=2
D(1)

i

 ↖ D(2)

 ,

50 Generalization for arbitrary graphs

since the events D(1)
i are disjoint and the system is time-invariant, it follows that

P[C ↖ {R < 2ω}] ↔ P

ω→1

i=2
D(1)

i ↖ D(2)

 =
ω→1

∑
i=2

P
[

D(1)
i ↖ D(2)

]

=
ω→1

∑
i=2

P
[

D(2)|D(1)
i

]
P
[

D(1)
i

]
=

ω→1

∑
i=2

P
[

D(2)
]

P
[

D(1)
i

]

= P
[

D(2)
]

P
[

D(1)
[1,ω→1]

]

To calculate P[D(2)] we write

P[D(2)] = P
[

τ̂n = Ψ + ω; ↙n = 1, . . . , (1 → q)N
]

= P

[{
θ(n,U)

Ψ+1 = · · · = θ(n,U)
Ψ+ω = 1; ↙n = 1, . . . , (1 → q)N

}]

= P

ω⋂

i=1

(1→q)N⋂

n=1

{
θ(n,U)

Ψ+i = 1
}

 ,

To simplify the notation, define D(3)
i =

⋂(1→q)N
n=1

{
θ(n,U)

Ψ+i = 1
}

, then

P[D(2)] = P

ω⋂

i=1
D(3)

i

 = P
[

D(3)
ω |D(3)

1 . . . D(3)
ω→1

]
. . .P

[
D(3)

2 |D(3)
1

]
P
[

D(3)
1

]
. (5.8)

But notice that if D(3)
i is true, then PC⇓

i+1 is also true, and using a similar bound to the one
used in Lemma 5.2.1 we find that

P[D(2)] ↔
[

1 → T exp
{
→ k

2
(β → q)2

}](1→q)Nω

.

Now, define the random variable

Ψ̂ := min{r ↔ 1 : PC is true},

that is the first round in which the system is in the pre-consensus state, and the event

D̂(1)
t = {Ψ̂ = t}, D̂(1)

[t,s] = {Ψ̂ ↓ [t, s]},

Then

P
[

D(1)
[2,ω→1]

]
=

ω

∑
i=2

P[Ψ = i] ↔
ω

∑
i=2

P[{Ψ = Ψ̂ + 1} ↖ {Ψ̂ = i → 1}]

=
ω

∑
i=2

P[Ψ = Ψ̂ + 1|Ψ̂ = i → 1]P[Ψ̂ = i → 1].

5.2 General case 51

Again, since the system is time-invariant

P
[

D(1)
[2,ω→1]

]
↔

ω

∑
i=2

P[Ψ = Ψ̂ + 1]P[Ψ̂ = i → 1] = P[Ψ = Ψ̂ + 1]
ω

∑
i=2

P[Ψ̂ = i → 1]

= P[Ψ = Ψ̂ + 1]D̂(1)
[1,ω→1].

By Corollary 5.2.2 and Lemma 5.2.7,

P
[

D(1)
[2,ω→1]

]
↔

(
1 → exp{→2N(1 → q)ψ2

1}
)

1 →
(

1 → Wt0

t0

)t

 .

We finally conclude that

P[C ↖ {R < 2ω}] ↔
(

1 → exp{→2N(1 → q)ψ2
1}
)

1 →
(

1 → Wt0

t0

)t

[
1 → T exp

{
→ k

2
(β → q)2

}](1→q)Nω

Chapter 6

Conclusion

This paper presents the Fast Probabilistic Consensus on a Set (FPCS), a new probabilistic
consensus protocol designed to address the challenges of distributed consensus in failure-
prone systems, particularly in the context of UTXO-based Distributed Ledger Technologies.
FPCS stands out for its ability to achieve consensus on a Maximum Independent Set within
a graph of conflicting transactions, a critical issue in UTXO-based DLTs where transactions
sharing the same output are considered to be in conflict.

Building on fundamental work in the field of distributed consensus, such as Ben’Or’s
and, more recently, FPC-BI, FPCS leverages the power of probabilistic methods to overcome
the limitations of deterministic approaches, particularly in asynchronous systems where
the impossibility of consensus with even a single process failure has been demonstrated.
The use of randomness, through a “global coin” and a cryptographic hash function, enables
FPCS to reach consensus with high probability, even in the presence of Byzantine nodes that
may behave arbitrarily or maliciously.

The effectiveness of FPCS is demonstrated through rigorous theoretical analysis and
numerical simulations, initially focusing on the n-spend problem, a common scenario in
UTXO-based DLTs where all transactions in a conflict set spend at least one common UTXO.
The paper establishes a security threshold (q< β< 1/3) under which FPCS ensures consensus
with high probability, provided that the number of queries k is sufficiently large. Furthermore,
the paper explores the impact of the number of queries k and the proportion of malicious
nodes q on the protocol’s performance, highlighting the importance of k in mitigating the
effect of increasing q on the protocol’s efficiency.

Beyond complete graphs, the paper generalizes the results to arbitrary conflict graphs,
capturing more complex attack scenarios where the graph’s structure itself can be manip-
ulated by malicious nodes. An adjusted security threshold (q < β < 1/4) is introduced to
guarantee consensus in such scenarios, and the paper proves that, with high probability,
FPCS will reach consensus on a single MIS in an arbitrary conflict graph, provided that k is
sufficiently large.

In summary, FPCS offers a promising solution to the distributed consensus problem,
particularly in scenarios where robustness against Byzantine nodes and the ability to handle
complex sets of conflicting transactions are crucial. Its probabilistic nature allows it to cir-

53

54 Conclusion

cumvent the impossibility results inherent to deterministic approaches, and its effectiveness
is validated through theoretical analysis and simulations.

Bibliography

[1] Abraham, I., Gueta, G., Malkhi, D., Alvisi, L., Kotla, R., and Martin, J.-P. (2017). Revisiting
fast practical byzantine fault tolerance.

[2] Aguilera, M. and Toueg, S. (2012). Correctness proof of ben-or’s randomized consensus
algorithm. Distributed Computing, 25.

[3] Alighanbari, M. and How, J. (2006). An unbiased kalman consensus algorithm. volume 5,
page 6 pp.

[4] Amin, M. and Draief, M. (2015). Global majority consensus by local majority polling on
graphs of a given degree sequence. Discrete Applied Mathematics, 180.

[5] Aumann, Y. and Lindell, Y. (2007). Security against covert adversaries: Efficient protocols
for realistic adversaries. Journal of Cryptology, 23:281–343.

[6] Barborak, M. and Malek, M. (1993). The consensus problem in fault-tolerant computing.
ACM Comput. Surv., 25:171–220.

[7] Becchetti, L., Clementi, A., Natale, E., Pasquale, F., and Trevisan, L. (2015). Stabilizing
consensus with many opinions.

[8] Belotti, M., Bozic, N., Pujolle, G., and Secci, S. (2019). A vademecum on blockchain
technologies: When, which and how. IEEE Communications Surveys and Tutorials, PP:1–1.

[9] Ben-Or, M. (1983). Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). pages 27–30.

[10] Benjamini, I., Chan, S.-O., O’Donnell, R., Tamuz, O., and Tan, L.-Y. (2014). Convergence,
unanimity and disagreement in majority dynamics on unimodular graphs and random
graphs. Stochastic Processes and their Applications, 126.

[11] Bertrand, N., Gramoli, V., Konnov, I., Lazic, M., Tholoniat, P., and Widder, J. (2022).
Brief announcement: Holistic verification of blockchain consensus. In Proceedings of the
2022 ACM Symposium on Principles of Distributed Computing, PODC’22, page 424–426, New
York, NY, USA. Association for Computing Machinery.

[12] Bracha, G. (1987). Asynchronous byzantine agreement protocols. Inf. Comput., 75:130–
143.

[13] Buterin, V. and Griffith, V. (2017). Casper the friendly finality gadget.

[14] Cachin, C., Kursawe, K., and Shoup, V. (2000). Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology, 18.

[15] Canetti, R. and Rabin, T. (1993). Fast asynchronous byzantine agree- ment with optimal
resilience. In In Proceedings of the 25th Annual ACM Symposium on Theory of Computing.

55

56 Bibliography

[16] Capossele, A., Müller, S., and Penzkofer, A. (2021). Robustness and efficiency of voting
consensus protocols within byzantine infrastructures. Blockchain: Research and Applications,
2(1):100007.

[17] Castro, M. and Liskov, B. (1999). Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI ’99, page 173–186,
USA. USENIX Association.

[18] Cooper, C., Elsässer, R., and Radzik, T. (2014). The power of two choices in distributed
voting.

[19] Cox, J. T., Durrett, R., and Perkins, E. A. (2000). Rescaled voter models converge to
super-brownian motion. Annals of Probability.

[20] Crain, T., Gramoli, V., Larrea, M., and Raynal, M. (2018). Dbft: Efficient leaderless
byzantine consensus and its application to blockchains. pages 1–8.

[21] Cruise, J. and Ganesh, A. (2013). Probabilistic consensus via polling and majority rules.
Queueing Systems, 78.

[22] Doerr, B., Goldberg, L., Minder, L., Sauerwald, T., and Scheideler, C. (2011). Stabilizing
consensus with the power of two choices. Annual ACM Symposium on Parallelism in
Algorithms and Architectures.

[23] Elsässer, R., Friedetzky, T., Kaaser, D., Mallmann-Trenn, F., and Trinker, H. (2017). Brief
announcement: Rapid asynchronous plurality consensus. pages 363–365.

[24] Feldman, P. and Micali, S. (1997). An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM J. Comput., 26:873–933.

[25] Fischer, M. (2000). The consensus problem in unreliable distributed systems (a brief
survey).

[26] Fischer, M., Lynch, N., and Paterson, M. (1985). Impossibility of distributed consensus
with one faulty process. J. ACM, 32:374–382.

[27] Friedman, R., Mostéfaoui, A., and Raynal, M. (2004). Simple and efficient oracle-based
consensus protocols for asynchronous byzantine systems. pages 228–237.

[28] Gao, S., Zhan, B., Wu, Z., and Zhang, L. (2024). Verifying randomized consensus
protocols with common coins. In 2024 54th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), volume abs/1712.01367, page 403–415. IEEE.

[29] Gutierrez, A., Müller, S., and !ebek, S. (2023). On asymptotic fairness in voting with
greedy sampling. Advances in Applied Probability, 55:1–34.

[30] Gärtner, B. and Zehmakan, A. (2018). Majority Model on Random Regular Graphs, pages
572–583.

[31] Kar, S. and Moura, J. (2007). Distributed average consensus in sensor networks with
random link failures and communication channel noise. pages 676 – 680.

[32] Konnov, I., Lazic, M., Veith, H., and Widder, J. (2017). A short counterexample property
for safety and liveness verification of fault-tolerant distributed algorithms. ACM SIGPLAN
Notices, 52:719–734.

[33] Kwiatkowska, M. and Norman, G. (2002). Verifying randomized byzantine agreement_.
In Peled, D. A. and Vardi, M. Y., editors, Formal Techniques for Networked and Distributed
Sytems — FORTE 2002, pages 194–209, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bibliography 57

[34] Lamport, L., Shostak, R., and Pease, M. (2002). The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4.

[35] Lin, B.-Y., Dziuba"towska, D., Macek, P., Penzkofer, A., and Müller, S. (2023). Robustness
of the tangle 2.0 consensus. In Hyytiä, E. and Kavitha, V., editors, Performance Evaluation
Methodologies and Tools, pages 259–276, Cham. Springer Nature Switzerland.

[36] Merkle, R. (1989). One way hash functions and des. pages 428–446.

[37] Miller, A., Xia, Y., Croman, K., Shi, E., and Song, D. (2016). The honey badger of bft
protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, page 31–42, New York, NY, USA. Association for Computing
Machinery.

[38] Mossel, E., Neeman, J., and Tamuz, O. (2012). Majority dynamics and aggregation of
information in social networks. Autonomous Agents and Multi-Agent Systems, 28.

[39] Muselli, M. (2000). New improved bounds for reliability of consecutive-k-out-of-n:f
systems. Journal of Applied Probability, 37.

[40] Müller, S., Penzkofer, A., Camargo, D., and Saa, O. (2021a). On Fairness in Voting
Consensus Protocols, pages 927–939.

[41] Müller, S., Penzkofer, A., Kuśmierz, B., Camargo, D., and Buchanan, W. (2021b). Fast
Probabilistic Consensus with Weighted Votes, pages 360–378.

[42] Müller, S., Penzkofer, A., Polyanskii, N., Theis, J., Sanders, W., and Moog, H. (2022).
Tangle 2.0 leaderless nakamoto consensus on the heaviest dag. IEEE Access, 10:105807–
105842.

[43] Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. Cryptography
Mailing list at https://metzdowd.com.

[44] Nitchai, R., Popov, S., and Müller, S. (2023). FPCS: Solving n-spends on a utxo-based dlt.
Blockchain and Applications, 5th International Congress. BLOCKCHAIN 2023. Lecture Notes in
Networks and Systems.

[45] Nitchai, R., Popov, S., Müller, S., and Saa, O. (2024). Security threshold for fpcs on star
graphs.

[46] Pease, M., Shostak, R., and Lamport, L. (1979). Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27:228–234.

[47] Penzkofer, A., Müller, S., and Capossele, A. (2019). Robustness and efficiency of
leaderless probabilistic consensus protocols within byzantine infrastructures.

[48] Popov, S. (2015). The tangle.

[49] Popov, S. (2017). On a decentralized trustless pseudo-random number generation
algorithm. Journal of Mathematical Cryptology, 11.

[50] Popov, S. and Buchanan, W. (2020). FPC-BI: Fast probabilistic consensus within byzan-
tine infrastructures. Journal of Parallel and Distributed Computing, 147:77–86.

[51] Popov, S. and Müller, S. (2021). Voting-based probabilistic consensuses and their
applications in distributed ledgers. Annals of Telecommunications, 77.

[52] Popov, S., Saa, O., and Finardi, P. (2019). Equilibria in the tangle. Computers and Industrial
Engineering, 136:160–172.

58 Bibliography

[53] Rabin, M. (1983). Randomized byzantine generals. pages 403–409.

[54] Rocket, T. (2018). Snowflake to avalanche : A novel metastable consensus protocol
family for cryptocurrencies.

[55] Rocket, T., Yin, M., Sekniqi, K., Van Renesse, R., and Sirer, E. (2019). Scalable and
probabilistic leaderless bft consensus through metastability.

[56] Tanaka-Yamawaki, M., Kitamikado, S., and Fukuda, T. (1996). Consensus formation
and the cellular automata. Robotics and Autonomous Systems, 19:15–22.

[57] Wensley, J., Lamport, L., Goldberg, J., Green, M., Levitt, K., Shostak, R., and Weinstock,
C. (1978). Sift: Design and analysis of a fault-tolerant computer for aircraft control.
Proceedings of the IEEE, 66:1240 – 1255.

[58] Zhang, G., Pan, F., Mao, Y., Tijanic, S., Dang’ana, M., Motepalli, S., Zhang, S., and
Jacobsen, H.-A. (2024). Reaching consensus in the byzantine empire: A comprehensive
review of bft consensus algorithms. ACM Comput. Surv., 56(5).

[59] Zhang, Y., Setty, S., Chen, Q., Zhou, L., and Alvisi, L. (2020). Byzantine ordered
consensus without byzantine oligarchy. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, OSDI’20, USA. USENIX Association.

Appendix A

Appendix

A.1 Proofs of Chapter 4

A.1.1 Lemma 4.0.4

For any positive constant c and k > 2(log N → logµ)/h2
c , it holds that

1
N
(1 → exp{→cϱ2

3}) ↗ 1 → exp{→cϱ2
2} (A.1)

Proof. We will rewrite this inequality in terms of ϱ2
3 → ϱ2

2. Since ϱ3 > ϱ2, it is clear that
ϱ2

3 → ϱ2
2 ↔ 0 if both ϱ3 and ϱ2 are nonnegative. Now ϱ3 ↔ 0 if, and only if,

k > →2logµ

h2
c

,

while ϱ2 ↔ 0 if, and only if,

k >
2(log N → logµ)

h2
c

= →2log(µ/N)
h2

c
. (A.2)

Then, assuming the stronger condition (A.2) holds, we can rewrite the left-hand-side of (A.1)
as

1
N
(1 → exp{→cϱ2

3}) =
1 → exp{→c(ϱ2

3 → ϱ2
2)}

N

+
exp{→c(ϱ2

3 → ϱ2
2)}

N
(1 → exp{→cϱ2

2}),

which will be smaller or equal than 1 → exp{→cϱ2
2} if, and only if,

1 → exp{→c(ϱ2
3 → ϱ2

2)}
1 → exp{→cϱ2

2}
+ exp{→c(ϱ2

3 → ϱ2
2)} ↗ N. (A.3)

59

60 Appendix

Since N ↔ 2, then (A.3) will hold as long as

1 → exp{→c(ϱ2
3 → ϱ2

2)}
1 → exp{→cϱ2

2}
< 1

which is equivalent to the following condition to hold

ϱ2
3 → ϱ2

2 < ϱ2
2.

Since ϱ2 is larger than µ → 1, this last condition will hold as long as

ϱ2
3 → ϱ2

2 < (1 → µ)2. (A.4)

Before expanding the left hand-side of (A.4), we abbreviate

x := exp

{
→ kh2

c
2

}
,

then (A.4) is rewritten as

(µ → x)2 →
(
µ → Nx

)2
< (1 → µ)2, (A.5)

but since (µ → x)2 >
(
µ → Nx

)2, and that we took k sufficiently large so that
(
µ → Nx

)
is

non-negative, then (A.5) will hold if

(µ → x)2 < (1 → µ)2. (A.6)

But from condition (A.2) it follows that

x = exp

{
→ kh2

c
2

}
< explog

µ

m2

< µ,

and then, (A.6) will hold as long as

µ2 < (1 → µ)2, (A.7)

which holds for µ < 1/2. Since µ is bounded from above by 1/6, the proof is complete.

A.2 Proofs of Chapter 5

A.2.1 Lemma 5.2.5

Let Y1,Y2, . . . ,YM→m and X1, X2, . . . , Xm, with m < M, be samples of i.i.d. random variables
following an uniform distribution in the interval [0,1]. Then for a integer 1 ↗ c ↗ M → m, it

A.2 Proofs of Chapter 5 61

holds that

P[Y(c) < X(1)] >

M → m → c + 1

M → m + 1

m
,

where Y(c) and X(1) correspond respectively to the c-th and 1-st order statistic of the samples.

Proof. Conditioning on X(1) we get

P[Y(c) < X(1)] =
∫ 1

0
P[Y(c) < X(1) | X(1) = z] fX(1) (z)dz

=m
M→m

∑
j=c

M → m

j

∫ 1

0
zj(1 → z)M→j→1dz

=m
M→m

∑
j=c

M → m

j

Γ(j + 1)Γ(M → j)

Γ(M + 1)

=
(M → c)!

M!
(M → m)!

(M → m → c)!
>

M → m → c + 1

M → m + 1

m
.

A.2.2 Lemma 5.2.7

Given a set V = {v1, . . . ,vT} and a function l : V ∞N ∈ {0,1} define Vi
t := {v ↓ V : l(v, t) = i}

for i = 0,1. Suppose l satisfies:

1. Let Bt be the event where |V1
t |→ |V1

t→1| ↔
√
|V0

t→1|. For any t > 0, P [Bt] ↔ W.

2. The events Bt are independent for all t ↓ [0,∞).

Let S be the random variable representing the first time such that V0
S = 0 and call t0 = 2

′
T.

Then for t ↔ 0

P[S ↗ t0 + t] ↔ 1 →
(

1 → Wt0

t0

)t

Proof. Let Dt be the event where
√
|V0

t+1|↗
√
|V0

t→1|→ 1. We begin by proving that BtBt+1 ⇐

Dt. Assuming Bt, there is an ε ↓ [0, |V0
t→1|→

√
|V0

t→1|] such that

|V1
t | = |V1

t→1|+
√
|V0

t→1|+ ε. (A.8)

ε cannot be larger than |V0
t→1|→

√
|V0

t→1|, otherwise

|V1
t | > |V1

t→1|+ |V0
t→1| = T.

62 Appendix

Then, assuming Bt+1:

|V1
t+1|→ |V1

t→1| = |V1
t+1|→ |V1

t |+ |V1
t |→ |V1

t→1|

↔
√
|V0

t |+
√
|V0

t→1|+ ε

=
√

n → |V1
t |+

√
|V0

t→1|+ ε.

By (A.8), we get that |V1
t+1|→ |V1

t→1| is bounded below by

√
n → |V1

t→1|→
√
|V0

t→1|→ ε +
√
|V0

t→1|+ ε

=

√
|V0

t→1|→
√
|V0

t→1|→ ε +
√
|V0

t→1|+ ε

:= g(ε).

The function g is concave on ε, so its minimum lies at the boundaries for ε. We have

g(0) =
√
|V0

t→1|→
√
|V0

t→1|+
√
|V0

t→1|

g(|V0
t→1|→

√
|V0

t→1|) = |V0
t→1|.

Then, whenever |V0
t→1| ↔ 3, its minimum is achieved when ε = 0, i.e.:

|V1
t+1|→ |V1

t→1| ↔
√
|V0

t→1|→
√
|V0

t→1|+
√
|V0

t→1|

However, since |V0
t→1| ↔ 3,

|V1
t+1|→ |V1

t→1| ↔ 2
√
|V0

t→1|→ 1

=∋ 2
√
|V0

t→1|→ 1 ↗ |V0
t→1|→ |V0

t+1|

=∋
√
|V0

t+1| ↗
√
|V0

t→1|→ 1.

On the other hand, if |V0
t→1| = 2, by Bt:

|V0
t→1|→ |V0

t | ↔
′

2 =∋ |V0
t | ↗ 2 →

′
2 =∋ |V0

t | = 0.

Then, by Bt+1, |V0
t+1| = 0, and Dt also holds. If |V0

t→1| = 1, by Bt:

|V0
t→1|→ |V0

t | ↔ 1 =∋ |V0
t | ↗ 0.

A.2 Proofs of Chapter 5 63

So Dt also holds. Now, since BtBt+1 ⇐ Dt:

P [Dt] ↔ P [BtBt+1] = P [Bt]P [Bt+1] ↔ W2.

Now, if BtBt+1 implies that
√
|V0

t→1|→
√
|V0

t+1| ↔ 1,

⋂

t↗i↗t+2δ

Bi =∋
√
|V0

t→1|→
√
|V0

t+2δ→1| ↔ δ,

and

⋂

t↗i↗t+2
′

T

Bi =∋
√
|V0

t→1|→
√
|V0

t+2
′

T→1
| ↔

′
T.

But since
√
|V0

t→1| is always smaller or equal than
′

T, then |V0
t+2

′
T→1

| = 0. Then, if Bt is

true for t0 = 2
′

T subsequent rounds, V0 after those rounds will be the empty set.
To find a bound for this event, divide the interval [0, to + t] in sub-intervals of length t0.

Then, the probability of not having t0 consecutive successes in the interval of length t0 + t is
always smaller than the probability of not having t0 consecutive successes in each one of the
sub-intervals. Or explicitly

P[less than t0 consecutive successes in t0 + t]

< P[less than t0 consecutive successes in every interval of length t0]

= (1 → Wt0)△(t0+t)/t0▽.

This means that

P[S ↗t0 + t]

↔P[t0 consecutive successes in t0 + t]

> 1 → (1 → Wt0)△(t0+t)/t0▽

↔ 1 → (1 → Wt0)t/t0

But since (1 → Wt0)t/t0 < (1 → Wt0 /t0)t, it follows that

P[S ↗ t0 + t] ↔ 1 →
(

1 → Wk

k

)n→k

which completes the proof.

