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A right R-moduleM is said to satisfy the (full) exchange
property if for any two direct sum decompositions M �
N = �i2INi, there exist submodules Ki � Ni such
that M � N = M � (�i2IKi). If this holds only for
jIj < 1, then M is said to satisfy the �nite exchange
property.

A ring R for which RR has the �nite exchange property
is called an exchange ring.

It is an open question due to Crawley and Jónsson whether
the �nite exchange property always implies the full ex-
change property.

The exchange property is of importance because it pro-
vides a way to build isomorphic re�nements of di¤erent
direct sum decompositions, which is precisely what is
needed to prove the famous Krull-Schmidt-Remak-Azumaya
Theorem.



This question was provided a positive answer for:

1. Quasi-injective modules by L. Fuchs, where a module
M is quasi-injective if it is invariant under endomor-
phisms of its injective hull.

2. Quasi-continuous modules by Mohamed and Müller
& Oshiro and Rizvi, where a module M is quasi-
continuous if it is invariant under idempotent-endom
of its injective hull.

3. Auto-invariant Modules by P. Guil Assensio and A.
Srivastava, where a moduleM is called auto-invariant
if it is invariant under automorphisms of its injective
hull.

4. Square-free modules by P. Nielsen, whereM is called
square-free if it does not contain a submodule iso-
morphic to a square A�A:



A result of War�eld asserts that a moduleMR has the �-
nite exchange property i¤End(MR) is an exchange ring.
The notion of exchange rings is left-right symmetric, in-
deed, Nicholson showed that a ring R is an exchange ring
i¤ idempotents lift every right ideal of R, i¤ idempotents
lift every left ideal of R.

Exchange rings are closely related to another interesting
class of rings called clean rings that was �rst introduced
by K. Nicholson, where a ring R is called clean if every
element is the sum of an idempotent and a unit.

Nicholson proved that every clean ring is an exchange
ring, and a ring with central idempotents is clean i¤ it is
an exchange ring. Subsequently, a module MR is called
clean if End(MR) is a clean ring.

The class of clean rings is quite large and includes, for
instance, semiperfect rings, unit-regular rings, strongly-
regular rings, rings of linear transformations of vector



spaces, endomorphism rings of continuous modules, and
endomorphism rings of automorphism-invariant modules.

There is an intimate link between commutative clean
rings and topology. A commutative ring is clean if and
only if each of its prime ideals is contained in a unique
maximal ideal and its maximal ideal space, endowed with
the Zariski topology, is zero-dimensional (P. T. John-
stone, Stone spaces. Cambridge Studies in Advanced
Mathematics, 1982).

Clean rings naturally arise as rings of continuous functions
on zero-dimensional completely regular Hausdor¤ spaces
(F. Azarpanah, 2002).

Clean rings also arise as commutative C�-algebras of
real rank zero (P. Ara, K.R. Goodearl, K.C. O�Meara,
E. Pardo, 1998).

Every ring can be embedded in a clean ring as an essential
ring extension (W.D. Burgess and R. Raphael, 2013).



For the last ten years, the search has been going on to �nd
other interesting classes of clean rings and clean modules.
The existence of such classes is closely related to Crawley
and Jónsson�s question as I will explain below. Let me
�rst give some de�nitions.

In his work on continuous rings, almost half a century
ago, Utumi identi�ed three conditions on a ring that are
satis�ed if the ring is self-injective. These conditions were
extended to modules by Mohamed & Müller.

De�nition 1 A module M is called a C1-module, if
every submodule is essential in a direct summand of M .

M is called a C2-module, if whenever A and B are
submodules of M with A �= B; and B �� M; then
A �� M:

M is called a C3-module, if whenever A and B are sub-
modules ofM withA �� M , B �� M; andA\B = 0,
then A�B �� M:



M is called continuous if it is both a C1- and a C2-
module,

M is called quasi-continuous if it is both a C1- and a
C3-module.

It was shown by P. Guil Assensio and A. Srivastava that
auto-invariant Modules are clean, and

it was also shown by Camillo, Khurana, Lam, Nicholson
and Zhou that every continuous module is clean.

The authors asked: Is a CS moduleM necessarily clean
if it has the �nite exchange property?.

While their question still remains open, they provided an
a¢ rmative answer for some subclasses of CS modules,
namely:



1. when M is quasi-continuous, and

2. when M is square-free.

By modifying and combining the above continuity condi-
tions in one single de�nition and in honor of Y. Utumi,
we consider the following new class of modules.

De�nition 2 A right R-module M is called a Utumi-
module (U -module) if for any two non-zero submodules
A and B of M with A �= B and A\B = 0; there exist
two summands K and L of M such that A �ess K,
B �ess L and K � L �� M . Moreover, a ring R
is called right U -ring if the right R-module RR is a
U -module.

Example 3 Every square-free module and every quasi-
continuous module is a U -module.



Example 4 Every automorphism-invariant module is a
U -module.

Proof. Let M be an automorphism-invariant module
and let X and Y be two non-zero submodules of M
with X �= Y and X \ Y = 0: Let

z =

8<: (A;B; f) : A;B �M; X �ess A; Y �ess B;

A \B = 0; and A
f�= B

9=; :
Order z as follows: (A;B; f) � (A1; B1; f1) if A �
A1; B � B1, and f1 extends f: Clearly, z is a non-
empty inductive set. Let (A;B; f) be a maximal element
of z: We were able to show that (A � B) �� M , and
hence M is a U -module.

Remark 5 From the above examples, since the classes
of square-free, quasi-continuous and auto-invariant mod-
ules are not contained in one another, the class of U -
modules is a non-trivial simultaneous generalization of
each of these classes of modules.



More Examples of U-Modules

Example 6 A right R-module M is called distributive if
A\(B+C) = (A\B)+(A\C) for all submodules A,
B, and C of M . It is well-known that every distributive
module is square-free, and hence a U -module.

Recall that a ring R is called strongly regular if for every
x 2 R, there is y 2 R such that x2y = x. Since
strongly regular rings are square-free, the following ex-
ample is clear.

Example 7 Every strongly regular ring is a left and right
U -ring.

Remark 8 By an example of Bergman, regular rings need
not be U -rings. For, if it were a U -ring then by one of
our results below it would be clean, a contradiction.



Example 9

1. Consider the Z-module M := Q � N where N :=

�i2IZpi is an arbitrary (�nite or in�nite) direct sum,
where fpi : i 2 Ig is a set of distinct primes. M is a
square-free module and hence a U -module that is neither
CS nor auto-invariant.

2. If p is a prime number and N := Zp � Zp � � � � an
arbitrary (�nite or in�nite) direct sum of at least two
copies of Zp, then the Z-module M := Q � N is an
orthogonal direct sum of a quasi-injective module N and
a square-free module Q. Clearly M is not square-free,
and is neither auto-invariant nor quasi-continuous (this
follows from the fact that Q and N are not relatively-
injective). In fact M is not a CS-module. M is a U -
module. To see this, let 0 6= A;B �M; with A\B = 0

and A �= B. A simple calculation shows that both A and
B must be contained in the semisimple module N . Thus
A� B is a semisimple summand of M and hence M is
a U -module.



U-Modules

De�nition 10 A module M is called pseudo-injective
relative to another moduleN (pseudo-N -injective) if every
monomorphism f : K !M; where K � N , can be ex-
tended to a homomorphism from N into M .

Proposition 11 If M = A� B is a U -module, then A
and B are relatively pseudo-injective.

Proposition 12 If A � B is a U -module such that A
and B are subisomorphic, then A �= B and A � B is
quasi-injective. In particular, A�A is a U -module if and
only if A is quasi-injective.

Example 13 As indicated before, the Z-module Q �
Zp � Zp is a U -module that is neither CS nor auto-
invariant, we claim that the Z-module M := Q�Q �
Zp � Zp is not a U -module. For if it were a U -module
then by the above result, the Z-module Q�Zp would be
quasi-injective, a contradiction.



Proposition 14 Let M be a right U -module.

1. If M = A � B with E(A) �= E(B); then M is quasi-
injective.

2. If A and B are submodules of M such that A \ B = 0

and A �= B, then A and B have isomorphic comple-
ments.



Two right R-modules M and N are called orthogonal
to each other, if they don�t contain non-zero isomorphic
submodules.

Theorem 15 If M is a U -module, then M = Q � T
where:

1. Q is a quasi-injective module,

2. Q = A�B�D, where A �= B and D is isomorphic to
a summand of A�B,

3. T is a square-free module,

4. T is Q-injective, and

5. Q and T are orthogonal.



We use the above decomposition theorem to establish our
main result:

Theorem 16 A right U -module M is clean if and only
if it has the �nite exchange property, if and only if it has
the full exchange property.

Theorem 17 �-U -modules are clean and satisfy the full
exchange property.

Example 18 IfM := Q�Zp�Zp�� � � is the Z-module
provided above, then M is a U -module which is clean
by the above theorem. The module M is not square-
free, not pseudo-continuous, not quasi-continuous, and
not auto-invariant.



Special Modules

A result of Singh and Srivastava states that if M is an
auto-invariant module and E(M) = E1�E2�E3 with
E1

�= E2, thenM = (M\E1)�(M\E2)�(M\E3).

This result is also valid ifM is a quasi-continuous module.
In fact a module M is quasi-continuous if and only if
every decomposition E(M) = �i2IEi induces M =

�i2I(M \ Ei).

In the next de�nition we consider a weaker version of
these results and introduce a new class of modules, called
special modules. It turns out that this new class of mod-
ules coincide with that of U -modules, and has some in-
teresting features which we state below.

De�nition 19 A right R-module M is called special if,
for every decomposition E(M) = E1 � E2 � E3 with
E1

�= E2, M = (M \ E1) � (M \ E2) � T for a
submodule T �M .



Theorem 20 IfM is a right R-module, then the follow-
ing conditions are equivalent:

1. M is a special module.

2. M is a U -module.

The above theorem can be improved as follows:

Theorem 21 Let M be a U -module. If E(M) = E1�
E2 �E3 with E1 �= E2, then M = (M \E1)� (M \
E2)� (M \E(T )) where T �M , E(T ) �= E3, (M \
E1)

�= (M \ E2) and (M \ E1)� (M \ E2) is quasi-
injective.



U-Rings

Recall that a ring R is strongly regular i¤ R is an abelian
regular ring, i¤ R is square-free and regular. Also, if R is
abelian, then R is exchange i¤ R is clean. For U -rings,
we have:

Theorem 22 If R is an abelian ring, then the following
conditions are equivalent:

1. R is a right U -ring.

2. R is square-free as a right R-module.

3. Every right ideal of R is a U -module.

Observe that being a right U -ring is not a Morita-invariant
property, in fact we have the following:



Theorem 23 For n > 1; the following conditions on a
ring R are equivalent:

1. R is a right self-injective ring.

2. Mn(R) is a right U -ring.

Theorem 24 The following are equivalent for a ring R:

1. R is a right U�-ring (every right ideal is a U -module).

2. R is a direct product of a square-full semisimple artinian
ring and a right square-free ring.

Theorem 25 A ring R is (countably) �-U -ring i¤ R is
quasi-Frobenius.



The next theorem extends a result of Goodearl which as-
serts that every indecomposable regular right continuous
ring is right self-injective. Our result also extends a re-
sult by Er, Singh and Srivastava, which states that every
prime right non-singular right auto-invariant ring is right
self-injective. We should point out that the later result
by Er et al. was a positive answer in response to a ques-
tion raised by Clark and Huynh: whether simple right
pseudo-injective (equivalently, right auto-invariant) rings
are right self-injective.

Theorem 26 If R is a regular right U -ring, then R can
be decomposed as a direct sum of a strongly regular ring
and a regular right self-injective ring. In particular every
indecomposable regular right U -ring is right self-injective.

Corollary 27 Let R be an indecomposable right non-
singular ring. If R is either right continuous or right
auto-invariant, then R is right self-injective. In particu-
lar, every simple right continuous (or right auto-invariant)
ring is right self-injective.



More on Exchange and Clean U-Modules

1. The moduleM is said to have the cancellation prop-
erty if whenever M �X �=M � Y; then X �= Y .

2. The module M is said to have the internal cancel-
lation property if whenever M = A�X = B � Y
with A �= B; then X �= Y .

3. A module N is said to have the substitution property
if for every module M with decompositions M =

N1 � H = N2 � K with N1 �= N �= N2, there
exists a submodule C ofM such thatM = C�H =

C �K.

4. A moduleMR is said to be Dedekind-�nite (or directly-
�nite) if M �=M �N implies N = 0.



5. A ring R is said to have stable range 1 if, for any
elements a; b 2 R with Ra + Rb = R, there is an
element y 2 R such that a+ yb is a unit of R.

In general, we have the following implications:

Substitution ) Cancellation )
Internal Cancellation ) Dedekind-�nite

By a well-known result, the �rst three notions coincide if
M has the �nite exchange property, and it was shown by
Asensio and Srivastava that for an auto-invariant module
the above four notions are equivalent. For U -modules we
have the following:



Proposition 28 If M is a right U -module with the (�-
nite) exchange property, then the following are equiva-
lent:

1. M has the substitution property.

2. M has the cancellation property.

3. M has the internal cancellation property.

4. End(MR) has stable range 1.

5. M is Dedekind-�nite.



Rings Generated by its Idempotents

J. Erdös showed that the linear transformations of a �nite-
dimensional vector space over a division ring which are
products of proper idempotents are precisely the singu-
lar ones. Erdös� results were subsequently extended by
Reynolds and Sullivan to linear transformations of an ar-
bitrary dimension vector space over a division ring. Sub-
sequently, O�Meara provided a complete characterization
of the elements of a prime, regular, right self-injective
ring which can be written as a product of idempotents.
After that Hannah and O�Meara extended the work of
O�Meara to regular right self-injective rings.

In the mean time it has been known that many of the
above classes of regular self-injective rings are generated
as rings by their idempotents, that is each element is a
sum of products of idempotents. Indeed, Wolfson proved
that every right full linear ring that is not a division ring
is generated as a ring by its idempotents. Right full linear



rings R are known to be prime, regular, and right self-
injective, and if the ring R is not a division ring then R
is also totally non-abelian, where a ring R (not necessar-
ily regular) is called totally non-abelian if every non-zero
right ideal of R contains a non-central idempotent. Con-
sequently, Wolfson�s result was extended by Utumi, who
proved that if R is a regular right self-injective ring that
is totally non abelian, then R is generated as a ring by
its idempotents. Utumi�s result was provided an excel-
lent proof by Goodearl in his book Nonsingular Rings and
Modules.

Theorem 29 Let R be a right U -ring. If every non-
zero square-free right ideal of R contains a non-central
idempotent, then R = A � B � K with A �= B and
K is a square-free module isomorphic to a submodule of
A � B. Moreover, R is a right self-injective ring and is
generated as a ring by its idempotents.

Theorem 30 If R is a totally non-abelian right U -ring,
then R is a regular right self-injective ring and is gener-
ated as a ring by its idempotents.



Corollary 31 If R is a totally non-abelian right quasi-
continuou ring, then R is a regular right self-injective
ring and is generated as a ring by its idempotents.

Corollary 32 IfR is a totally non-abelian right automorphism-
invariant ring, then R is a regular right self-injective ring
and is generated as a ring by its idempotents.

Recall that a submodule T of a module M is called a
square-root inM if T 2 =: T�T embeds inM: A module
M is called square-full if every non-zero submodule ofM
contains a non-zero square-root in M .

Corollary 33 Every square-full right U -ring is right self-
injective and is generated as a ring by its idempotents.
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