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A right R-module M is said to satisfy the (full) exchange
property if for any two direct sum decompositions M &
N = @®;c1N;, there exist submodules K; C N; such
that M @ N = M & (P;c1K;). If this holds only for
|I| < oo, then M is said to satisfy the finite exchange

property.

A ring R for which Rp has the finite exchange property
is called an exchange ring.

It is an open question due to Crawley and Jénsson whether
the finite exchange property always implies the full ex-
change property.

The exchange property is of importance because it pro-
vides a way to build isomorphic refinements of different
direct sum decompositions, which is precisely what is
needed to prove the famous Krull-Schmidt-Remak-Azumaya
Theorem.



This question was provided a positive answer for:

1. Quasi-injective modules by L. Fuchs, where a module
M is quasi-injective if it is invariant under endomor-
phisms of its injective hull.

2. Quasi-continuous modules by Mohamed and Miiller
& Oshiro and Rizvi, where a module M is quasi-
continuous if it is invariant under idempotent-endom
of its injective hull.

3. Auto-invariant Modules by P. Guil Assensio and A.
Srivastava, where a module M is called auto-invariant
if it is invariant under automorphisms of its injective

hull.

4. Square-free modules by P. Nielsen, where M is called
square-free if it does not contain a submodule iso-
morphic to a square A @ A.



A result of Warfield asserts that a module Mg has the fi-
nite exchange property iff End(Mpg) is an exchange ring.
The notion of exchange rings is left-right symmetric, in-
deed, Nicholson showed that a ring R is an exchange ring
iff idempotents lift every right ideal of R, iff idempotents
lift every left ideal of R.

Exchange rings are closely related to another interesting
class of rings called clean rings that was first introduced
by K. Nicholson, where a ring R is called clean if every
element is the sum of an idempotent and a unit.

Nicholson proved that every clean ring is an exchange
ring, and a ring with central idempotents is clean iff it is
an exchange ring. Subsequently, a module Mp is called
clean if End(MER) is a clean ring.

The class of clean rings is quite large and includes, for
instance, semiperfect rings, unit-regular rings, strongly-

regular rings, rings of linear transformations of vector



spaces, endomorphism rings of continuous modules, and
endomorphism rings of automorphism-invariant modules.

There is an intimate link between commutative clean
rings and topology. A commutative ring is clean if and
only if each of its prime ideals is contained in a unique
maximal ideal and its maximal ideal space, endowed with
the Zariski topology, is zero-dimensional (P. T. John-

stone, Stone spaces. Cambridge Studies in Advanced
Mathematics, 1982).

Clean rings naturally arise as rings of continuous functions

on zero-dimensional completely regular Hausdorff spaces
(F. Azarpanah, 2002).

Clean rings also arise as commutative C'*-algebras of
real rank zero (P. Ara, K.R. Goodearl, K.C. O'Meara,
E. Pardo, 1998).

Every ring can be embedded in a clean ring as an essential
ring extension (W.D. Burgess and R. Raphael, 2013).



For the last ten years, the search has been going on to find
other interesting classes of clean rings and clean modules.
The existence of such classes is closely related to Crawley
and Joénsson’s question as | will explain below. Let me
first give some definitions.

In his work on continuous rings, almost half a century
ago, Utumi identified three conditions on a ring that are
satisfied if the ring is self-injective. These conditions were
extended to modules by Mohamed & Miiller.

Definition 1 A module M is called a Cl-module, if
every submodule is essential in a direct summand of M.

M is called a C2-module, if whenever A and B are
submodules of M with A = B, and B C® M, then
A CP M.

M is called a C3-module, if whenever A and B are sub-
modules of M with A C® M, B C® M, and ANB = 0,
then A@ B C% M.



M is called continuous if it is both a C1- and a C2-
module,

M is called quasi-continuous if it is both a C1- and a
C'3-module.

It was shown by P. Guil Assensio and A. Srivastava that
auto-invariant Modules are clean, and

it was also shown by Camillo, Khurana, Lam, Nicholson
and Zhou that every continuous module is clean.

The authors asked: Is a CS module M necessarily clean
if it has the finite exchange property?.

While their question still remains open, they provided an
affirmative answer for some subclasses of CS modules,

namely:



1. when M is quasi-continuous, and

2. when M is square-free.

By modifying and combining the above continuity condi-
tions in one single definition and in honor of Y. Utumi,
we consider the following new class of modules.

Definition 2 A right R-module M is called a Utumi-
module (U-module) if for any two non-zero submodules
A and B of M with A = B and AN B = 0, there exist
two summands K and L of M such that A C®%% K,
B C®% [ and K® L C® M. Moreover, a ring R
is called right U-ring if the right R-module Rp is a
U-module.

Example 3 Every square-free module and every quasi-
continuous module is a U-module.



Example 4 Every automorphism-invariant module is a
U-module.

Proof. Let M be an automorphism-invariant module

and let X and Y be two non-zero submodules of M
with X =Y and X NY =0. Let

{ (A,B,f): A, BC M, X Ce3 A, Y C¢$ B,
=

f
ANB=0,and A= B

Order f as follows: (A, B, f) < (A1,Bq, f1) if A C
A1, B C Bq, and f1 extends f. Clearly, F is a non-
empty inductive set. Let (A, B, f) be a maximal element
of F. We were able to show that (A @ B) C® M, and
hence M is a U-module. =

Remark b5 From the above examples, since the classes
of square-free, quasi-continuous and auto-invariant mod-
ules are not contained in one another, the class of U -
modules is a non-trivial simultaneous generalization of
each of these classes of modules.



More Examples of U-Modules

Example 6 A right R-module M is called distributive if
AN(B+C) = (ANB)+(ANC) for all submodules A,
B, and C of M. It is well-known that every distributive
module is square-free, and hence a U-module.

Recall that a ring R is called strongly regular if for every
r € R, there is y € R such that %y = z. Since
strongly regular rings are square-free, the following ex-
ample is clear.

Example 7 Every strongly regular ring is a left and right
U-ring.

Remark 8 By an example of Bergman, regular rings need
not be U-rings. For, if it were a U-ring then by one of
our results below it would be clean, a contradiction.



Example 9

. Consider the Z-module M = Q @& N where N :=
®;c1lyp,; is an arbitrary (finite or infinite) direct sum,
where {p; : ¢ € I} is a set of distinct primes. M is a
square-free module and hence a U-module that is neither
C'S nor auto-invariant.

. If p is a prime number and N := Zp ® Zp S --- an
arbitrary (finite or infinite) direct sum of at least two
copies of Zp, then the Z-module M = Q @& N is an
orthogonal direct sum of a quasi-injective module N and
a square-free module Q. Clearly M is not square-free,
and is neither auto-invariant nor quasi-continuous (this
follows from the fact that Q and N are not relatively-
injective). In fact M is not a C'S-module. M is a U-
module. To see this, let0 # A, B C M, with ANB =0
and A = B. A simple calculation shows that both A and
B must be contained in the semisimple module N. Thus
A @ B is a semisimple summand of M and hence M is
a U-module.



U-Modules

Definition 10 A module M is called pseudo-injective

relative to another module N (pseudo-N -injective) if every
monomorphism f : K — M, where K C N, can be ex-

tended to a homomorphism from N into M .

Proposition 11 If M = A& B is a U-module, then A
and B are relatively pseudo-injective.

Proposition 12 If A & B is a U-module such that A
and B are subisomorphic, then A = B and A ® B is
quasi-injective. In particular, A® A is a U-module if and
only if A is quasi-injective.

Example 13 As indicated before, the Z-module QQ &
Lyp @ Ly is a U-module that is neither C'S nor auto-
invariant, we claim that the Z-module M = Q & Q &
Lp @ Ly is not a U-module. For if it were a U-module
then by the above result, the Z-module Q ® Zy would be
quasi-injective, a contradiction.



Proposition 14 Let M be a right U-module.

. IfM = A® B with E(A) £ E(B), then M is quasi-

injective.

. If A and B are submodules of M such that ANB =0
and A = B, then A and B have isomorphic comple-

ments.
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Two right R-modules M and N are called orthogonal
to each other, if they don't contain non-zero isomorphic
submodules.

Theorem 15 [/f M is a U-module, then M = Q & T
where:

. QQ Is a quasi-injective module,

. Q=A®B® D, where A= B and D is isomorphic to
a summand of A @ B,

. T' is a square-free module,

. T is Q-injective, and

. @ and T’ are orthogonal.



We use the above decomposition theorem to establish our
main result:

Theorem 16 A right U-module M is clean if and only
if it has the finite exchange property, if and only if it has
the full exchange property.

Theorem 17 X -U-modules are clean and satisfy the full
exchange property.

Example 18 If M := Q@®ZpPZp®- - - is the Z-module
provided above, then M is a U-module which is clean
by the above theorem. The module M is not square-
free, not pseudo-continuous, not quasi-continuous, and
not auto-invariant.



Special Modules

A result of Singh and Srivastava states that if M is an
auto-invariant module and E(M) = F1 ® E» ® E3 with
E1 = Ey, then M = (MNE1)®(MNEY))®(MNE3).

This result is also valid if M is a quasi-continuous module.
In fact a module M is quasi-continuous if and only if
every decomposition E(M) = @;crE; induces M =
Dicr(M N E;).

In the next definition we consider a weaker version of
these results and introduce a new class of modules, called
special modules. It turns out that this new class of mod-
ules coincide with that of U-modules, and has some in-
teresting features which we state below.

Definition 19 A right R-module M is called special if,
for every decomposition E(M) = FE1 & Ey ® E3 with
EF1 2 FE, M = (MNE)®(MnNEy)) T for a
submodule T C M.



Theorem 20 /f M is a right R-module, then the follow-
ing conditions are equivalent:

. M is a special module.

. M is a U-module.

The above theorem can be improved as follows:

Theorem 21 Let M be a U-module. If E(M) = E1 &
E> @ FE3 with E1 = Ey, then M = (M N E1) @ (M N
E>)® (M NE(T)) whereT C M, E(T) = E3, (M N
E1) = (M N E) and (M N Eq1) & (M N E») is quasi-
Injective.



U-Rings

Recall that a ring R is strongly regular iff R is an abelian
regular ring, iff R is square-free and regular. Also, if R is
abelian, then R is exchange iff R is clean. For U-rings,
we have:

Theorem 22 [f R is an abelian ring, then the following
conditions are equivalent:

. R is a right U-ring.

. R is square-free as a right R-module.

. Every right ideal of R is a U-module.

Observe that being a right U-ring is not a Morita-invariant
property, in fact we have the following:



Theorem 23 For n > 1, the following conditions on a
ring R are equivalent:

. R is a right self-injective ring.

. Mn(R) is a right U-ring.

Theorem 24 The following are equivalent for a ring R:

. R is a right U*-ring (every right ideal is a U-module).

. R is a direct product of a square-full semisimple artinian
ring and a right square-free ring.

Theorem 25 A ring R is (countably) ¥-U-ring iff R is
quasi-Frobenius.



The next theorem extends a result of Goodearl which as-
serts that every indecomposable regular right continuous
ring is right self-injective. Our result also extends a re-
sult by Er, Singh and Srivastava, which states that every
prime right non-singular right auto-invariant ring is right
self-injective. We should point out that the later result
by Er et al. was a positive answer in response to a ques-
tion raised by Clark and Huynh: whether simple right
pseudo-injective (equivalently, right auto-invariant) rings
are right self-injective.

Theorem 26 If R is a regular right U-ring, then R can
be decomposed as a direct sum of a strongly regular ring
and a regular right self-injective ring. In particular every
indecomposable regular right U -ring is right self-injective.

Corollary 27 Let R be an indecomposable right non-
singular ring. If R is either right continuous or right
auto-invariant, then R is right self-injective. In particu-
lar, every simple right continuous (or right auto-invariant)
ring is right self-injective.



More on Exchange and Clean U-Modules

. The module M is said to have the cancellation prop-
erty if whenever M X =M P Y, then X =Y.

. The module M is said to have the internal cancel-
lation property if whenever M = A X = BY
with A = B, then X =Y.

. A module N is said to have the substitution property
if for every module M with decompositions M =
N1 ® H = Ny ® K with Ny = N = N, there
exists a submodule C' of M suchthat M = CHH =
C oK.

. A module Mg is said to be Dedekind-finite (or directly-
finite) if M = M & N implies N = 0.



5. A ring R is said to have stable range 1 if, for any
elements a,b € R with Ra + Rb = R, there is an
element y € R such that a + yb is a unit of R.

In general, we have the following implications:

Substitution = Cancellation =

Internal Cancellation = Dedekind-finite

By a well-known result, the first three notions coincide if

M has the finite exchange property, and it was shown by
Asensio and Srivastava that for an auto-invariant module
the above four notions are equivalent. For U-modules we

have the following:
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Proposition 28 If M is a right U-module with the (fi-
nite) exchange property, then the following are equiva-
lent:

. M has the substitution property.

. M has the cancellation property.

. M has the internal cancellation property.

. End(Mpg) has stable range 1.

. M is Dedekind-finite.



Rings Generated by its ldempotents

J. Erd6s showed that the linear transformations of a finite-
dimensional vector space over a division ring which are
products of proper idempotents are precisely the singu-
lar ones. Erdos’ results were subsequently extended by
Reynolds and Sullivan to linear transformations of an ar-
bitrary dimension vector space over a division ring. Sub-
sequently, O'Meara provided a complete characterization
of the elements of a prime, regular, right self-injective
ring which can be written as a product of idempotents.
After that Hannah and O’'Meara extended the work of
O’'Meara to regular right self-injective rings.

In the mean time it has been known that many of the
above classes of regular self-injective rings are generated
as rings by their idempotents, that is each element is a
sum of products of idempotents. Indeed, Wolfson proved
that every right full linear ring that is not a division ring
Is generated as a ring by its idempotents. Right full linear



rings R are known to be prime, regular, and right self-
injective, and if the ring R is not a division ring then R
is also totally non-abelian, where a ring R (not necessar-
ily regular) is called totally non-abelian if every non-zero
right ideal of R contains a non-central idempotent. Con-
sequently, Wolfson's result was extended by Utumi, who
proved that if R is a regular right self-injective ring that
is totally non abelian, then R is generated as a ring by
its idempotents. Utumi’s result was provided an excel-

lent proof by Goodearl in his book Nonsingular Rings and
Modules.

Theorem 29 Let R be a right U-ring. If every non-
zero square-free right ideal of R contains a non-central
idempotent, then R = A® B ® K with A = B and
K is a square-free module isomorphic to a submodule of
A @ B. Moreover, R is a right self-injective ring and is
generated as a ring by its idempotents.

Theorem 30 /f R is a totally non-abelian right U-ring,
then R is a regular right self-injective ring and is gener-
ated as a ring by its idempotents.



Corollary 31 /f R is a totally non-abelian right quasi-
continuou ring, then R is a regular right self-injective
ring and is generated as a ring by its idempotents.

Corollary 32 If R is a totally non-abelian right automorphism-
invariant ring, then R is a regular right self-injective ring
and is generated as a ring by its idempotents.

Recall that a submodule 7" of a module M is called a
square-root in M if T2 =: T@®T embeds in M. A module
M is called square-full if every non-zero submodule of M
contains a non-zero square-root in M.

Corollary 33 Every square-full right U-ring is right self-
Iinjective and is generated as a ring by its idempotents.
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