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Examples of surfaces with

canonical map of degree 4

Carlos Rito

Abstract

We give two examples of surfaces with canonical map of degree 4 onto

a canonical surface.

2020 MSC: 14J29

1 Introduction

Let S be a smooth minimal surface of general type with geometric genus pg ≥ 3.
Denote by φ : S 99K P

pg−1 the canonical map and let d := deg(φ). The following
Beauville’s result is well-known.

Theorem 1 ([Bea79]). If the canonical image Σ := φ(S) is a surface, then

either:

(A) pg(Σ) = 0, or

(B) Σ is a canonical surface (in particular pg(Σ) = pg(S)).

Moreover, in case (A) d ≤ 36 and in case (B) d ≤ 9.

The question of which pairs (d, pg) can actually occur has been object of
study for some authors. Several examples were given for case (A), but case (B)
is still mysterious. It is known that if d > 3, then pg ≤ 9, but so far only the
case (d, pg) = (5, 4) has been shown to exist (independently by Tan [Tan92]
and by Pardini [Par91b]). We refer the recent preprint by Mendes Lopes and
Pardini [MLP21] for a more detailed account on the subject. They leave some
open problems, this note is motivated by their last question:

For what pairs (d, pg), with d > 3, are there examples of surfaces in case (B)
of Theorem 1?

Here we give examples for the cases (d, pg) = (4, 5) and (4, 7), with canonical
images a 40-nodal complete intersection surface in P

4 and a 48-nodal complete
intersection surface in P

6, respectively (Beauville also paid some attention to
such nodal surfaces, see [Bea17]).

We work explicitely with the equations of a 40-nodal surface from [RRS19],
all computations are implemented with Magma [BCP97].

Notation

As usual the holomorphic Euler characteristic of a surface S is denoted by χ(S),
the geometric genus by pg(S), the irregularity by q(S), and a canonical divisor
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by KS . A (−m)-curve is a curve isomorphic to P
1 with self-intersection −m. We

say that a set of nodes of S is 2-divisible if the sum
∑
Ai of the corresponding

(−2)-curves in the smooth minimal model of S is 2-divisible in the Picard group.
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2 Construction

Let X40 be the surface in P
4 given by the equations

5
(
x2 + y2 + z2 + w2 + t2

)
− 7 (x+ y + z + w + t)

2
= 0

4
(
x4 + y4 + z4 + w4 + t4 + h4

)
−
(
x2 + y2 + z2 + w2 + t2 + h2

)2
= 0

(1)

where
h := −(x+ y + z + w + t).

It is a canonical surface with invariants pg = 5, q = 0 and K2 = 8. Its singular
set is the union of 40 nodes N1, . . . , N40 (see [RRS19]).

Let X̃40 be the smooth minimal model of X40 and denote by Ai the (−2)-

curves in X̃40 corresponding to the nodes Ni, i = 1, . . . , 40. We show in Section
3.1 that one can write

A1 + · · ·+A40 = Da +Db +Dc +Dabc +Dbc +Dac +Dab

where each ofDa, Db, Dc, Dabc is a sum of 4 (−2)-curves, each of Dbc, Dac, Dab is
a sum of 8 (−2)-curves, and such that there exist divisors L1, L2, L3 satisfying:

Da +Dabc +Dac +Dab ≡ 2L1

Db +Dabc +Dbc +Dab ≡ 2L2

Dc +Dabc +Dbc +Dac ≡ 2L3

(2)

This implies the existence of divisors L4, . . . , L7 such that:

Da +Db +Dc +Dabc ≡ 2L4

Da +Db +Dbc +Dac ≡ 2L5

Da +Dc +Dbc +Dab ≡ 2L6

Db +Dc +Dac +Dab ≡ 2L7

(3)

Now identifying a, b, c with the generators of the group (Z/2)3, it follows from
[Cat08, Proposition 7.6] or [Par91a] that these data define a (Z/2)3-covering

π : Ỹ → X̃40 branched on the (−2)-curves Ai, equivalently a (Z/2)3-covering
ψ : Y → X40 branched on the nodes of X40, where Y is the minimal model of
Ỹ .

Since ψ is ramified only on nodes, we have KY ≡ ψ∗(KX40
) and then K2

Y =
8K2

X40
= 64. We show in Section 3.1 that

h0
(
X̃40,OX̃40

(
K

X̃40
+ L4

))
= 2
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and
h0

(
X̃40,OX̃40

(
K

X̃40
+ Li

))
= 0 for i 6= 4,

thus
pg(Y ) = pg(X40) + 2 + 0 + · · ·+ 0 = 7.

We have

χ(Y ) = 8χ
(
X̃40

)
+

1

2

7∑

1

Li

(
K

X̃40
+ Li

)
= 48− (8 + 6× 12)/2 = 8,

and this implies q(Y ) = 0.
The covering ψ factors as

Y Y32 Y48

X16 X32 X40

where the subscript n means a surface with singular set the union of n nodes
(for X16 → X40 take for instance the bidouble covering given by L1, L2). All
these surfaces are regular because q(Y ) = 0.

It is easy to compute that χ(X16) = 6, thus pg(X16) = pg(X40) = 5, and we
conclude that

the (Z/2)2-covering X16 → X40 is the canonical map of X16.

Analogously, pg(Y ) = pg(Y48) = 7 and we claim that

the (Z/2)2-covering Y → Y48 is the canonical map of Y.

For this it suffices to show that Y48 is a canonical surface.
We follow Beauville [Bea17] and show that Y48 can be embedded in P

6 as a
complete intersection of 4 quadrics in the following way. The linear system L
of quadrics through the branch locus of the covering Y48 → X40 (16 nodes) is of
dimension 2. Using computer algebra it is not difficult to show that L contains
quadrics B,C,D such that the surface X40 is given by Q = 0, B2 − CD = 0,
where Q is the quadric from (1) (we write the quadrics as general elements
of L, thus depending on some parameters; then we obtain a variety on these
parameters by imposing that the hypersurfaces Q = 0 and B2 − CD = 0 are
tangent at the 24 nodes ofX40 which are disjoint from the 16 nodes ofB2−CD =
0; finally we compute points in this variety).

Then Y48 is given in P
6(x, y, z, w, t, u, v) by equations

u2 − C = v2 −D = uv −B = Q = 0.

We give these equations in Section 3.2 and verify that Y48 is as stated.
Let us explain how we find 2-divisible sets of nodes in X40. The surface X40

contains 40 tropes, which are hyperplane sections Hi = 2Ti with Ti ⊂ X40 a
reduced curve through 12 nodes of X40, and smooth at these points. Thus in
X̃40 the pullback of such a trope can be written as

H̃i = 2T̂i +
∑

j∈J

Aj , #J = 12.
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Thus for each pair of tropes the sum of nodes contained in their union and not
contained in their intersection is 2-divisible.

Using these 2-divisibilities, the idea for finding configurations as in (2) is
simple: we have used a computer algorithm to list and check possibilities.

3 Computations

The computations below are implemented with Magma V2.26-5.

3.1 The covering Y → X40

We start by defining the surface X40 and its singular set.

K:=Rationals();

R<r>:=PolynomialRing(K);

K<r>:=ext<K|r^2 + 15>;

P<x,y,z,w,t>:=ProjectiveSpace(K,4);

h:=-x-y-z-w-t;

Q:=5*(x^2+y^2+z^2+w^2+t^2)-7*(x+y+z+w+t)^2;

I:=4*(x^4+y^4+z^4+w^4+t^4+h^4)-(x^2+y^2+z^2+w^2+t^2+h^2)^2;

X40:=Surface(P,[Q,I]);

SX40:=SingularSubscheme(X40);

The partition of the 40 nodes:

Da:={P![3,3,-2,-2,3],P![4,-r+1,r-5,-r+1,4],

P![-r+1,4,r-5,-r+1,4],P![r+1,r+1,-r-5,4,4]};

Db:={P![2,-3,-3,-3,2],P![4,r+1,r+1,-r-5,4],

P![-r-5,r-5,r-5,-r-5,10],P![r-5,-r+1,-r+1,4,4]};

Dc:={P![-3,-3,2,-3,2],P![-r+1,-r+1,r-5,4,4],

P![r-5,r-5,-r-5,-r-5,10],P![r+1,r+1,4,-r-5,4]};

Dabc:={P![-2,3,3,-2,3],P![-r-5,r+1,r+1,4,4],

P![r-5,4,-r+1,-r+1,4],P![r-5,-r+1,4,-r+1,4]};

Dbc:={P![-2,-2,3,3,3],P![3,-2,-2,3,3],

P![4,-r-5,r+1,r+1,4],P![4,-r+1,-r+1,r-5,4],

P![4,r+1,-r-5,r+1,4],P![-r-5,r+1,4,r+1,4],

P![-r+1,-r+1,4,r-5,4],P![r+1,-r-5,4,r+1,4]};

Dac:={P![-3,2,-3,-3,2],P![3,-2,3,-2,3],

P![4,r-5,-r+1,-r+1,4],P![-r+1,r-5,4,-r+1,4],

P![-r+1,r-5,-r+1,4,4],P![r-5,-r-5,r-5,-r-5,10],

P![r+1,4,r+1,-r-5,4],P![r+1,-r-5,r+1,4,4]};

Dab:={P![-3,-3,-3,2,2],P![-2,3,-2,3,3],

P![-r-5,4,r+1,r+1,4],P![-r+1,4,-r+1,r-5,4],

P![-r-5,-r-5,r-5,r-5,10],P![-r-5,r-5,-r-5,r-5,10],

P![r-5,-r-5,-r-5,r-5,10],P![r+1,4,-r-5,r+1,4]};

Verification that these are in fact the nodes:

&join[Da,Db,Dc,Dabc,Dbc,Dac,Dab] eq SingularPoints(X40);

HasSingularPointsOverExtension(X40) eq false;
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Some of the tropes of X40 :

tropes:=[

6*x + (-r - 9)*y + (r - 9)*z + (r - 9)*w + (-r - 9)*t,

16*x + (-r - 9)*y + 16*z + (3*r + 11)*w + (3*r + 11)*t,

16*x + (r - 9)*y + 16*z + (-3*r + 11)*w + (-3*r + 11)*t,

6*x + (r - 9)*y + (-r - 9)*z + (r - 9)*w + (-r - 9)*t,

16*x + (3*r + 11)*y + 16*z + (3*r + 11)*w + (-r - 9)*t,

16*x + (-3*r + 11)*y + (-3*r + 11)*z + (r - 9)*w + 16*t,

x + y + w,

16*x + (r - 9)*y + (-3*r + 11)*z + (-3*r + 11)*w + 16*t,

x + z + w

];

The reduced subscheme of these tropes:

red:=[ReducedSubscheme(Scheme(X40,q)):q in tropes];

&and[Degree(q) eq 4:q in red];

They are smooth at the nodes of X40 :

&and[Dimension(SingularSubscheme(q) meet SX40) eq -1:q in red];

Two 2-divisible disjoint sets of 20 nodes, which confirm that the 40 nodes
are 2-divisible:

s1:=Points(Scheme(SX40,tropes[1]*tropes[2])) diff

Points(Scheme(SX40,[tropes[1],tropes[2]]));

s2:=Points(Scheme(SX40,tropes[6]*tropes[7])) diff

Points(Scheme(SX40,[tropes[6],tropes[7]]));

&and[#s1 eq 20,#s2 eq 20,#(s1 join s2) eq 40];

We compute three 2-divisible sets of 24 nodes:

Sets:=[];

for q in [[2,5],[1,4],[3,8]] do

pts:=Points(Scheme(SX40,tropes[q[1]]*tropes[q[2]])) diff

Points(Scheme(SX40,[tropes[q[1]],tropes[q[2]]]));

Append(~Sets,SingularPoints(X40) diff pts);

end for;

and use these sets to check the divisibilities in (2):

Da join Dabc join Dac join Dab eq Sets[1];

Db join Dabc join Dbc join Dab eq Sets[2];

Dc join Dabc join Dbc join Dac eq Sets[3];

Now we show that h0
(
X̃40,OX̃40

(
K

X̃40
+ L4

))
= 2. Let N1, . . . , N16 be the

nodes in Da+Db+Dc+Dabc and A1, . . . , A16 be the corresponding (−2)-curves.
Let H1, H2 be the tropes that give

H̃1 + H̃2 = 2T̂1 + 2T̂2 +
16∑

1

Ai + 2
20∑

17

Ai,
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with A17, . . . , A20 ∈ H̃1 ∩ H̃2. Then

16∑

1

Ai ≡ 2L4, with K
X̃40

+ L4 ≡ 2H̃ − T̂1 − T̂2 −

20∑

17

Ai.

We compute below that the system of quadrics through the curves T1, T2 ⊂ P
4

is generated by 2 elements, modulo the quadric Q. Since the double covering
Y48 → X40 is ramified exactly at N1, . . . , N16 and χ(Y48) = 8 implies pg(Y48) ≥

7 = pg(X40) + 2, then h0
(
X̃40,OX̃40

(
K

X̃40
+ L4

))
= 2.

T1:=ReducedSubscheme(Scheme(X40,tropes[2]));

T2:=ReducedSubscheme(Scheme(X40,tropes[9]));

pts:=Points(SX40 meet (T1 join T2)) diff

Points(SX40 meet T1 meet T2);

pts eq (Da join Db join Dc join Dabc);

L:=LinearSystem(LinearSystem(P,2),T1 join T2);

#Sections(LinearSystemTrace(L,X40)) eq 2;

Let us show that h0
(
X̃40,OX̃40

(
K

X̃40
+ Li

))
= 0 for i 6= 4. Suppose

the opposite. Let A1, . . . , A24 be the corresponding (−2)-curves. Then there

is a curve E ∈
∣∣∣KX̃40

+ Li

∣∣∣ , and EAi = −1 implies that the linear system
∣∣∣KX̃40

+ Li −
∑24

1
Aj

∣∣∣ =
∣∣∣KX̃40

− Li

∣∣∣ is nonempty. Therefore
∣∣∣2KX̃40

−
∑24

1
Aj

∣∣∣
is nonempty, which implies that there is at least one quadric in P

4 through the
corresponding nodes N1, . . . , N24 (modulo the quadric Q). We show below that
this does not happen.

Sets:=[

Da join Dabc join Dac join Dab,

Db join Dabc join Dbc join Dab,

Dc join Dabc join Dbc join Dac,

Da join Db join Dbc join Dac,

Da join Dc join Dbc join Dab,

Db join Dc join Dac join Dab

];

for q in Sets do

L:=LinearSystem(LinearSystem(P,2),[P!x:x in q]);

#Sections(LinearSystemTrace(L,S)) eq 0;

end for;

3.2 The surface Y48

Here we give the equations of Y48 as a complete intersection of 4 quadrics in P
6.

We start by defining P
6 over a certain number field.

K:=Rationals(); R<x>:=PolynomialRing(K);

K<r,m>:=ext<K|x^2 + 15,x^2 - 95/42*x + 2855/2646>;

R<n>:=PolynomialRing(K);

K<n>:=ext<K|

n^2 + 443889677/206391214080000*r - 46942774543/619173642240000>;

P6<x,y,z,w,t,u,v>:=ProjectiveSpace(K,6);
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The three quadrics B,C,D :

B:=(675/4802*r+334125/33614)*n*x*z+(-389475/67228*r+3266325/67228)*n*x*w+

(34425/9604*r+451575/67228)*n*y*w+(-389475/67228*r+3266325/67228)*n*z*w+

(-62100/16807*r+348300/16807)*n*w^2+(239625/33614*r+1541025/33614)*n*x*t

+(-8100/2401*r+137700/16807)*n*y*t+(239625/33614*r+1541025/33614)*n*z*t

+(6075/9604*r+3007125/67228)*n*w*t+(71550/16807*r+319950/16807)*n*t^2;

C:=x*y+1/154*(126*m-181)*y^2+1/42*(-42*m+95)*x*z+y*z+(1/1540*(14*m-25)*r

+1/924*(-798*m+1997))*x*w+(1/420*(42*m-65)*r+1/308*(-294*m+767))*y*w

+(1/1540*(14*m-25)*r+1/924*(-798*m+1997))*z*w+(1/385*(-119*m+185)*r

+1/462*(-168*m+311))*w^2+(1/1540*(-14*m+25)*r+1/924*(-798*m+

1997))*x*t+(1/420*(-42*m+65)*r+1/308*(-294*m+767))*y*t+(1/1540*(-14*m

+25)*r+1/924*(-798*m+1997))*z*t+1/154*(126*m-71)*w*t+(1/385*(119*m-

185)*r+1/462*(-168*m+311))*t^2;

D:=x*y+1/77*(-63*m+52)*y^2+m*x*z+y*z+(1/2310*(-21*m+10)*r+1/154*(133*m+

32))*x*w+(1/70*(-7*m+5)*r+1/154*(147*m+51))*y*w+(1/2310*(-21*m+

10)*r+1/154*(133*m+32))*z*w+(1/2310*(714*m-505)*r+1/154*(56*m-

23))*w^2+(1/2310*(21*m-10)*r+1/154*(133*m+32))*x*t+(1/70*(7*m-5)*r

+1/154*(147*m+51))*y*t+(1/2310*(21*m-10)*r+1/154*(133*m+32))*z*t+

1/77*(-63*m+107)*w*t+(1/2310*(-714*m+505)*r+1/154*(56*m-23))*t^2;

We obtain alternative equations for X40 :

F:=B^2-C*D;

Q:=5*(x^2+y^2+z^2+w^2+t^2)-7*(x+y+z+w+t)^2;

X:=Scheme(P6,[F,Q,u,v]);

h:=-x-y-z-w-t;

I:=4*(x^4+y^4+z^4+w^4+t^4+h^4)-(x^2+y^2+z^2+w^2+t^2+h^2)^2;

X40:=Scheme(P6,[Q,I,u,v]);

X eq X40;

And finally the equations of Y48 in P
6 :

Y48:=Surface(P6,[u^2-C,v^2-D,u*v-B,Q]);

SY48:=SingularSubscheme(Y48);

Dimension(SY48) eq 0;

Degree(SY48) eq 48;

Degree(ReducedSubscheme(SY48)) eq 48;
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