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Abstract. We consider some classes of piecewise expanding maps in finite dimensional
spaces having invariant probability measures which are absolutely continuous with respect
to Lebesgue measure. We derive an entropy formula for such measures and, using this
entropy formula, we present sufficient conditions for the continuity of that entropy with
respect to the parameter in some parametrized families of maps. We apply our results
to a classical one-dimensional family of tent maps and a family of two-dimensional maps
which arises as the limit of return maps when a homoclinic tangency is unfolded by a
family of three dimensional diffeomorphisms.
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1. Introduction

Be it good or bad, in the mathematical theory of Dynamical Systems one can easily find
many examples of systems with simple evolution laws whose dynamics is very complex and
hard to predict in deterministic terms. Just to mention a few, in this direction we refer the
one-dimensional quadratic maps, the two-dimensional Hénon quadratic diffeomorphisms,
or the system of Lorenz quadratic differential equations in the three-dimensional Euclidean
space. Though simple in formulation, all these systems have very complicate dynamical
behavior and, in the last decades, have motivated the appearance of relevant mathematical
results in several directions.

Among the many important contributions to the theory, there are several results both
on the existence of Sinai-Ruelle-Bowen (SRB) measures, i.e. ergodic invariant probability
measures whose conditionals on local unstable manifolds are absolutely continuous with
respect to the conditionals of Lebesgue measure, and on the continuous dependence of
these SRB measures (or their entropies) with respect to the underlying dynamics; see
[1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 19]. In all these situations, the SRB measures are known to
be physically relevant, in the sense that they describe the statistics of many initial states
of the systems, frequently almost all initial states with respect to the Lebesgue (volume)
measure on the ambient space.

Mostly motivated by the family of two-dimensional tent maps introduced in [31] (see
Subsection 1.5 below), in this work we present some general results on the continuity of
the entropy of ergodic absolutely continuous invariant probability measures for some classes
of piecewise expanding maps in any finite dimension, possibly with infinitely many domains
of smoothness. As a main application of these results we shall consider the family of two-
dimensional tent maps considered in [31]. This family is particularly interesting because
it is related to the limit return maps arising when a homoclinic tangency is unfolded by
a family of three dimensional diffeomorphisms; see [31] and [36] for details. After having
proved in [32] the existence of ergodic absolutely continuous invariant probability measures
for these tents maps, and in [7] the continuity of such measures, it is then natural to
ask under which conditions the metric entropy with respect to those measures depends
continuously on the dynamics.

Our strategy to prove the continuity of the metric entropy is heavily based on the validity
of an entropy formula for invariant measures, particularly when the measure is absolutely
continuous with respect to the reference Lebesgue measure. For the case of smooth diffeo-
morphisms of a Riemannian manifold, Ruelle established in [35] that the entropy of any
invariant probability measure is bounded by the integral of the sum of the positive Lya-
punov exponents (counted with multiplicity) with respect to that measure. The reverse
inequality has been obtained in [30] by Pesin for the case that the invariant probability
measure is absolutely continuous with respect to the Lebesgue measure. Natural versions
for non-invertible smooth maps have been drawn in [34]. Extensions of the results of Ruelle
and Pesin for the the class of maps with infinite derivative introduced in [23] were obtained
in [28]. Conversely, the existence of an entropy formula for can as well be used to prove
that an invariant probability measure has conditional measures on local unstable manifolds
which are absolutely continuous with respect to the conditionals of Lebesgue measure on
those manifolds; see [26, 27, 29].
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In the context of non-invertible maps, we are naturally lead to consider the case where
all Lyapunov exponents are positive and the sum of Lyapunov exponents coincides with the
Jacobian of the map. Surprisingly, we did not find in the literature any result that could
be directly used to assure that the tent maps in [31] satisfy the entropy formula. Actually,
to the best of our knowledge, not much is known on the existence of entropy formulas
for piecewise smooth maps, specially in dimension greater than one. For one-dimensional
dynamical systems see e.g. [10], [18], [24] or [26]. In higher dimensions, [17] is the closest
to our setting that we could find in the literature. However, a technical assumption in
[17, Theorem 1] that we could not be verify in our tent maps, prevented us from applying
that result; see condition (2) below. Let us refer that in the Markovian case of piecewise
expanding maps with full branches (which is not the case of our tent maps), the situation
is completely different: not only the assumptions of [17, Theorem 1] can be easily verified,
but also a direct approach as in [6, Section 4] can be implemented to obtain an entropy
formula.

Let us point out that, though our initial motivation for this work is the aforementioned
two-dimensional family of tent maps, our results on the existence of an entropy formula
and continuity of the entropy hold for much more general families of piecewise expanding
maps with infinitely many domains of smoothness in any finite dimension.

1.1. Piecewise expansion and bounded distortion. Let Ω be a compact subset of Rd,
for some d ≥ 1. Consider m the Lebesgue (or volume) measure on Ω and, for each
1 ≤ p ≤ ∞, the space Lp(m) endowed with its usual norm ‖ ‖p. Throughout this paper,
absolute continuity will be always meant with respect to the Lebesgue measure m.

Assume that φ : Ω → Ω is a map for which there is a (Lebesgue mod 0) countable
partition Rφ of Ω such that each R ∈ Rφ is a closed domain with piecewise C1 boundary
of finite (d − 1)-dimensional measure. Assume also that φR := φ|R is a C1 bijection from
int(R), the interior of R, onto its image, with a C1 extension to R. We say that φ is a
piecewise expanding map if

(P1) there is 0 < σ < 1 such that for all R ∈ Rφ and all x ∈ int(φ(R))

‖Dφ−1
R (x)‖ ≤ σ.

Consider the Jacobian function

Jφ = | det(Dφ)|,
naturally defined on the (full Lebesgue measure) subset of points in Ω where φ is differen-
tiable. We say that φ has bounded distortion if

(P2) there is ∆ ≥ 0 such that for all R ∈ R and all x, y ∈ int(R)

log
Jφ(x)

Jφ(y)
≤ ∆ ‖φ(x)− φ(y)‖.

Sufficient conditions for the existence of an absolutely continuous invariant probability
measure for a piecewise expanding map with bounded distortion are given in [21] for finitely
many domains of smoothness, and in [1, Section 5] for infinitely many domains. In the
latter case, these conditions correspond to property (P3) and (∗) below on the images of
the smoothness domains. Similar conditions are imposed on the domains themselves, in
the finitely many domains case considered in [21].
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1.2. Entropy formula. One of the main goals of this work is to obtain an entropy formula
for an absolutely continuous invariant probability measure of a C1 piecewise expanding map
φ : Ω → Ω. Actually, one of the inequalities will be obtained for invariant measures not
necessarily absolutely continuous.

We start by recalling the notion of entropy of φ with respect to an invariant measure µ.
The entropy of a partition P of Ω with respect to a measure µ is given by

Hµ(P) = −
∞∑
P∈P

µ (P ) log µ (P ) ,

the entropy of φ with respect to µ and a partition P is given by

hµ(φ,P) = lim
n→∞

1

n
Hµ(Pn),

where for each n

Pn =
n−1∨
j=0

φ−j(P). (1)

Finally, the entropy of φ with respect to µ is given by

hµ(φ) = sup
P
hµ(φ,P).

We say that the partition Rφ into the smoothness domains of φ : Ω → Ω is quasi-
Markovian with respect to a measure µ, if there exists η > 0 such that for µ almost every
x ∈ Ω, there are infinitely many values of n ∈ N for which

m(φn(Rn(x))) ≥ η,

where Rn(x) stands for the element in Rn
φ containing x ∈ Ω. In this definition we are

implicitly assuming that Rn
φ is a µ mod 0 partition of Ω, for all n ≥ 1.

Our first result relates the entropy with the integral of the Jacobian for a piecewise
expanding map, and it holds for invariant probability measures in general, not necessarily
absolutely continuous.

Theorem A. Let φ be a C1 piecewise expanding map with bounded distortion. If µ is a
φ-invariant probability measure such that Hµ(Rφ) < ∞ and Rφ is quasi-Markovian with
respect to µ, then

hµ(φ) ≤
∫

log Jφdµ.

We also obtain the reverse inequality if the invariant probability measure is absolutely
continuous with respect to Lebesgue measure.

Theorem B. Let φ be a C1 piecewise expanding map with bounded distortion. If Rφ is
quasi-Markovian with respect to an absolutely continuous invariant probability measure µ
such that Hµ(Rφ) <∞, then

hµ(φ) =

∫
log Jφdµ.
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We shall refer to the conclusion of Theorem B as the entropy formula for µ.
The same conclusion of Theorem B has been drawn in [6, Proposition 4.1], under the

stronger Markovian assumption of maps with full branches. Also in [17, Theorem 1], in the
more general setting of a measurable transformation and a conformal reference measure,
replacing our quasi-Markovian condition by

sup
n≥1

∣∣∣∣∫ logm(φn(Rn(x)))dµ(x)

∣∣∣∣ <∞, (2)

where µ is absolutely continuous with respect to the reference measure m; see (2.4) in [17].
Even though our quasi-Markovian condition introduced above has the same flavor of (2),
in practice our condition is easier to deal with. Actually, we were able to check it for the
family of tent maps that we introduce in Subsection 1.5 below and we were not able to
check condition (2) for that family.

Our next goal is to establish some useful criterium for obtaining the quasi-Markovian
property for the partition of a piecewise expanding map with respect to an absolutely con-
tinuous invariant probability measure. We define the singular set of a piecewise expanding
map φ as

Sφ =
⋃
R∈Rφ

∂R,

where ∂ stands for the boundary and bar for the closure of a set. Notice that when the
partitionRφ is finite the singular set Sφ is a finite union of (d−1)-dimensional submanifolds
of Rd. We say that a piecewise expanding maps φ behaves as a power of the distance close
to Sφ if there exist constants B, β > 0 such that

(S1) ‖Dφ(x)‖ ≤ B

dist(x,Sφ)β
;

(S2) log
‖Dφ(x)−1‖
‖Dφ(y)−1‖

≤ B

dist(x,Sφ)β
dist(x, y);

for every x, y ∈M \ Sφ with dist(x, y) < dist(x,Sφ)/2.
In Proposition 3.4 we establish a criterium for the quasi-Markovian property of the

partition associated to a piecewise expanding map behaving as a power of the distance close
to the singular set. Using that criterium we easily obtain the next result as a consequence
of Theorem B. This will be particularly useful for establishing the entropy formula of the
family of tent maps in Subsection 1.5.

Theorem C. Let φ be a C1 piecewise expanding map with bounded distortion for which
(S1)-(S2) hold, and let µ be an ergodic absolutely continuous invariant probability measure
for φ such that Hµ(Rφ) < ∞. If log dist(·,Sφ) ∈ Lp(m) and dµ/dm ∈ Lq(m) with 1 ≤
p, q ≤ ∞ and 1/p+ 1/q = 1, then

hµ(φ) =

∫
log Jφdµ.

Theorems A and B are proved in Section 2, Theorem C is proved in Section 3.

1.3. Continuity of entropy. Now we consider families of piecewise expanding maps.
Let I be a metric space and (φt)t∈I be a family of C1 piecewise expanding maps φt : Ω→ Ω,
where Ω is a compact subset of Rd, for some d ≥ 1. For simplicity, for each t ∈ I denote
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by Rt the partition of Ω associated to the piecewise expanding map φt. Our next result
gives sufficient conditions for the continuity of the entropy of the absolutely continuous
invariant probability measure.

Theorem D. Let (φt)t∈I be a family of C1 piecewise expanding maps with bounded dis-
tortion such that each φt has an absolutely continuous invariant probability measure µt for
which Hµt(Rt) < ∞ and the entropy formula holds. Assume that there are 1 < p, q ≤ ∞
with 1/p+ 1/q < 1 such that

(1) dµt/dm is uniformly bounded in Lp(m) and depends continuously on t ∈ I in L1(m);
(2) log Jφt ∈ Lq(m) and log Jφt depends continuously on t ∈ I in L1(m).

Then hµt(φt) depends continuously on t ∈ I.

The proof of this theorem will be given in Section 4 and uses the entropy formula
of Theorem B. In the next subsections we introduce more particular settings where the
previous results above can be applied.

1.4. Maps with large branches. A special class of piecewise expanding maps φ : Ω→ Ω
with bounded distortion for which an absolutely continuous invariant probability measure
always exists has been introduced in [1], namely maps that satisfy the following additional
condition on the images of the smoothness domains. We say that φ has large branches if

(P3) there are constants α, β > 0 and for each R ∈ Rφ there is a C1 unitary vector
field X in ∂φ(R)1 such that:
(a) the line segments joining each x ∈ ∂φ(R) to x + αX(x) are pairwise disjoint

contained in φ(R), and their union form a neighborhood of ∂φ(R) in φ(R);
(b) for every x ∈ ∂φ(R) and v ∈ Tx∂φ(R) \ {0} the angle θ(x, v) between v and

X(x) satisfies |sin θ(x, v)| ≥ β.

In the one-dimensional case, condition (P3)(a) is obviously satisfied when the elements
in Rφ are intervals whose images have sizes uniformly bounded away from zero.

Remark 1.1. Condition (P3)(b) makes no sense in dimension one, but in practice we can
assume the optimal value β = 1; see [7, Remark 3.2].

From [1, Theorem 5.2] we know that if φ : Ω→ Ω is a C2 piecewise expanding map for
which conditions (P1)-(P3)2 hold with

σ (1 + 1/β) < 1, (∗)
then φ has a finite number of absolutely continuous invariant probability measures. Under
these assumptions, we also have that the density of any such measure belongs to BV (Ω),
the space of bounded variation functions; see [7, Corollary 3.4]. Assuming Ω ⊂ Rd, from
Sobolev Inequality we deduce that BV (Ω) is contained in Ld/(d−1)(m); see e.g. [20, The-
orem 1.28]. Since 1/d + (d − 1)/d = 1, using Theorem C we easily get the following
result.

1 At the points x ∈ ∂φ(R) where ∂φ(R) is not smooth the vector X(x) is a common C1 extension of X
restricted to each (d− 1)-dimensional smooth component of ∂φ(R) having x in its boundary. The tangent
space at any such point is the union of the tangent spaces to the (d− 1)-dimensional smooth components
that point belongs to.

2 Our bounded distortion condition (P2) is slightly different from the one used in [1]. However, in
Lemma 5.1 we show that (P2) implies the bounded distortion condition in [1], exactly with the same
constant ∆ > 0.
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Corollary E. Let φ : Ω→ Ω, with Ω ⊂ Rd, be a C1 piecewise expanding map with bounded
distortion and large branches for which (S1)-(S2) and (∗) hold. If log dist(·,Sφ) ∈ Ld(m)
and µ is an ergodic absolutely continuous invariant probability measure for φ such that
Hµ(Rφ) <∞, then

hµ(φ) =

∫
log Jφdµ.

In addition, [7, Theorem A] asserts that if (φt)t∈I is a family of C1 piecewise expanding
maps φt : Ω → Ω satisfying properties (1) and (2) of Theorem F below, then (φt)t∈I is
statistically stable: for any sequence (tn)n in I converging to t0 ∈ I and any sequence of
ergodic absolutely continuous φtn-invariant probability measures (µtn)n, any accumulation
point of the densities dµtn/dm must converge in the L1-norm to the density of an absolutely
continuous φt0-invariant probability measure. Obviously, when each φt has a unique (hence
ergodic) absolutely continuous invariant probability measure µt, then statistical stability
means continuity of dµt/dm in the L1-norm with t ∈ I. In the next result we give suf-
ficient conditions for the continuity of the entropy of the absolutely continuous invariant
probability measure in the setting of piecewise expanding maps with large branches.

Theorem F. Let (φt)t∈I be a family of C2 piecewise expanding maps with bounded dis-
tortion and large branches such that each φt has a unique absolutely continuous invariant
probability measure µt for which Hµt(Rt) < ∞ and the entropy formula holds. Assume
that

(1) there are 0 < λ < 1 and K > 0 such that for each t ∈ I

σt

(
1 +

1

βt

)
≤ λ and ∆t +

1

αtβt
+

∆t

βt
≤ K,

where σt,∆t, αt, βt are constants such that (P1)-(P3) hold for φt;
(2) f ◦ φt depends continuously on t ∈ I in Ld(m), for each continuous f : Ω→ R;
(3) log Jφt ∈ Lq(m) for some q > d and log Jφt depends continuously on t ∈ I in L1(m).

Then hµt(φt) depends continuously on t ∈ I.

The C2 differentiability assumed in this last result is due to the bounded distortion
condition considered in [1]. The proof of Theorem F will be given in Section 5.

1.5. Tent maps. Here we consider some special families of piecewise expanding maps, the
first one the family of two-dimensional tent maps introduced in [31], and the second one
an analogous family of interval maps. The main results of this section will be obtained as
an application of the previous results for piecewise expanding maps.

1.5.1. Two-dimensional maps. Consider the triangles

T0 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} (3)

and

T1 = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 2− x}.
For each 0 < t ≤ 1, define the map Tt : T → T on the triangle T = T0 ∪ T1 by

Tt(x, y) =

{
(t(x+ y), t(x− y)), if (x, y) ∈ T0;
(t(2− x+ y), t(2− x− y)), if (x, y) ∈ T1.

(4)
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The domains T0 and T1 are separated by the straight line segment

C = {(x, y) ∈ T : x = 1} (5)

that we call the critical set of Tt.
As shown in [33], the map T1 displays the same properties of the well-known one-

dimensional tent map defined for x ∈ [0, 2] as x 7→ 2 − 2|x − 1|. Among them, the
consecutive pre-images {T−n1 (C)}n∈N of the critical line C define a sequence of partitions
of T whose diameter tends to zero as n goes to infinity. This enables us to conjugate T1 to
a one sided shift with two symbols, from which it easily follows that T1 is transitive in T .
Furthermore, the Lyapunov exponent of any point in T whose orbit does not hit the critical
line is positive (actually, it coincides with 1/2 log 2) in every nonzero direction. Finally,
there is a (unique) absolutely continuous invariant probability measure for T1; see [33] for
details.

The results obtained in [33] for t = 1 have been extended to a larger set of parameters.

More precisely, it was proved in [32] that for each t ∈ [τ, 1], with τ = 1√
2
(
√

2+1)
1
4 ≈ 0.882,

the map Tt exhibits a strange attractor At ⊂ T , i.e. Tt is (strongly) transitive in At, the
periodic orbits are dense in At, and there exists a dense orbit in At with two positive
Lyapunov exponents. Furthermore, At supports a unique absolutely continuous invariant
probability measure µt. As shown in [7], these measures µt depend continuously on t ∈ [τ, 1]
in a strong sense: their densities vary continuously with the parameter in the norm of
L1(m). Here we show that the entropy with respect to the absolutely continuous invariant
probability measure depends continuously on the parameter as well.

Theorem G. Each Tt has a unique absolutely continuous invariant probability measure
µt depending continuously on t ∈ [τ, 1]. Moreover, the entropy formula holds for µt and
hµt(Tt) depends continuously on t ∈ [τ, 1].

The existence and uniqueness of the absolutely continuous invariant probability mea-
sure µt has already been proved in [32], and its continuous dependence (in a strong sense)
on the parameter t proved in [7].

1.5.2. One-dimensional maps. Though easier to deal with, but not following as an imme-
diate consequence of the results for the family of two-dimensional tent maps presented
above, we can as well obtain similar conclusions for the one-dimensional family of tent
maps Tt : [0, 2]→ [0, 2], defined for 1 < t ≤ 2 and x ∈ [0, 2] as

Tt(x) =

{
tx, if 0 ≤ x ≤ 1;
t(2− x), if 1 ≤ x ≤ 2.

(6)

Theorem H. Each Tt has a unique absolutely continuous invariant probability measure
µt depending continuously on t ∈ (1, 2]. Moreover, the entropy formula holds for µt and
hµt(Tt) depends continuously on t ∈ (1, 2].

The existence of an absolutely continuous invariant probability measure for the maps
in this family follows as an easy consequence of [25, Theorem 1]. We did not find in the
literature any reference to the continuity of this measure or its entropy with the parameter.
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2. Entropy formula

In this section we prove Theorem A and Theorem B. Let φ be a C1 piecewise expanding
map with bounded distortion. For simplicity, denote Rφ by R and, for each n ∈ N, let Rn

be as in (1). Condition (P1) implies that

diam(Rn)→ 0, as n→∞.
It follows from Kolmogorov-Sinai Theorem that

hµ(φ) = hµ(φ,R) (7)

for any φ-invariant measure µ such that R is a µ mod 0 partition of Ω. Moreover, assuming
Hµ(R) <∞, Shanon-McMillan-Breiman Theorem gives that

hµ(R, x) = lim
n→∞

− 1

n
log µ(Rn(x))

is well defined for µ almost every x ∈ Ω, and

hµ(φ,R) =

∫
hµ(R, x)dµ.

Together with (7) this gives

hµ(φ) =

∫
hµ(R, x)dµ. (8)

In the case that µ being ergodic, Shanon-McMillan-Breiman Theorem also gives that

hµ(φ) = lim
n→∞

− 1

n
log µ(Rn(x)) (9)

for µ almost every x. Notice that (8) holds whenever µ is a φ-invariant probability measure
with Hµ(R) < ∞ and R is a µ mod 0 partition of Ω. Moreover, (9) holds when µ is
additionally ergodic.

Now we give a simple bounded distortion result that will be used in the proofs of both
inequalities that yield the entropy formula.

Lemma 2.1. There is C > 0 such that for all Rn ∈ Rn and all x, y ∈ Rn

1

C
≤ Jφn(x)

Jφn(y)
≤ C.

Proof. For all x, y ∈ Rn we may write

log
Jφn(x)

Jφn(y)
=

n−1∑
j=0

log
Jφ(φi(x))

Jφ(φi(y))

≤
n−1∑
j=0

∆‖φj(x)− φj(y)‖

≤
n−1∑
j=0

∆σn−j‖φn(x)− φn(y)‖, by (P1)

≤
n−1∑
j=0

∆σn−j diam(Ω).
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Taking exponentials and using the symmetry on the roles of x and y we easily finish the
proof. �

Now we split the proofs of Theorems A and B into the next two inequalities.

2.1. First inequality. In this subsection we complete the proof of Theorem A, following
some ideas from the proof of [22, Theorem 1]. Take µ a φ-invariant probability measure
such that Hµ(Rφ) <∞ and assume that Rφ is quasi-Markovian with respect to µ.

Consider first the case in which µ is an ergodic probability measure. Assuming by
contradiction that the conclusion of Theorem A does not hold, choose real numbers α, β
such that

hµ(φ) > α > β >

∫
log Jφdµ. (10)

It follows from (9) and (10) that there exists a set E1 ⊂ Ω with µ(E1) = 1 such that for
every x ∈ E1 there exists k1 = k1(x) ∈ N for which

µ (Rn(x)) ≤ e−αn, ∀n ≥ k1. (11)

Moreover, by Birkhoff’s Ergodic Theorem we have

1

n
log Jφn(x) =

1

n

n−1∑
j=0

log Jφ(φj(x))→
∫

log Jφdµ, as n→∞,

which then implies that there exists a set E2 ⊂ Ω with µ(E2) = 1 such that for every
x ∈ E2 there exists k2 = k2(x) ∈ N for which

Jφn(x) ≤ eβn, ∀n ≥ k2. (12)

On the other hand, there exist η > 0 and a set E3 ⊂ Ω with µ(E3) = 1 such that every
x ∈ E3 there are infinitely many values of n ∈ N for which

m(φn(Rn(x))) ≥ η. (13)

Using Lemma 2.1, for each n ∈ N we have

m (φn(Rn(x))) =

∫
Rn(x)

Jφn(y)dm(y)

=

∫
Rn(x)

Jφn(y)

Jφn(x)
Jφn(x)dm(y)

≤ CJφn(x)m(Rn(x))). (14)

Now take an arbitrary ` ∈ N. Given any x ∈ E1 ∩ E2 ∩ E3 choose n(x) ≥ max{k1, k2, `}
such that (13) holds. It follows from (12), (13) and (14) that

C

η
m(Rn(x)(x))) ≥ e−βn(x),

which together with (11) gives

µ(Rn(x)(x)) ≤ e−n(x)(α−β)C

η
m(Rn(x)(x)) ≤ e−`(α−β)C

η
m(Rn(x)(x)). (15)

Defining
Q =

{
Rn(x)(x) : x ∈ E1 ∩ E2 ∩ E3

}
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we have that Q is a µ mod 0 partition of Ω. As two elements in Q are either disjoint or

one contains the other, we can extract a µ mod 0 subcover Q̃ of Ω by pairwise disjoint
sets. From (15) we get

1 = µ(Ω) ≤
∑
Q∈Q̃

µ(Q) ≤ e−`(α−β)C

η

∑
Q∈Q̃

m(Q) ≤ e−`(α−β)C

η
.

Since α > β and ` can be taken arbitrarily large, this gives a contradiction.
Assume now that µ is not an ergodic probability measure. By the Ergodic Decomposition

Theorem, there exists a probability measure θ on the Borel sets of Eφ(Ω) such that for any
measurable function f : Ω→ R we have∫

Ω

fdµ =

∫
Eφ(Ω)

∫
Ω

fdνdθ(ν),

where Eφ(Ω) stands for the set of φ-invariant ergodic probability measures on the Borel
sets of Ω, endowed with the weak* topology. As we are assuming R quasi-Markovian with
respect to µ, it follows from the Ergodic Decomposition Theorem that R must be quasi-
Markovian with respect to any measure ν in the ergodic decomposition of µ. Moreover, by
the concavity of the function −x log x and Jensen Inequality, we have

Hµ(R) ≥
∫
Eφ(Ω)

Hν(R)dθ(ν).

As we are assuming Hµ(R) <∞, we also have Hν(R) <∞ for θ almost every measure ν
in the ergodic decomposition of µ. Hence, by the case already seen for an ergodic measure,
we can write

hµ(φ) =

∫
Ω

hµ(R, x)dµ

=

∫
Eφ(Ω)

∫
Ω

hµ(R, x)dνdθ(ν)

≤
∫
Eφ(Ω)

∫
Ω

log Jφdνdθ(ν)

=

∫
Ω

log Jφdµ.

2.2. Second inequality. Let us now complete the proof of Theorem B. Assume now that
µ is an absolutely continuous φ-invariant probability measure such that Hµ(Rφ) < ∞
and Rφ is quasi-Markovian with respect to µ. By Theorem A it is enough to show that

hµ(φ) ≥
∫

Ω

log(Jφ)dµ. (16)

Consider ρ the density of µ with respect to m, given by Radon-Nikodym Theorem. We
have for µ almost every x ∈ Ω

lim
n→∞

µ(Rn(x))

m(Rn(x))
= ρ(x) > 0. (17)



12 J. F. ALVES AND A. PUMARIÑO

Since
1

n
log µ(Rn(x)) =

1

n
logm(Rn(x)) +

1

n
log

µ(Rn(x))

m(Rn(x))
,

it follows from (17) that

hµ(R, x) = lim
n→∞

− 1

n
log (m(Rn(x))) , (18)

for µ almost every x ∈ Ω. We may write

m(Ω) ≥ m (φn(Rn(x))) =

∫
Rn(x)

Jφn(y)dm(y) =

∫
Rn(x)

Jφn(y)

Jφn(x)
Jφn(x)dm(y). (19)

It follows from Lemma 2.1 and (19) that

m(Ω) ≥ 1

C
Jφn(x)m (Rn(x))

which then implies

− 1

n
logm(Rn(x)) ≥ − logC + logm(Ω)

n
+

1

n
log Jφn(x). (20)

Using (8), (18) and (20) we easily deduce that

hµ(φ) ≥
∫

lim
n→∞

1

n
log(Jφn(x))dµ =

∫
lim
n→∞

1

n

n−1∑
i=0

log(Jφ(φi(x)))dµ.

Finally, using Birkhoff’s Ergodic Theorem we obtain (16).

3. Quasi-Markovian property

The goal of this section is to prove Theorem C. This will be obtained as a consequence
of Theorem B and Proposition 3.4 below, which gives a useful criterium for obtaining the
quasi-Markovian property. We start by recalling some general facts from [3] about maps
(not necessarily piecewise expanding) which are non-uniformly expanding and have slow
recurrence to a singular set.

Let M be a compact manifold, S a compact subset of M and f : M \ S → M a C1

map. Typically, S is a set of points where the map f fails to be differentiable or even
continuous, or even if f is differentiable its derivative is not an isomorphism. For the sake
of completeness, let us refer that in the general setting of [3], where maps with critical sets
are allowed, condition (S1) introduced in Subsection 1.2 above to express that f behaves as
a power of the distance close to S needs to be replaced by the following stronger condition:
there are B, β > 0 such that

(S1∗)
1

B
dist(x,S)β ≤ ‖Df(x)v‖

‖v‖
≤ B dist(x,S)−β,

for every v ∈ TxM and x, y ∈ M \ S with dist(x, y) < dist(x,S)/2. However, notice that
for piecewise expanding maps the left hand side of (S1∗) is trivially satisfied, and so (S1∗)
coincides with (S1) in this setting. Related to this, see Remark 3.2 below.

Given δ > 0 and x ∈M \ S we define the δ-truncated distance from x to S as

distδ(x,S) =

{
dist(x,S), if dist(x,S) < δ;

1, otherwise.
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We say that f is non-uniformly expanding (NUE) on a set H ⊂ M if there is some c > 0
such that for all x ∈ H

lim sup
n→+∞

1

n

n−1∑
j=0

log ‖Df(f j(x))−1‖ < −c. (21)

Moreover, we say that f has slow recurrence (SR) to S on H if for all ε > 0 there exists
δ > 0 such that for all x ∈ H

lim sup
n→+∞

1

n

n−1∑
j=0

− log distδ(f
j(x),S) ≤ ε.

The next result is a consequence of Lemmas 5.2 and 5.4 in [3], and will be used to prove a
useful criterium for a partition of a piecewise expanding map to be quasi-Markovian.

Lemma 3.1. Let f : M \ S → M be a C2 map such that f behaves as a power of the
distance close to S. If NUE and SR hold for a set H ⊂ M , then there exists δ1 > 0 such
that for all x ∈ H there are infinitely many n ∈ N and an open neighborhood Vn(x) of x
which is mapped by fn diffeomorphically onto the ball of radius δ1 around fn(x).

Though the results in [3] are stated for boundaryless manifolds, it is not difficult to
see that that the conclusion of Lemma 3.1 still holds for a manifold M with boundary,
provided the boundary of M is included in the singular set S.

Remark 3.2. In [3], a third condition (S3) is considered in the definition of a map behaving
as a power of the distance close to the singular set. However, that condition (S3) is only
used in the proof of [3, Corollary 5.3] to deduce a bounded distortion property on the
sets Vn(x). Here we do not need that property.

3.1. Piecewise expanding maps. Let us now go back to piecewise expanding maps. As
observed above, in this setting we have condition (S1∗) equivalent to (S1).

Lemma 3.3. Let φ : Ω → Ω be a C1 piecewise expanding map for which (S1)-(S2) hold.
If log dist(·,Sφ) ∈ Lp(m) and µ is an ergodic absolutely continuous invariant probability
measure for φ such that dµ/dm ∈ Lq(m) with 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1, then φ has
slow recurrence to Sφ on a subset of Ω with full µ measure.

Proof. Define for x ∈ Ω \ Sφ
ξ(x) = − log dist(x,Sφ).

Since we are assuming that log dist(·,Sφ) ∈ Lp(m) and dµ/dm ∈ Lq(m) with 1 ≤ p, q ≤ ∞
and 1/p+ 1/q = 1, then Hölder Inequality gives that ξ ∈ L1(µ). Hence,

lim
δ→0+

∫
{ξ>− log δ}

ξdµt = 0.

Observing that we have
χ{ξ>− log δ}ξ = − log distδ(·,Sφ),

where χ{ξ>− log δ} denotes the characteristic function of the set {ξ > − log δ}, it easily follows
that for all ε > 0 we can find δ > 0 such that∫

− log distδ(·,Sφ)dµ < ε.
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Hence, using the ergodicity of µ, Birkhoff’s Ergodic Theorem yields

lim
n→+∞

1

n

n−1∑
j=0

− log distδ(φ
j
t(x),Sφ) =

∫
− log distδ(·,Sφ)dµt < ε

for µ almost every x ∈ Ω. �

Proposition 3.4. Let φ be a C1 piecewise expanding map for which (S1)-(S2) hold. If
log dist(·,Sφ) ∈ Lp(m) and µ is an absolutely continuous invariant probability measure for
which dµ/dm ∈ Lq(m) with 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1, then Rφ is quasi-Markovian
with respect to µ.

Proof. Considering, as before, Rn(x) the element in Rn containing x, we need to show that
there is some constant η > 0 such that for µ almost every x ∈ Ω, there are infinitely many
values of n ∈ N for which

m(φn(Rn(x))) ≥ η.

By Lemma 3.3, there is a set H ⊂ T with full µ measure such that φ has slow recurrence
to Sφ on H. On the other hand, since φ is a piecewise expanding map, then φ is clearly
non-uniformly expanding on H. Hence, by Lemma 3.1 there exists δ1 > 0 such that for
all x ∈ H there are infinitely many n ∈ N and an open neighborhood Vn(x) of x which is
mapped by fn diffeomorphically onto the ball of radius δ1 around fn(x). In such case, each
set Vn(x) is necessarily contained in Rn(x), for Vn(x) is mapped by φn diffeomorphically
onto its image. Recalling that this image is the ball of radius δ1 > 0 around φn(x), we have

m(φn(Rn(x))) ≥ m(φn(Vn(x))) ≥ πδ2
1,

thus having proved that Rφ is quasi-Markovian with respect to µ. �

4. Continuity of entropy

In this section we prove Theorem D. This will be obtained as a consequence of Theo-
rem B, together with Lemma 4.1 below. The proof of this lemma would be a straightfor-
ward application of Hölder Inequality if the convergence were in the norm of Lp(m) and
1/p+ 1/q = 1. Nevertheless, slightly improving the regularity of functions, we are able to
obtain a useful criterium for the case that convergence holds only in the norm of L1(m).

Lemma 4.1. Consider 1 < p, q ≤ ∞ with 1/p+ 1/q < 1. Assume that

(1) (fn)n is a bounded sequence in Lp(m) converging to f ∈ Lp(m) in L1(m);
(2) (gn)n is a bounded sequence in Lq(m).

Then

lim
n→∞

∫
(fn − f)gndm = 0.

Proof. Take an arbitrary ε > 0. Consider M > 0 such that ‖f‖p ≤ M , ‖fn‖p ≤ M and
‖gn‖q ≤ M for all n ≥ 1, and let 1 ≤ r < ∞ be such that 1/q + 1/r = 1. Define for each
n ≥ 1

Bn =

{
x ∈ Ω : |fn(x)− f(x)| > ε

2Mm(Ω)1/r

}
.

Since ‖fn − f‖1 → 0 as n→∞, we necessarily have

lim
n→∞

m(Bn) = 0. (22)
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We can write∫
Ω

|fn − f | |gn|dm =

∫
Ω\Bn

|fn − f | |gn|dm+

∫
Bn

|fn − f | |gn|dm. (23)

For the first term in the sum above we have∫
Ω\Bn

|fn − f | |gn|dm ≤
ε

2Mm(Ω)1/r

∫
Ω

|gn|dm ≤
ε

2Mm(Ω)1/r
‖gn‖qm(Ω)1/r <

ε

2
.

Let us see that, for n sufficiently large, the second term in (23) can also be made smaller
than ε/2. Consider now 1 ≤ s < ∞ such that 1/p + 1/s = 1. Notice that one necessarily
has s < q, and so gn ∈ Lq(m) ⊂ Ls(m). Using Hölder inequality we get∫

Bn

|fn − f | |gn|dm ≤ ‖fn − f‖p‖χBngn‖s ≤ 2M‖χBngn‖s. (24)

Moreover, taking 1 ≤ u <∞ such that s/q + 1/u = 1

‖χBngn‖ss =

∫
Bn

|gn|sdm ≤ ‖χBn‖u‖gsn‖q/s ≤ m(Bn)1/u‖gn‖sq,

which then gives

‖χBngn‖s ≤ m(Bn)1/(su)‖gn‖q ≤Mm(Bn)1/(su) (25)

Hence, using (22), (23), (24) and (25) we easily see that the second term on the right hand
side of (23) can be made smaller that ε/2 as well, for n sufficiently large. �

Let us now complete the proof of Theorem D. By Theorem B, it is enough to show that
the function

I 3 t 7−→
∫

Ω

log(Jφt)dµt

is continuous. Let (tn)n be an arbitrary sequence in I converging to t0 ∈ I. Considering

ρn =
dµtn
dm

,

we may write∣∣∣∣∫
Ω

log(Jφt0 )dµt0 −
∫

Ω

log(Jφtn )dµtn

∣∣∣∣ ≤∣∣∣∣∫
Ω

(log(Jφt0 )− log(Jφtn ))ρndm

∣∣∣∣+

∣∣∣∣∫
Ω

(ρ0 − ρn) log(Jφt0 )dm

∣∣∣∣ . (26)

Using Lemma 4.1 with fn = log(Jφtn ) and gn = ρn in the first term of the sum above,
and fn = ρn and gn = log(Jφt0 ) in the second one, it immediately follows that, under the
assumptions of Theorem D, both terms in the sum converge to zero when n goes to infinity,
thus giving the desired conclusion.
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5. Maps with large branches

In this section we prove Theorem F. Assume that (φt)t∈I is a family of C2 piecewise
expanding maps for which the assumptions of Theorem F hold. In particular, there is
q > d for which log Jφt ∈ Lq(m) and log Jφt depends continuously on t ∈ I in L1(m). We
are going to prove that, in this setting, the assumptions of Theorem D are verified. In
practice, we only have to show that if we take ρt = dµt/dm, then there is some 1 < p ≤ ∞
with 1/p+1/q < 1 such that ρt is uniformly bounded in Lp(m) and ρt depends continuously
on t ∈ I in L1(m). We start with a preliminary result whose conclusion gives the bounded
distortion condition used in [7, Theorem A].

Lemma 5.1. Let φ be a C2 piecewise expanding map. If the bounded distortion condition
(P2) holds, then for all R ∈ Rφ and all x ∈ intφ(R) we have∥∥D (Jφ ◦ φ−1

R

)
(x)
∥∥∣∣Jφ ◦ φ−1

R (x)
∣∣ ≤ ∆,

where ∆ > 0 is the constant in (P2).

Proof. It is enough to show that for all x ∈ intφ(R) and all 1 ≤ j ≤ d we have∣∣∣∣∣
∂
∂xj

(
Jφ ◦ φ−1

R

)
(x)

Jφ ◦ φ−1
R (x)

∣∣∣∣∣ ≤ ∆.

In fact,∣∣∣∣∣
∂
∂xj

(
Jφ ◦ φ−1

R

)
(x)

Jφ ◦ φ−1
R (x)

∣∣∣∣∣
=

∣∣∣∣ ∂∂xj log(Jφ ◦ φ−1
R )(x)

∣∣∣∣
=

∣∣∣∣limh→0

1

h

(
log Jφ(φ−1

R (x1, . . . , xj + h, . . . , xd))− log Jφ(φ−1
R (x1, . . . , xj, . . . , xd))

)∣∣∣∣
=

∣∣∣∣limh→0

1

h

(
log

Jφ(φ−1
R (x1, . . . , xj + h, . . . , xd))

Jφ(φ−1
R (x1, . . . , xj, . . . , xd))

)∣∣∣∣ (27)

Now, by (P2) we have

log
Jφ(φ−1

R (x1, . . . , xj + h, . . . , xd))

Jφ(φ−1
R (x1, . . . , xj, . . . , xd))

≤ ∆|h|

This obviously implies that the expression in (27) is bounded by ∆. �

Now, using Lemma 5.1, we easily deduce that, under conditions (1) and (2) of Theorem F,
the assumptions of [7, Theorem A] are verified. Hence, as we are assuming uniqueness of
the absolutely continuous invariant probability measure, using [7, Theorem A] we obtain
in this particular case that ρt depends continuously on t ∈ I in L1(m).

Let us finally prove that there is some 1 < p ≤ ∞ with 1/p + 1/q < 1 such that ρt
is uniformly bounded in Lp(m). Under assumption (1) of Theorem F, it follows from [7,
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Corollary 3.4] that the density ρt of the absolutely continuous invariant probability measure
µt is a function with (uniformly) bounded variation. Actually, we have

var(ρt) ≤ K1, with K1 =
∞∑
n=0

λnK,

where K is the constant in condition (2) of Theorem F. By Sobolev’s Inequality (see e.g.
[20, Theorem 1.28]) there is a constant C > 0 (only depending on the dimension d) such
that

‖ρt‖p ≤ C var(ρt), with p =
d

d− 1
. (28)

This gives that ρt is uniformly bounded in Lp(m). Finally, observing that

1

p
+

1

q
=
d− 1

d
+

1

q
<
d− 1

d
+

1

d
= 1,

we conclude the proof of Theorem F.

6. Tent maps

In this section we prove Theorems G and H. Both proofs are based in the simple fact
that if, for t belonging to some set of parameters I, the map Tt has a unique absolutely
continuous invariant probability measure µt which also happens to be the unique absolutely
continuous invariant probability measure for a certain power T nt , and the family {T nt }t∈I is
in the conditions of Corollary E and Theorem F, then the entropy formula still holds for Tt,
and hµt(Tt) depends continuously on t ∈ I. This is actually a straightforward consequence
of the following well-known formulas establishing that for each t ∈ I one has

hµt(Tt) =
1

n
hµt(T

n
t )

and ∫
log JTnt dµt = n

∫
log JTtdµt,

6.1. Two-dimensional tents. In this section we obtain Theorem G as a consequence
of Theorem F. As assumption (1) in Theorem F does not hold for Tt, we need to take
some iterate greater than one. This has already been considered in [7] for obtaining the
statistical stability, and T 6

t is actually enough. As proved in [32, Theorem 1.1], each Tt is
strongly transitive, meaning that every non-empty open set becomes the whole attractor
under a finite number of iterations by Tt. This in particular implies that the absolutely
continuous invariant probability measure µt for Tt must be unique and ergodic and the
strongly transitive attractor of Tt mentioned above coincides with the support of µt. More-
over, for any t ∈ [τ, 1], any power of Tt is also strongly transitive in the support of µt from
which we deduce that any power of Tt has a unique ergodic absolutely continuous invariant
probability measure as well, which must necessarily coincide with µt. All these facts can
be checked in [32].

We are going to see that the family (T 6
t )t∈[τ,1] is in the conditions of Corollary E and

Theorem F. Observe that as for each t ∈ [τ, 1] the partition into smoothness domains of
T 6
t is finite, then it necessarily has finite µt entropy. Moreover, from [7, Section 4] we know

that each T 6
t : T → T is a piecewise expanding map with bounded distortion and large
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(a) (b)

(c)

Figure 1. Domains of smoothness for T 6
t : (a) t = τ (b) t = 0.95 (c) t = 1

branches satisfying conditions (1) and (2) in the statement of Theorem F. Additionally,
since each map T 6

t is piecewise linear with the slopes and smoothness domains continuously
depending on the parameter t (see Figure 1), it is not difficult to see that log(JT 6

t
) ∈ L∞(m)

and, moreover, log(JT 6
t
) depends continuously on t ∈ [τ, 1] in the norm of L1(m). This is

the content of condition (3) with q =∞ in the statement of Theorem F.
It remains to check that the assumptions of Corollary E hold for our family of tent maps.

First of all, observe that condition (∗) is part of condition (1) in Theorem F, and so it is
satisfied. Considering St the singular set of Tt, in this case we have

St = C6 ∪ ∂T ,

where C6 is the critical set for T 6
t and ∂T is the boundary of T . Notice that C6 is made by

a finite number of straight line segments dividing T into the smoothness domains of T 6
t ;

see Figure 1. Since T 6
t has constant derivative on each connected component of T \ St,

then conditions (S1)-(S2) are obviously satisfied. Finally, as St is a finite union of one-
dimensional submanifolds of T , it follows from [2, Proposition 4.1] that log dist(·,St) ∈
L2(m). Hence, all the assumptions of Corollary E hold for the two-dimensional tent maps.

6.2. One-dimensional tents. Here we prove Theorem H. Let us recall the family of
one-dimensional tent maps {Tt}t∈(1,2], with Tt : [0, 2]→ [0, 2] given by

Tt(x) =

{
tx, if 0 ≤ x ≤ 1;
t(2− x), if 1 ≤ x ≤ 2.

Our strategy to prove Theorem H is, once again, to use Corollary E and Theorem F.
Let us start by assuming that t ∈ (2

1
4 , 2]. In this case, it is easy to see that, if t ∈ (2

1
2 , 2],

then the interval At = [t(2 − t), t] is the unique attractor for Tt and, moreover, that Tt is
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strongly transitive on At. On the other hand, if t ∈ (2
1
4 , 2

1
2 ], then Tt has a unique attractor,

still denoted by At, formed by two disjoint subintervals (with a common endpoint, in the

case t = 2
1
2 ); see [16] or [15] for details. In fact, we have At = A1

t ∪ A2
t with Tt(A

1
t ) = A2

t ,
and Tt(A

2
t ) = A1

t . Moreover, the map T 2
t is strongly transitive on A1

t and on A2
t . In any

case, the map T 5
t is transitive on At for every t ∈ (2

1
4 , 2] (observe that, for instance, this

last claim is not true for T 6
t ). For each t ∈ (1, 2], let µt be the unique ergodic absolutely

continuous invariant measure for Tt; see [25]. Following the same arguments given for the

two-dimensional case we may assert that, for every t ∈ (2
1
4 , 2], we have µt as the unique

ergodic absolutely continuous invariante measure for T 5
t .

Let us now explain why we choose the fifth power of the maps for parameters in the
interval (2

1
4 , 2]. Observe that for each t ∈ (1, 2] we have |T ′t | = t, which then implies that

the piecewise expanding condition (P1) in Subsection 1.1 is satisfied by Tt with σt = 1/t.
However, for having condition (∗) satisfied we need to take powers of Tt. Recall that in
the one-dimensional case we can always assume βt = 1; see Remark 1.1. Moreover, for
any k ∈ N, the map T kt satisfies condition (P1) with σkt = 1/tk. Now, a straightforward

calculation gives that (∗) holds for T 5
t , uniformly in t ∈ (2

1
4 , 2].

Now, observe that the singular set St of T 5
t is formed by a finite number of critical points

where the map is not differentiable, together with the boundary points 0 and 2. As T 5
t

has constant derivative on each connected component of [0, 2] \ St, conditions (S1)-(S2)
are trivially satisfied. Finally, it is easy to see that in this one-dimensional setting we
have log dist(·,St) ∈ L1(m). Hence, all the assumptions of Corollary E are satisfied for the

maps T 5
t , with t ∈ (2

1
4 , 2]. In this way we deduce that the entropy formula holds for µt,

whenever t ∈ (2
1
4 , 2].

Next, observe that since the maps T 5
t are continuous, then the second condition in

Theorem F is trivially satisfied. This fact together with condition (∗) allow us to assert

that µt depends continuously on t ∈ (2
1
4 , 2] according to [7, Theorem A]. Furthermore,

it is obvious that log(JT 5
t
) ∈ L∞(m) and, moreover, log(JT 5

t
) depends continuously on

t ∈ (2
1
4 , 2] in the norm of L1(m). This is the content of condition (3) in the statement of

Theorem F with q =∞. Hence, Theorem H is proved for parameters t ∈ (2
1
4 , 2].

Now we explain how we can extend these ideas to the whole interval of parameters (1, 2].
For this we write

(1, 2] =
∞⋃
j=0

Ij, where Ij = (2
1

2j+2 , 2
1

2j ],

and and prove Theorem H for every t ∈ Ij and every j ∈ N. Observe that, for every

j ≥ 0 we have Ij ∩ Ij+1 = (2
1

2j+2 , 2
1

2j+1 ] and therefore the continuity of the entropy on the
sequence of parameters { 1

2j
}j∈N will also be guaranteed.

Let us briefly describe the dynamics of Tt for parameters t ∈ Ij. If t ∈ Ij is such that

t ≤ 2
1

2j+1 then Tt has an attractor At formed by 2j+1 disjoint pieces and T 2j+1

t is strongly

transitive on any of these pieces; see [16] or [15] for details. If t ∈ Ij is such that t > 2
1

2j+1

then Tt has an attractor At formed by 2j disjoint pieces and T 2j

t is strongly transitive on

any of these pieces. In any case, T 2j+2+1 is transitive on At for every t ∈ Ij and, moreover,

it is easy to see that condition (∗) holds for T 2j+2+1, uniformly in Ij. The rest of the



20 J. F. ALVES AND A. PUMARIÑO

arguments needed for proving Theorem H for every t ∈ Ij follows in the same way as the

ones used before for t ∈ I0 = (2
1
4 , 2].
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