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The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

J. R. R. Tolkien
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Abstract

Suppose that H is a semisimple Hopf algebra over a field F acting on an algebra A. We

study the following question: when does this action factors through a group action?

In [18], for H semisimple and F algebraically closed, the authors showed that if A is a

commutative domain, then the action factors through a group action. Cuadra, Etingof and

Walton, in [13], showed that any semisimple Hopf action on the Weyl algebra An(F ) must

factor through a group action.

In this work, with F algebraically closed of characteristic zero, we show that any action

of a semisimple Hopf algebra H on an enveloping algebra of a finite-dimensional Lie algebra or

on an iterated Ore extension of derivation type A = F [x1][x2; d2][· · · ][xn; dn] factors through a

group action. In order to do this, we consider inner faithful Hopf actions and use a reduction

step, which basically consist of passing from algebras in characteristic zero to algebras in

positive characteristic.

Next, we present actions of semisimple Hopf algebras over an algebraically closed field of

characteristic zero which do not factor through group actions. For this, we construct a class

of Hopf algebras H2n2 , which are not group algebras, and establish conditions to define inner

faithful actions of those Hopf algebras on the quantum polynomial algebras. In this way, we

give examples of algebras where the question stated at the beginning is answered negatively.





Resumo

Seja H uma álgebra de Hopf semi-simples sobre um corpo F que age numa álgebra A.

Estudamos a seguinte questão: Quando esta acção factoriza-se por uma acção de grupo?

Em [18], para o caso de H semi-simples e F algebricamente fechado, os autores mostraram

que se A é um domínio comutativo, então a acção factoriza-se por uma acção de grupo. Cuadra,

Etingof and Walton, em [13], mostraram que tal também acontece para qualquer acção de

uma álgebra de Hopf semi-simples na álgebra de Weyl An(F ).

Neste trabalho, dado F um corpo algebricamente fechado de característica zero, mostramos

que qualquer acção de uma álgebra de Hopf semisimples numa álgebra envolvente de uma

álgebra de Lie de dimensão finita ou numa extensão de Ore iterada do tipo de derivação

A = F [x1][x2; d2][· · · ][xn; dn] factoriza-se por uma acção de grupo. Para tal, consideramos

acções de ágebras de Hopf fielmente internas e usamos uma redução, que basicamente consiste

em passar de álgebras em característica zero para álgebras em característica positiva.

Apresentamos também acções de álgebras de Hopf semi-simples sobre um corpo alge-

bricamente fechado de característica zero que não se factoriza por acções de grupo. Para

isso, construímos uma classe de álgebras de Hopf, H2n2 , que não são álgebras de grupo, e

estabelecemos condições para definir acções fielmente internas de tais álgebras de Hopf em

álgebras polinomiais quânticas. Obtemos assim exemplos de álgebras onde a questão colocada

é respondida negativamente.
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Chapter 1

Introduction

1.1 Overview

The concept of Hopf algebras arose in the 1940’s in the context of algebraic topology

and cohomology in relation to the work of Heinz Hopf [22]. Basically, two different strands,

one coming from the theory of algebraic groups and the other from algebraic topology, are

responsible for, historically speaking, introducing the term “Hopf algebra” in the literature.

Both of them appeared during the 1950′s. It was only in the 1960′s and 1970′s, with the works

of Larson, Radford, Sweedler, Taft, and Wilson, among others, that a general theory of Hopf

algebras was developed, with the first book on the subject written by Sweedler and published

in 1969 [49]. For more information on the beginning history of Hopf algebras, see the survey

of Andruskiewitsch and Ferrer [4]. In the 1980′s, most specifically with the floodgates opened

by Drinfel’d [16], connections between Hopf algebras and theoretical physics were discovered,

the so called quantum groups, as well as connections with quantum topology, noncommutative

geometry, knot theory etc. For more on quantum groups, see [26] and [36].

A standard approach to introduce Hopf algebras is through group algebras. Briefly, a

Hopf algebra H is a vector space over a field F with an algebra and a coalgebra structure along

with a linear map S : H → H, called antipode, satisfying certain compatibility conditions.

The most standard examples of Hopf algebras are group algebras F [G], for G a group, and

in this case, the antipode S is defined by the inverse operation of the group G, S(g) = g−1

for all g ∈ G. In a certain sense, the notion of Hopf algebras generalizes the notion of groups.

Now, in group theory, one can always look to groups in a different way, namely by its actions

1



2 Introduction

on other mathematical objects, instead of looking at the multiplication structure within the

group. Geometers use group actions on geometric objects to find out informations about the

structure of the object, while group theorists use group actions on a set to study the structure

of the group itself. Often, the actions of the group are symmetries of the object.

Roughly speaking, several results for groups were “transfered” from group theory to the

Hopf algebraic context. Perhaps the most striking of them are Maschke’s theorem [Theorem

2.2.36] and Lagrange’s theorem for Hopf algebras [Corollary 2.2.44]. Also, in a different

direction, there has been done a lot of work on Hopf algebra actions, allowing, for instance in

noncommutative geometry, to codify symmetries of noncommutative spaces that cannot be

codified by a group (examples of this phenomenon are quantum groups).

Suppose that H is a finite-dimensional Hopf algebra over a field F acting on an algebra

A. Ff I is a Hopf ideal such that I ·A = 0, we say that the action factors through a quotient

Hopf algebra H/I. One says that the action factors through a group action if there exists

a Hopf ideal I of H, with I · A = 0, such that H/I ∼= F [G] as Hopf algebra for some group

G. In this last scenario, the Hopf action can be seen, in a certain sense, as a group action.

Suppose that H is a semisimple Hopf algebra over a field F acting on an algebra A. When

does this action factors through a group action?

The first general result appeared in [18]. Assuming that H is semisimple and F is

algebraically closed, the authors showed that if A is a commutative domain, then the action

factors thorough a group action in this setting. Cuadra, Etingof and Walton, in [13], showed

that that is also the case for the Weyl algebra A = An(F ), i.e., they showed that any semisimple

Hopf action on the Weyl algebra An(F ) must factor through a group action.

In this thesis, by using and analyzing the results obtained by Cuadra, Etingof and Walton,

we prove that the action factors through a group action for the case where A is an enveloping

algebra of a finite-dimensional Lie algebra or an iterated Ore extension of derivation type

A = F [x1; d1][x2; d2][· · · ][xn; dn], and H a semisimple Hopf algebra over an algebraically closed

field F of characteristic zero, i.e., the action must factor through a group action. Also, we shall

give examples of algebras where there exists an action of a finite-dimensional Hopf algebra

that does not factor through a group action. To do this, we present a construction of a family

of semisimple Hopf algebras H2n2 , for n a positive integer, and we give conditions to define

actions of such Hopf algebras on quantum polynomial algebras.
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1.2 Thesis organization

The thesis is organized as follows. In chapter 2, we shall review some basic terminology,

notation, and results dealing with finite-dimensional Hopf algebras, including results on

semisimple Hopf algebras and the Nichols-Zoeller Theorem [Theorem 2.2.43].

In chapter 3, we will analyze the main result of the paper [13] to show that any action

of a semisimple Hopf algebra H on an enveloping algebra of a finite-dimensional Lie algebra

or on an iterated Ore extension of derivation type A = F [x1; d1][x2; d2][· · · ][xn; dn] factors

through a group action. In order to do this, we will consider inner faithful Hopf actions and

use a reduction step, which basically consist of passing from algebras in characteristic zero

to algebras in positive characteristic by using a subring R of the ground field F , which is

generated by all structure constants of H and the action on A, and by passing to a finite field

R/m, for m a maximal ideal of R.

In chapter 4, we will present actions of semisimple Hopf algebras over an algebraically

closed field of characteristic zero which do not factor through group actions. In order to

do that, we will construct a class of Hopf algebras H2n2 , which are not group algebras, and

establish conditions to define inner faithful actions of those Hopf algebras on the quantum

polynomial algebras. In a recent paper, [19], P. Etingof and C. Walton say that there is

no finite quantum symmetry when the action of any finite-dimensional Hopf algebra factors

through a group action. In this way, we give examples of algebras where there is quantum

symmetry.





Chapter 2

Preliminares

Throughout this work, although much of what will be presented here can be done over

any commutative ring, we let F be a field. Unless it is said otherwise, all the tensor products,

vector spaces, algebras and Hopf algebras are taken over the same ground field F . Moreover,

unless stated otherwise, by algebra, we mean an unital associative F -algebra.

The theory of Hopf algebras, especially after the works which have been done during the

last decades, can be considered a well-established branch of algebra with standard textbooks

on this subject [1], [17], [39], [42], [46], [49]. Nevertheless, in this chapter, we shall collect

some basic facts on Hopf algebras, on their actions on algebras, and some general results. The

notation and convention introduced in this section will be used in all the thesis.

2.1 Basic definitions

In this section, we introduce the basic definitions of the theory of coalgebras and discuss

the duality between algebras and coalgebras.

2.1.1 Coalgebras

We begin with some basic assumptions. Namely, we start expressing the associativity

and unit properties of an algebra in terms of diagrams and maps in order to dualize them to

obtain the definition of an F -Coalgebra.

Definition 2.1.1. An F -algebra (A, µ, η) is an F -vector space A together with F -linear maps

µ : A⊗A → A and η : F → A such that the following diagrams are commutative:

5



6 Preliminares

A⊗A⊗A

µ⊗idA

��

idA⊗µ// A⊗A

µ

��
A⊗A

µ // A

A⊗A

µ

��

F ⊗A

η⊗idA

99

A⊗ F

idA⊗η
ee

A

≃

ee

≃

99

The isomorphisms in the second diagram are given by scalar multiplication. The first

commutative diagram expresses the associativity property of A. The second diagram expresses

the unity property of A. We denote η(1F ) = 1A.

The linear map τV,W : V ⊗ W → W ⊗ V defined by τV,W (v ⊗ w) = w ⊗ v is called the

twist map. We note that an algebra (A,µ, η) is commutative if and only if µ ◦ τA,A = µ.

Hereafter, when we refer to an algebra (A,µ, η), we will purposely omit the structure

maps µ and η and refer to the algebra simply by A.

Now, in order to define Hopf algebras, we dualize the definition of an algebra by reversing

the arrows of the diagrams replacing the F -linear maps appropriately.

Definition 2.1.2. A coalgebra (C,∆, ϵ) is an F -vector space C together with F -linear maps

∆ : C → C ⊗ C and ϵ : C → F such that the following diagrams are commutative:

C
∆ //

∆

��

C ⊗ C

idC⊗∆

��
C ⊗ C

∆⊗idC

// C ⊗ C ⊗ C

C

∆

��

F ⊗ C

∼=
99

C ⊗ F

∼=
ee

C ⊗ C.

ϵ⊗idC

ee

idC⊗ϵ

99

The first diagram is referred to as coassociativity axiom with ∆ being called comulti-

plication. And the second diagram is referred to as counity property with ϵ being called

counity. In order to perform calculations on coalgebras, we use the Sweedler notation for the

comultiplication. For an element c ∈ C we write

∆(c) =
∑

c1 ⊗ c2,

where the summation is understood as a finite sum and the notation is just symbolic in the

sense that the terms of the sum do not represent elements of C. This notation, while it may
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be an abuse of notation, is very useful in calculations. For instance, using the coassociativity

axiom, and this notation, we have then

(∆ ⊗ id)∆(c) =
∑

c11 ⊗ c12 ⊗ c2 =
∑

c1 ⊗ c21 ⊗ c22 = (id⊗ ∆)∆(c),

for all c ∈ C. Hence, we just denote

(∆ ⊗ id)∆(c) = (id⊗ ∆)∆(c) =
∑

c1 ⊗ c2 ⊗ c3.

We write (id⊗ ∆) ◦ ∆ = ∆2 = (∆ ⊗ id) ◦ ∆. The coassociativity axiom, then, allow us to

write

∆n(c) =
∑

c1 ⊗ · · · ⊗ cn+1,

where ∆n(c) is obtained by applying the coassociativity axiom n times.

Also, in this notation, for any c ∈ C, the counity axiom can be expressed as

∑
ϵ(c1)c2 = c =

∑
c1ϵ(c2).

The reader is refereed to [42, Chapters 2,3,4] for a more solid introduction to the theory

of coalgebras including the use of Sweedler notation.

From now on, when we refer to a coalgebra (C,∆, ϵ) we will omit the structures maps ∆

and ϵ and just refer to the coalgebra as C.

Definition 2.1.3. Let C be a coalgebra. A vector subspace D of C is called a subcoalgebra if

∆(D) ⊆ D ⊗D.

We say that a coalgebra C is cocommutative if ∆(c) = (τC,C ◦ ∆)(c) for all c ∈ C.

Example 2.1.4. Given two coalgebras C and D, the tensor product C ⊗D is a coalgebra with

comultiplication defined as ∆C⊗D = (id⊗ τC,D ⊗ id) ◦ (∆C ⊗ ∆D) and counity ϵC⊗D = ϵC ⊗ ϵD,

where τC,D : C ⊗D → D ⊗ C is the twist map.

The following two examples can be found in [17, Examples 1 and 4 in Section 4.3].

Example 2.1.5. Let G be any group and let D = F [G] be its group algebra. D becomes a

coalgebra if we define ∆(g) = g ⊗ g and ϵ(g) = 1, for all g ∈ G.
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More general, let S be any non-empty set. Let F [S] be the F -vector space with canonical

basis S. F [S] becomes a coalgebra by defining ∆(s) = s⊗ s and ϵ(s) = 1, for all s ∈ S.

Example 2.1.6. Let g be any Lie algebra over F and let B = U(g) its universal enveloping

algebra. By defining ∆(x) = x⊗ 1 + 1 ⊗ x and ϵ(x) = 0, B becomes a coalgebra.

In any coalgebra C, elements whose comultiplication is as in the first above example

are sort of special and important. We say that an element c ∈ C is a group-like element if

∆(c) = c⊗ c. For a group-like element c ̸= 0, the counity property ensures that ϵ(c) = 1. If we

set G(C) the set of all group-like elements of C, then F [G(C)] is a subcoalgebra of C.

Lemma 2.1.7 ([42, Lemma 2.1.12]). Let C be a coalgebra and assume G(C) is non-empty.

Then G(C) ⊆ C is a linearly independent subset of C.

Let (C,∆C , ϵC) and (D,∆D, ϵD) be two coalgebras. An F -linear map f : C → D is called

a coalgebra homomorphism if the diagrams

C

∆C

��

f // D

∆D

��
C ⊗ C

f⊗f
// D ⊗D

C
f //

ϵC ��

D

ϵD��
k

commute. That is to say, in terms of the Sweedler notation, that, for all c ∈ C, ∆D(f(c)) =∑
f(c)1 ⊗ f(c)2 =

∑
f(c1) ⊗ f(c2) = (f ⊗ f)(∆(c)) and (ϵD ◦ f)(c) = ϵC(c).

The ground field F has a natural structure of coalgebra with ∆(1) = 1 ⊗ 1 and ϵ(1) = 1.

Moreover, for any coalgebra C, ϵ : C → F is a morphism of coalgebras.

Definition 2.1.8. A subspace I ⊆ C is called a left coideal (right coideal) if ∆(I) ⊆ C ⊗ I

(respectively ∆(I) ⊆ I ⊗ C). I is a coideal if ∆(I) ⊆ I ⊗ C + C ⊗ I and if ϵ(I) = 0.

Proposition 2.1.9 ([17, Proposition 1.4.9]). Suppose that f : C → D is a homomorphism of

coalgebras. Then Im(f) is a subcoalgebra of D and Ker(f) is a coideal in C.

We shall denote the coideal Ker(ϵ) by C+. The last result of this subsection, which can

be found in [17, Theorem 1.4.10] or [42, Theorem 2.1.21], is the homomorphism theorem for

coalgebras.

Theorem 2.1.10. Let C be a coalgebra, I a coideal and π : C → C/I the canonical projection

of vector spaces. Then:
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i) There exists a unique coalgebra structure on C/I such that π is a morphism of coalgebras;

ii) If f : C → D is a morphism of coalgebras with I ⊆ Ker(f), then there exists a unique

morphism of coalgebras f : C/I → D with f ◦ π = f .

2.1.2 Duality between algebras and coalgebras

In this subsection, we present a close relationship between algebras and coalgebras. For

this, we will look to their dual spaces.

For any vector space V , let V ∗ = HomF (V, F ) denote the linear dual of V . For any linear

map φ : V → W between vector spaces, we can consider the transpose of φ, φ∗ : W ∗ → V ∗,

which is given by φ∗(f)(v) = f(φ(v)), for all f ∈ W ∗, v ∈ V . Also, we have a linear

inclusion V ∗ ⊗W ∗ ↪−→ (V ⊗W )∗ given by (f ⊗ g)(v ⊗ w) = f(v)g(w), for all v ∈ V , w ∈ W ,

f ∈ V ∗, and g ∈ W ∗. Such a map is an isomorphism of vector spaces whenever V and W are

finite-dimensional.

For a coalgebra C, we can consider the transpose map ∆∗ and ϵ∗. What happens when

we consider such transpose maps is stated in the following lemma, where by ∆∗ we mean the

composition C∗ ⊗ C∗ ↪−→ (C ⊗ C)∗ ∆∗
−−→ C∗.

Lemma 2.1.11 ([39, Lemma 1.2.2]). If C is a coalgebra, then C∗ is an algebra with product

∆∗ and unity ϵ∗. If C is cocommutative, then C∗ is commutative.

In a more general setting, given an algebra A and a coalgebra C, the space of all linear

maps HomF (C,A) becomes an algebra via the convolution product: f ∗ g = µ ◦ (f ⊗ g) ◦ ∆,

for all f, g ∈ Hom(C,A), while the identity is given by η ◦ ϵ. And in the above lemma, we are

just taking A = F .

Now, if we start with a finite-dimensional algebra A, we have then that A∗⊗A∗ ∼= (A⊗A)∗.

This allows us to define maps ∆A∗ : A∗ → A∗ ⊗A∗ as the transpose of the multiplication map

and the unity ϵA∗ : A∗ → F . Explicitly, ∆A∗(f) =
∑
gi ⊗ hi for any (gi, hi) ∈ A∗ with the

property of f(ab) =
∑
gi(a)hi(b), for any a, b ∈ A, and ϵA∗(f) = f(1A), for all f ∈ A∗.

Proposition 2.1.12 ([17, Proposition 1.3.9]). If A is a finite-dimensional algebra, then

(A∗,∆A∗ , ϵA∗) is a coalgebra.

Remark 2.1.13. Let A be a finite-dimensional algebra. Let {e1, · · · , en} be a basis for A

and {f1, . . . , fn} be a dual basis for A∗, i.e., fj(ei) = δi,j for all 1 ≤ i, j ≤ n, where δ is the
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Kronecker symbol. For any a, b ∈ A, we can write a =
n∑

l=1
αlel and b =

n∑
p=1

βpep, for αl, βp ∈ F .

Note that, for any g ∈ A∗, we have

n∑
i,j=1

g(eiej)fi(a)fj(b) =
n∑

i,j=1

n∑
l,p=1

g(eiej)αlβpfi(el)fj(ep)

=
n∑

i,j=1
g(eiej)αiβj

= g(ab).

Therefore, ∆A∗(g) =
n∑

i,j=1
g(eiej)fi ⊗ fj, for all g ∈ A∗.

Also, we have the following result saying something about homomorphisms of algebras

and coalgebra and their duals.

Proposition 2.1.14 ([17, Proposition 1.3.12]). Let C and D be coalgebras. Also, let A and

B be finite-dimensional algebras. Thus

i) If f : C → D is a homomorphism of coalgebras, then f∗ : D∗ → C∗ is a homomorphism

of algebras;

ii) If f : A → B is a homomorphism of algebras, then f∗ : B∗ → A∗ is a homomorphism of

coalgebras.

The problem when A is not finite-dimensional is that A∗ ⊗ A∗ is a proper subspace of

(A ⊗ A)∗ and thus the image of the transpose map µ∗(A∗) may not lie in A∗ ⊗ A∗. In this

case, we have to consider a subspace of A∗ called finite dual of A. The finite dual of A is

A◦ = {f ∈ A∗|f(I) = 0, for some ideal I of A such that dim(A/I) < ∞}. With this space,

we have a more general result.

Proposition 2.1.15 ([39, Proposition 1.2.4]). If A is an algebra, then A◦ is a coalgebra, with

comultiplication ∆ = µ∗ and counity ϵ = η∗. If A is commutative, then A◦ is cocommutative.

The finite dual is the largest subspace V of A∗ such that µ∗(A) ⊆ V ⊗ V . Moreover, if A

is finite-dimensional, then A◦ = A∗.
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2.2 Bialgebras and Hopf algebras

In this section, we present the notion of Hopf algebras, which is, roughly speaking, both

an algebra and a coalgebra with a certain compatibility condition. We recall that for any

algebra A and B, both A⊗B and the ground field F can be regarded as algebras. Also, for

any coalgebras C and D, both C ⊗D and the ground field F can be regarded as coalgebras.

2.2.1 Bialgebras

Before we properly introduce the concept of a Hopf algebras, we start with the definition

of a bialgebra. We begin with a proposition which shows a natural compatibility between an

algebra structure and a coalgebra structure.

Proposition 2.2.1 ([42, Lemma 5.1.1]). Let (H,µ, η) be an algebra and (H,∆, ϵ) be a coalgebra.

Given the algebra and coalgebra structures on H ⊗H and on F , the following are equivalent:

i) µ and η are homomorphisms of coalgebras;

ii) ∆ and ϵ are homomorphisms of algebras.

Definition 2.2.2. An F -bialgebra is a tuple (H,∆, ϵ, µ, η), where (H,µ, η) is an algebra and

(H,∆, ϵ) is a coalgebra, such that either of the conditions of Proposition 2.2.1 are satisfied.

Using the Sweedler notation, to say that (H,∆, ϵ, µ, η) is a bialgebra means that, for all

a, b ∈ H and for 1H = η(1F ), ∆(ab) =
∑
a1b1 ⊗ a2b2, ∆(1H) = 1H ⊗ 1H , ϵ(ab) = ϵ(a)ϵ(b), and

ϵ(1H) = 1F .

Just as we did with algebras and coalgebras, from now on, when we refer to a bialgebra

(H,∆, ϵ, µ, η) we will be omitting the structure maps ∆, ϵ, µ and η, and refer to it just as H.

Example 2.2.3. The ground field F with the natural structure of coalgebra presented before

is a bialgebra.

Again,the following two examples can be found in [17], chapter 4, section 4.3, examples

1) and 4) respectively.

Example 2.2.4 ([17, c. 4, s. 4.3, Example 1)]). Let G be any group. The group algebra F [G]

is a bialgebra with the coalgebra structure as in Example 2.1.5.
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Example 2.2.5 ([17, c. 4, s. 4.3, Example 4)]). Let g be a Lie algebra and let U(g) be its

universal enveloping algebra. With the structure of colagebra presented in Example 2.1.6, U(g)

is a bialgebra.

For bialgebras H and K, a linear map f : H → K is called bialgebra homomorphism if it

is both an algebra homomorphism and a coalgebra homomorphism.

The duality between algebras and coalgebras established in the Subsection 2.1.2 is now

useful to construct new bialgebras from a given finite-dimensional bialgebra H as presented in

the following proposition.

Proposition 2.2.6 ([17, Propostition 4.1.6]). Let H be a finite-dimensional bialgebra. Then

H∗, with the dual structures presented in subsection 2.1.2, is a bialgebra.

Definition 2.2.7. Let H be a bialgebra. A subspace K ⊆ H is called a sub-bialgebra if K is

simultaneously a sub-algebra and a sub-coalgebra.

Let H1 and H2 be two bialgebras, a map f : H1 → H2 is called a homomorphism

of bialgebras if f is simultaneously a homomorphism of algebras and a homomorphism of

coalgebras. A subspace I ⊆ H1 is called a bi-ideal if I is both an ideal and a coideal. With

this setting, the quotient space H1/I naturally has a structure of bialgebra, and the projection

map π : H1 → H1/I is a bialgebra homomorphism [17, Proposition 4.1.8].

2.2.2 Hopf algebras

Finally, we are ready to present the definition of Hopf algebras. A Hopf Algebra H,

roughly speaking, is a bialgebra with an anti-homomorphism of algebras S : H → H satisfying

certain conditions.

Before we give the definition, we recall that if C is a coalgebra and A is an algebra,

then HomF (C,A) is an algebra with the convolution product f ∗ g = µ ◦ (f ⊗ g) ◦ ∆ for all

f, g ∈ HomF (C,A), and unity η ◦ ϵ.

Now, let H be a bialgebra. Since H is an algebra and a coalgebra, HomF (H,H) is an

algebra with the convolution product. Moreover, the identity map idH : H → H is an element

of HomF (H,H). We may consider whether or not idH is an invertible element, with respect

to the convolution product, in HomF (H,H). When it is an invertible element, we have a Hopf

algebra.
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Definition 2.2.8. A Hopf algebra is a bialgebra such that the identity map idH has a convo-

lution inverse S in HomF (H,H).

Usually, S is called an antipode of H. Also, to say that S is the inverse element of idH

in HomF (H,H) with respect to the convolution product just means that, for any h ∈ H, we

must have: ∑
S(h1)h2 = ϵ(h)1H =

∑
h1S(h2),

or, equivalently, S is an antipode of H if S satisfies (S⊗id)∆(h) = ϵ(h)1H = (id⊗S)∆(h),

for all h ∈ H.

Before we give some examples, we will present some properties of the antipode S.

Proposition 2.2.9 ([17, Proposition 4.2.6]). Let H be a Hopf algebra with antipode S. Then:

i) S(hg) = S(g)S(h), for all g, h ∈ H;

ii) S(1H) = 1H ;

iii) ∆(S(h)) =
∑
S(h2) ⊗ S(h1), for all h ∈ H;

iv) ϵ(S(h)) = ϵ(h), for all h ∈ H.

This result shows that S is an algebra anti-homomorphism and a coalgebra anti-

homomorphism.

For Hopf algebras H and K, with antipodes SH and SK respectively, it would be expected

that a bialgebra homomorphism f : H → K would be Hopf algebra homomorphism if, in

addition, SK ◦ f = f ◦ SH . But, in fact, this is a consequence. If f : H → K is a bialgebra

homomorphism, then SK ◦ f = f ◦ SH (see [17, Proposition 4.2.5]).

If H is a Hopf algebra with antipode S, then a subspace K of H is called a Hopf subalgebra

of H if K is a sub-bialgebra of H and S(K) ⊆ K. Also, in this Hopf algebra setting, we can

construct the quotient Hopf algebra, but first we need to define what a Hopf ideal is.

Definition 2.2.10. A subspace I ⊆ H is called a Hopf ideal if I is a bi-ideal of H and

S(I) ⊆ I.

For a Hopf ideal I, we know, from the last subsection, that the quotient space H/I is

a bialgebra. But the condition S(I) ⊆ I allows us to define a Hopf algebra structure on the

quotient, where we set the antipode S : H/I → H/I given by S(h) = S(h) + I, for all h ∈ H.
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Remark 2.2.11. If H is a Hopf algebra, then the set G(H) of group-like elements of H

is a group with the multiplication inherited by the one on H. What guarantees this is that

∆ is an algebra homomorphism, the properties of the antipode S and the fact that S is an

anti-homomorphism of coalgebras. Note that 1H ∈ G(H) and that S(g) = g−1 for all g ∈ G(H).

Lemma 2.2.12. Let H be a Hopf algebra and I be a Hopf ideal of H. Then every Hopf ideal

B of the quotient Hopf algebra H/I is given by J/I for some Hopf ideal J of H containing I.

Proof. Let I be a Hopf ideal of H and π : H → H/I be the projection map, which is a Hopf

algebra homomorphism. Let B be a Hopf ideal of H/I and set J = π−1(B) = {h ∈ H | h+I ∈

B}. Note that J is an ideal of H, I ⊆ J , ϵ(J) = 0, and S(J) ⊆ J . In order to prove that J is

a Hopf ideal of H it remains to prove that ∆(J) ⊆ J ⊗H +H ⊗ J .

Since Ker(π ⊗ π) = Ker(π) ⊗H +H ⊗ Ker(π) [17, Lemma 1.4.8] and (π ⊗ π)∆(J) = 0,

it follows that ∆(J) ⊆ Ker(π ⊗ π) = Ker(π) ⊗ H + H ⊗ Ker(π) = I ⊗ H + H ⊗ I, since

I = Ker(π). But I ⊆ J . Therefore, ∆(J) ⊆ J ⊗H +H ⊗ J and thus J is a coideal of H.

Clearly, J/I = B.

Lemma 2.2.13. Let J be a Hopf ideal of a Hopf algebra H which contains a Hopf subalgebra

R. Then I = J ∩R is a Hopf ideal of R.

Proof. Clearly, I is an ideal of R and S(I) ⊆ I. So, it remains to prove that I is a coideal

of R. Consider the restriction of the projection map π|R : R → H/J . Well, π|R is certainly a

coalgebra map and Ker(π|R) = I. Therefore, I is a coideal of R. Hence, I is a Hopf ideal of

R.

Also, a key property for finite-dimensional Hopf algebras is that their linear duals are

again Hopf algebras.

Proposition 2.2.14 ([17, Proposition 4.2.11]). Let H be a finite-dimensional Hopf algebra.

Then H∗ is a Hopf algebra with antipode given by the transpose S∗ : H∗ → H∗.

The next proposition will be useful in the next chapter. It answers the question of whether

a sub-bialgebra of a Hopf algebra H is itself a Hopf algebra.

Proposition 2.2.15 ([42, Proposition 7.6.1]). Let H be any Hopf algebra (not necessarily

finite-dimensional). Then any finite-dimensional sub-bialgebra of H is a Hopf subalgebra of H.
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Before we present examples of Hopf algebras, we introduce the concept of normal Hopf

subalgebra of a Hopf algebra.

Definition 2.2.16 ([39, Definition 3.4.1]). Let H be any Hopf algebra. The left adjoint action

of H on itself is given by

(adlh)(g) =
∑

h1gS(h2), ∀h, g ∈ H.

The right adjoint action of H on itself is given by

(adrh)(g) =
∑

S(h1)gh2, ∀h, g ∈ H.

A Hopf subalgebra K of H is called normal if both

(adlH)(K) ⊆ K and (adrH)(K) ⊆ K.

Also, for normal Hopf subalgebras we have the following lemma.

Lemma 2.2.17 ([39, Lemma 3.4.2]). Let H be a Hopf algebra and K a normal Hopf subalgebra

of H. Then HK+ = K+H = I is a Hopf ideal of H, and π : H → H/I is a homomorphism

of Hopf algebras.

In what follows, we present a few examples of Hopf algebras. The first and most basic

example is the group algebra, which is going to be useful in this thesis.

Example 2.2.18 ([17, Example 4.3.1]). Let G be any group. We already have seen that the

group algebra F [G] is a bialgebra (Example 2.2.4). The linear map S : F [G] → F [G] given by

S(g) = g−1 defines an antipode for F [G] and then F [G] becomes a Hopf algebra.

Example 2.2.19 ([17, Example 4.3.1]). Let G be a finite group. By the previous example,

F [G] is a Hopf algebra. Then, by Proposition 2.2.14, F [G]∗ is also a Hopf algebra with antipode

S∗. We can describe the Hopf algebra structure of F [G]∗ by considering the canonical basis

G of F [G] and so its corresponding dual basis {pg | g ∈ G} of F [G]∗. That is, pg(h) = δg,h,

for all g, h ∈ G, where δg,h is the Kronecker symbol. Then the Hopf algebra structure of
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H = (F [G])∗ can be describe as

pgph = δg,lpg, ∆(pg) =
∑
h∈G

pgh−1 ⊗ ph

1F [G]∗ =
∑
g∈G

pg, ϵ(pg) = δ1,g, S(pg) = pg−1

for all g, h ∈ G.

Example 2.2.20. Let H and K be Hopf algebras. Then H ⊗K has a Hopf algebra structure,

where the antipode is given by SH ⊗ SK .

The next example is a very important one in this thesis and will be revisited later. It is

a non-commutative, non-cocommutative Hopf algebra of dimension 8, which will be denoted

by H8. Its construction is due to Kac and Paljutkin, who discovered such Hopf algebra in the

1960’s (see [23]).

Example 2.2.21 ([23, 37]). H8 is the algebra over F generated by x, y, and z subject to the

following relations

x2 = 1, y2 = 1, xy = yx

z2 = 1
2 (1 + x+ y − xy) , zx = yz, zy = xz.

H8 has a coalgebra structure with

∆(x) = x⊗ x, ϵ(x) = 1

∆(y) = y ⊗ y, ϵ(y) = 1

∆(z) = 1
2 (1 ⊗ 1 + x⊗ 1 + 1 ⊗ y − x⊗ y) (z ⊗ z), ϵ(z) = 1.

H8 becomes a Hopf algebra by setting S(x) = x, S(y) = y, and S(z) = z.

2.2.3 Modules and comodules

In this subsection, we present the concept of modules over an algebra A in terms of

commutative diagrams and then, by dualizing such diagrams, we introduce the concept of

comodules over a coalgebra C.

We start with the definition of a module over an algebra.
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Definition 2.2.22. Let A be an algebra. A left A-module is a pair (X, γ), where X is a

vector space and γ : A⊗X → X is a homomorphism of vector spaces such that the following

diagrams are commutative:

A⊗A⊗X
idA⊗γ //

µ⊗idX

��

A⊗X

γ

��
A⊗X

γ // X

A⊗X

γ

��

F ⊗X

η⊗idX

99

≃
%%
X.

Analogously, one can define a right A-module.

In general, for all a ∈ A and m ∈ X, we write a ·m instead of γ(a⊗m). The first diagram

just means that a · (b ·m) = (ab) ·m and the second diagram can be read as 1A ·m = m, for

all a, b ∈ A e m ∈ X.

Now we dualize this definition to get the concept of a C-comodule, for C a coalgebra.

Definition 2.2.23. Let C be a coalgebra. A right C-comodule is a pair (M,ρ), where M is a

vector space and ρ : M → M ⊗ C is a homomorphism of vector spaces such that the following

diagrams are commutative:

M

ρ

��

ρ //M ⊗ C

idM ⊗∆

��
M ⊗ C

ρ⊗idC

//M ⊗ C ⊗ C

M

ρ

��

≃

%%
M⊗

M ⊗ C.

idM ⊗ϵ

::

Analogously, one can define a left C-comodule.

As for coalgebras, we also have a Sweedler notation for comodules. Given m ∈ M , we

write ρ(m) =
∑

m0 ⊗m1, where m0 ∈ M and m1 ∈ C.

With this Sweedler notation, the commutativity of the diagrams are saying that

∑
m0 ⊗m11 ⊗m12 =

∑
m00 ⊗m01 ⊗m1 :=

∑
m0 ⊗m1 ⊗m2 (2.1)

and ∑
m0ϵ(m1) = m. (2.2)
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For left comodules, the Sweedler notation is given by λ(m) =
∑

m−1 ⊗m0. For more

on this, see [17, Chapter 2].

Given a coalgebra C, hereafter we are going to omit the map ρ for a right C-comodule

(M,ρ).

Example 2.2.24. Every coalgebra (C,∆, ϵ) is a right C-comodule with ρ = ∆.

Example 2.2.25. Given a coalgebra C and a vector space X, then X⊗C is a right C-comodule

with ρ : X ⊗ C → X ⊗ C ⊗ C given by ρ = id⊗ ∆.

Now, we recall the definition of a module homomorphism in terms of a diagram and then

we dualize such notion to obtain the definition of a comodule homomorphism.

Definition 2.2.26. Let A be an algebra. Let also (X, γ) and (Y, κ) be two left A-modules.

A linear map f : X → Y is a homomoprhism of left A-modules if the following diagram

commutes:

A⊗X
idA⊗f //

γ

��

A⊗ Y

κ

��
X

f
// Y.

Definition 2.2.27. Let C be a coalgebra. Let (M,ρ) and (N,φ) be two right C-comodules.

A linear map g : M → N is a homomorphism of right C-comodules if the following diagram

commutes:

M
g //

ρ

��

N

φ

��
M ⊗ C

g⊗idC

// N ⊗ C.

In Sweedler notation, we have

φ(g(m)) =
∑

g(m0) ⊗m1, for all m ∈ M.

Although, in this subsection, we are just considering right C-comodules, all the definitions,

results etc. can be considered for left C-comodules as well.
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We will denote a right (or left) comodule by (M,ρ) and refer to ρ as the right (or left)

coaction of C on M .

Definition 2.2.28. Let M be a right C-comodule. A vector subspace N ⊆ M is called a right

C-subcomodule if ρ(N) ⊆ N ⊗ C.

Note that, in this case, N is itself a right C-comodule with the coaction given by the

restriction of ρ. Moreover, the inclusion map i : N ↪−→ M is a C-comodule homomorphism.

Naturally, for a C-subcomodule N of a C-comodule (M,ρ), as one should expect, we

have a structure of right C-comodule in the quotient space M/N . This is expressed in the

following result.

Proposition 2.2.29 ([17, Proposition 2.1.14]). There exists a unique structure of a right

C-comodule on M/N for which the canonical projection π : M → M/N is a homomorphism

of right C-comodules.

In this case, the coaction of C on M/N is given by ρ(m) =
∑
m0 ⊗m1, for all m ∈ M ,

where m = m+N = π(m). Also, in a more general setting, we have the following proposition.

Proposition 2.2.30 ([17, Proposition 2.1.16]). Let C be a coalgebra and let M and N be

two right C-comodules with f : M → N a comodule homomorphism. Then Im(f) is a

C-subcomodule of N and Ker(f) is a C-subcomodule of M .

We saw that for a coalgebra C the dual space C∗ has a structure of algebra and also that,

given an algebra A, the finite dual A◦ has a structure of coalgebra. This allows us to establish

a sort of duality between coaction and actions.

Proposition 2.2.31 ([39, Lemma 1.6.4]). 1) If M is a right C-comodule, then M is a left

C∗-module;

2) Let M be a left A-module. Then M is a right A◦-comodule if and only if {A · m} is

finite-dimensional for all m ∈ M , where A ·m denotes the action of A on the element

m.

2.2.4 Integrals and semisimplicity

We start this subsection by recalling what a semisimple artinian ring is and then we shall

say that a Hopf algebra H is semisimple if it is semisimple as an algebra.
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Let R be a ring and M be a left (right) R-module. We say that M is a semisimple module

if M is a direct sum of simple sub-modules, or, equivalently (see [51, 20.2]), every submodule

of M is a direct summand of M . A ring R is semisimple artinian if it is satisfies any of the

following equivalent conditions:

i) R is semisimple as a left R-module;

ii) (Wedderburn Artin Theorem) There exist positive integers t,m1, . . . ,mt such that

R ∼= Mn1(D1) × · · · × Mnt(Dt) as rings, where Mni(Di) is a matrix ring and Di is a

division ring;

iii) R is semisimple as a right R-module.

For more on this, see [51, chapter 4].

Now, in the Hopf algebra setting, we just say that a Hopf algebra H is semisimple if it is

semisimple as an algebra.

We next discuss the relationship between the semisimplicity of a finite-dimensional Hopf

algebra and the antipode and integrals of the Hopf algebra.

Definition 2.2.32. Let H be a Hopf algebra. A left integral in H is an element t ∈ H such

that ht = ϵ(h)t, for all h ∈ H; Similarly, a right integral in H is an element t′ ∈ H such that

t′h = ϵ(h)t′, for all h ∈ H.

We denote by
∫ l

H the set of left integrals in H and by
∫ r

H the set of right integrals in H.

Such sets can be easily check to be left and right ideals of H respectively. The next result is

due to Larson and Sweedler [33].

Theorem 2.2.33 ([46, Theorem 2.3]). Let H be a finite-dimensional Hopf algebra. Then

1) dim
∫ l

H = 1 = dim
∫ r

H ;

2) The antipode S is bijective, and S
(∫ l

H

)
=
∫ r

H .

Example 2.2.34. Let G be a finite group and H = F [G] its group algebra.

i) The element t =
∑
g∈G

g generates the space of left and right integrals in H;

ii) For H ′ = F [G]∗, the element t = p1, as described in Example 2.2.19, generates the space

of left and right integrals in H ′.
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We recall now the definition of separability for an algebra.

Definition 2.2.35. An algebra A is separable if there exists an element e =
n∑

i=1
ai ⊗bi ∈ A⊗A

such that
n∑

i=1
aibi = 1A, and, for all x ∈ A,

n∑
i=1

xai ⊗ bi =
n∑

i=1
ai ⊗ bix.

We say that a Hopf algebra H is separable if it is separable as an algebra.

The next result, due to Larson and Sweedler, deals with integrals and theirs relationship

with the semisimplicity of a Hopf algebra.

Theorem 2.2.36 ([46, Theorem 3.2]). Let H be a finite-dimensional Hopf algebra. Then the

following statements are equivalent.

1) H is semisimple;

2) H is separable;

3) ϵ(
∫ l

H) ̸= 0 (if and only if ϵ(
∫ r

H) ̸= 0).

This generalizes Maschke’s Theorem for group algebras of finite groups, which says that

the group algebra F [G] is semisimple if and only if |G|−1 ∈ F . In terms of integrals, since

t =
∑

g∈G g ∈
∫ l

F [G] ( and also t ∈
∫ r

F [G]), we have ϵ(t) = |G|. Thus, |G|−1 ∈ F if and only if

ϵ(t) ̸= 0.

Semisimplicity of finite-dimensional Hopf algebras over fields of characteristic zero also

can be deduced in terms of the antipode of the Hopf algebra. This is precisely what was

proved by Larson and Radford in [32] and it is a characterization of semisimple Hopf algebras.

Theorem 2.2.37 (Larson-Radford). Let H be a finite-dimensional Hopf algebra over a field

F of characteristic zero. Then the following are equivalent:

i) H is a semisimple Hopf algebra;

ii) H∗ is a semisimple Hopf algebra;

iii) S2 = id.

Remark 2.2.38 ([17, Lemma 5.3.1]). In [50, Corollary 2.7], Sweedler proved that if a Hopf

algebra contains a non-zero finite-dimensional right ideal, then the Hopf algebra is finite-

dimensional. Since, for H a semisimple Hopf algebra, we have that H ∼= ker(ϵ) ⊕ I as



22 Preliminares

right H-modules. Since ker(ϵ) has codimension 1, it follows that H contains a non-zero

finite-dimensional right ideal. Therefore, we conclude that every semisimple Hopf algebra is

finite-dimensional.

As a corollary of Theorem 2.2.37, we will deduce that commutative and cocomutative

Hopf algebras are trivial, i.e., they are isomorphic to a group algebra or the dual of a group

algebra.

Corollary 2.2.39. Let H be a finite-dimensional Hopf algebra and suppose that F is alge-

braically closed field of characteristic zero.

i) If H is commutative, then H ∼= F [G]∗ for some group G with dim(H) = |G|;

ii) If H is cocommutative, then H ∼= F [G] for some group G with dim(H) = |G|.

Proof. To prove the first item, we note first that H commutative implies that S2 = id. Indeed,

for all h ∈ H, we have

(S ∗ S2)(h) =
∑

S(h1)S2(h2)

=
∑

S2(h2)S(h1)

=
∑

S(h1S(h2))

= ϵ(h)S(1H) = ϵ(h)1H .

Therefore, S2 is the convolution inverse of the antipode S and so it must be equal to id.

Then, by Theorem 2.2.37, H is semisimple. Hence, since H is a commutative semisimple

finite-dimensional Hopf algebra over an algebraically closed field, by the Wedderburn-Artin

Theorem, H is isomorphic as rings to the direct product of n copies of F , where n is the

dimension of H. Thus, H has a complete set of orthogonal idempotents {e1, · · · , en}. Let

{f1, · · · , fn} be the correspondent dual basis in H∗. By Remark 2.1.13, for all 1 ≤ i ≤ n, we

have

∆H∗(fi) =
n∑

l,j=1
fi(elej)fl ⊗ fj = fi ⊗ fi.

This implies that the basis {f1, · · · , fn} of H∗ consists of group-like elements. Therefore,

H∗ is a group algebra, namely, H∗ = F [G(H∗)]. Then, since (H∗)∗ ∼= H as Hopf algebras, it

follows that H ∼= F [G]∗ for some group G with dim(H) = |G|.
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For the second item, we just have to note that if H is cocomutative then H∗ is commutative.

Then, by the first item, H∗ ∼= F [G]∗ for some group G with dim(H) = |G|. Therefore, by

duality, H ∼= F [G] for some group G with dim(H) = |G|.

Given a coalgebra C, the coradical of C is the sum of the simple subcoalgebras of C and

is denoted C0 [42, Definition 3.4.1], where by a simple coalgebra D we just mean that D has

only (0) and D as subcoalgebras. C is called cosemisimple if C = C0. A Hopf algebra H is

called cosemisimple if it is cosemisimple as a coalgebra.

Definition 2.2.40 ([39, Definition 2.4.4]). Let H be a Hopf algebra. An element T ∈ H∗ is a

left integral on H if for all f ∈ H∗,

f ∗ T = f(1H)T.

Right integrals on H are defined similarly.

In the finite-dimensional setting, this definition is just saying that an integral on H is

the same as an integral in H∗, since ϵH∗(f) = f(1H), for all f ∈ H∗.

We have the following theorem which characterizes cosemisimple Hopf algebras.

Theorem 2.2.41 ([39, Theorem 2.4.6]). If H is any Hopf algebra, then the following is

equivalent:

a) H is cosemisimple;

b) There exists a left integral T on H satisfying T (1H) = 1.

To end this section, we present a theorem connecting semisimple and cosemisimple Hopf

algebras over a field of characteristic zero which will be used in the next chapter.

Theorem 2.2.42 ([42, Corollary 13.2.3]). Let H be a finite-dimensional Hopf algebra over a

field F of characteristic zero. Then the following are equivalent:

a) H and H∗ are semisimple;

b) H and H∗ are cosemisimple.
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2.2.5 The Nichols-Zoeller theorem

Finally, to end this section, we present the Nichols-Zoeller Theorem, which partially

answers the question: When Hopf algebras are free over their Hopf subalgebras?

This question is one of the famous conjectures proposed by Irving Kaplansky in 1975,

see [25]. If the Hopf algebra H is finite-dimensional, then the Nichols-Zoller theorem answers

positively this question, in the sense that it always will be the case for any Hopf subalgebra of

H.

Theorem 2.2.43 ([40]). Let H be a finite-dimensional Hopf algebra, and let R ⊆ H be a

Hopf subalgebra of H. Then H is a free R-module.

This theorem will be useful in the subsequent chapters.

Also, as a consequence, since for any subgroup G′ of a finite group G we have that F [G′]

is a Hopf subalgebra of F [G], the following corollary generalizes the Lagrange Theorem in

group theory to the context of Hopf algebras.

Corollary 2.2.44 (Lagrange’s Theorem for Hopf algebras). Let H be a finite-dimensional

Hopf algebra, and let R ⊆ H be a Hopf subalgebra of H. Then dim(R) divides dim(H).

2.3 Hopf algebra actions on algebras

In this section, we present the concept of module algebras, and of comodule algebras.

Basically, these are concepts of actions of Hopf algebras on algebras and of coactions of Hopf

algebras on algebras. Afterwards, we will see that with a Hopf action of an algebra H on

an algebra A, it is possible to construct a new algebra called smash product and denoted by

A#H.

2.3.1 Module algebras and comodule algebras

Since a Hopf algebra H has an algebra structure, we can consider H-modules.

We start with the definition of a Hopf action.

Definition 2.3.1. Let H be a Hopf algebra and A be an algebra. We say that H measures A

if there exists a linear map · : H ⊗A → A satisfying the following conditions
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1) h · (ab) =
∑

h

(h1 · a)(h2 · b);

2) h · 1A = ϵ(h)1A,

for all h ∈ H, and a, b ∈ A, where h · a = ·(h ⊗ a). Moreover, if · : H ⊗ A → A defines an

H-module structure on A and H measures A, we say that A is a left H-module algebra, or

that there is a Hopf action of H on A.

Remark 2.3.2. Let H be a Hopf algebra acting on an algebra A. Let 0 ̸= g ∈ G(H) be a

group-like element of H. Then, since ∆(g) = g ⊗ g, we must have that

g · (ab) = (g · a)(g · b), for all a, b ∈ A.

Also, note that S(g) = g−1 is also a group-like element of H. Hence, g acts as an automorphism

of A, i.e., there exists αg ∈ Aut(A), such that g · a = αg(a), for all a ∈ A. αg(1A) = 1A and

α−1
g = αg−1.

This concept of an action of a Hopf algebra H on an algebra A generalizes the concept of

group actions on algebras.

Example 2.3.3. We say that a group G acts on an algebra A by automorphisms if there exists

a group homomorphism G → Aut(A), where Aut(A) denotes the group of automorphisms of

A. Let H = F [G] be the group algebra of G, which is a Hopf algebra as we already have seen.

Then an algebra A is a left H-module algebra if and only if G acts on A by automorphisms.

Indeed, if φ : G → Aut(A) is a homomorphism of groups, we define the H-module

structure on A by g · a = φ(g)(a), for all g ∈ G and for all a ∈ A. Since ∆(g) = g ⊗ g for all

g ∈ G, and φ(g) is a homomorphism of algebras, it follows that A has a left H-module algebra

structure.

Reciprocally, suppose that A has a left H-module algebra structure. Define φ : G → Aut(A)

by φ(g)(a) = g·a, for all g ∈ G, a ∈ A. Since A has a left H-module structure, φ(gl) = φ(g)φ(l),

for all g, l ∈ G. Also, by Remark 2.3.2, for αg = φ(g), we get that φ(g) is in fact an

automorphism. Moreover, φ(g)(1A) = g · 1A = ϵ(g)1A = 1A. Therefore, φ defines an action of

G on A by automorphisms.
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Remark 2.3.4. Let H be a Hopf algebra and V and W two H-modules. Then, the diagonal

action · : H ⊗ V ⊗ W given by h · (v ⊗ w) =
∑
h1 · v ⊗ h2 · w, for all h ∈ H, v ∈ V , and

w ∈ W , defines a H-module structure on V ⊗W .

Lemma 2.3.5 ([17, Proposition 6.1.4]). Let A be an algebra which is also a left H-module.

Then A is an H-module algebra if and only if the multiplication map µ : A ⊗ A → A is an

homomorphism of H-modules.

Before we introduce the concept of coaction, we present the subspace of invariants of an

action.

We say that an action of a Hopf algebra H on an algebra A is trivial if h · a = ϵ(h)a,

for all h ∈ H, a ∈ A. Let A be an H-module algebra. The subspace AH = {a ∈ A : h · a =

ϵ(h)a, ∀h ∈ H} is called the algebra of invariants and it is a subalgebra of A.

There is also a dual notion for Hopf actions. We briefly present here the definition of

a coaction of a Hopf algebra H on an algebra A and a proposition connecting actions and

coactions and the dual space of H.

Definition 2.3.6. Let H be a Hopf algebra and let A be an algebra with a right H-comodule

structure (with coaction given by ρ : A → A⊗H, with ρ(a) =
∑
a0 ⊗ a1, for all a ∈ A). We

say that A is a right H-comodule algebra (or that there is a Hopf coaction of H on A) if the

following conditions hold

1) ∑(ab)0 ⊗ (ab)1 =
∑
a0b0 ⊗ a1b1;

2) ρ(1A) = 1A ⊗ 1H ,

for all h ∈ H, and a, b ∈ A.

Analogously, we define a left coaction. Note that the conditions on the definition above

are expressing that ρ is a homomorphism of algebras.

Also, as in the case of H-module algebras, we have the subspace of coinvariants for

a right H-comodule algebra. For A a right H-comodule algebra the subspace defined as

AcoH = {a ∈ A : ρ(a) = a⊗ 1H , ∀a ∈ A} is called the algebra of coinvariants of A and it is a

subalgebra of A.

To end this subsection, we present a proposition which expresses a duality between actions

and coaction of a Hopf algebra on an algebra.
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Proposition 2.3.7 ([17, Proposition 6.2.4]). Let H be a finite-dimensional Hopf algebra, and

A be an algebra. Then A is a right H-comodule algebra if and only if A is a left H∗-module

algebra. Moreover, we also have that AH∗ = AcoH .

2.3.2 Smash products and crossed products

Given a Hopf algebra H acting on an algebra A, it is possible to construct a new algebra

called smash product, which is, basically, a generalization of the skew group ring for the group

action context.

In this subsection, we shall give the definition of smash products and a generalization of

it, namely crossed products. We also present two basic results about them.

We start, then, with the definition of smash products.

Definition 2.3.8. Let H be a Hopf algebra and A be a left H-module algebra. The smash

product A#H is defined as A#H = A ⊗ H as vector space. We write a#h to denote the

element a⊗ h, for all a ∈ A, h ∈ H. The multiplication is given by

(a#h)(b#g) =
∑

a(h1 · b)#h2g,

for all a, b ∈ A, and g, h ∈ H. The unity is given by 1A#H = 1A#1H .

For any Hopf algebra H and algebra A, the tensor product A ⊗ H has a structure of

smash product, where the action of H on A is the trivial one, i.e., h · a = ϵ(h)a, for all h ∈ H,

a ∈ A.

The next proposition states that A#H is indeed an algebra and that A and H are

subalgebras of the smash product A#H.

Proposition 2.3.9 ([17, Proposition 6.1.7]). Let H be a Hopf algebra and A be a left H-module

algebra. Then the following holds:

i) A#H, with the multiplication defined above, is an algebra;

ii) The maps a 7→ a#1H , for all a ∈ A, and h 7→ 1A#h, for all h ∈ H, are injective

homomorphisms of algebras;

iii) A#H is free as a left A-module, and if {hi}i∈I is a basis of H, then {1A#hi}i∈I is an

A-basis of A#H as a left A-module.
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In the sequel, we briefly present the notion of crossed products as a generalization of

smash products, where the action of the Hopf algebra is twisted by a cocycle.

Definition 2.3.10 ([39, Definition 7.1.1]). Let H be a Hopf algebra and A be an algebra.

Recall Definition 2.3.1 and assume that H measures A. Let σ ∈ HomF (H ⊗ H,A) be an

invertible map. The crossed product A#σH of A with H is the set A⊗H as a vector space,

with multiplication

(a#h)(b#k) =
∑

a(h1 · b)σ(h2, k1)#h3k2,

for all h, k ∈ H and a, b ∈ A. Here a#h denotes the element a⊗ h.

Lemma 2.3.11 ([39, Lemma 7.1.2]). A#σH is an associative algebra with identity element

1A#1H if and only if the following conditions are satisfied:

1) A is a twisted H-module, i.e., 1 · a = a, for all a ∈ A, and

h · (k · a) =
∑

σ(h1, k1)(h2k2 · a)σ−1(h3, k3),

for all h, k ∈ H and a ∈ A.

2) σ is a cocycle, i.e., σ(h, 1) = σ(1, h) = ϵ(h)1, for all h ∈ H, and

∑
[h1 · σ(k1,m1)]σ(h2, k2m2) =

∑
σ(h1, k1)σ(h2k2,m),

for all h, k,m ∈ H.

In case σ is trivial, that is, σ(h, k) = ϵ(h)ϵ(k)1, for all h, k ∈ H, then the first condition

of the Lemma above implies that A is an H-module and the second condition is trivial. Then,

A is an H-module algebra. Also, the definition of multiplication in A#σH becomes just

the definition of multiplication of the smash product A#H, and hence A#σH = A#H [39,

Example 7.1.5].

For more on smash products and crossed products, see Chapter 4 and 7 of [39]. Later, in

Chapter 3 of this thesis, we shall return to these concepts.



Chapter 3

Semisimple Hopf actions factoring

through group actions

Let H be a Hopf algebra acting on an algebra A. Let I be a Hopf ideal of H such that

I ·A = 0, then one says that the action of H on A factors through the quotient Hopf algebra

H/I. Moreover, if H/I ∼= F [G], for some group G, we say that the action of H on A factors

through a group action.

In [18, Theorem 5.1], Etingof and Walton showed that any semisimple Hopf algebra

action on a commutative domain must factor through a group action, for F an algebraically

closed field. Later, in [13, Theorem 4.1], Cuadra, Etingof and Walton showed that any action

of a semisimple Hopf algebra H, with the ground field F algebraically closed of characteristic

zero, on the nth Weyl algebra A = An(F ) factors through a group action.

In this chapter, we will analyze the main result of the paper [13] to show that any action

of a semisimple Hopf algebra H on an enveloping algebra of a finite-dimensional Lie algebra or

on an iterated Ore extension of derivation type A = F [x1][x2; d2][· · · ][xn; dn] factors through

a group action. In order to do this, we will consider inner faithful Hopf actions and use

a reduction step, which basically consist of passing from algebras in characteristic zero to

algebras in positive characteristic by using residue field of the subring R of the ground field F

which is generated by all structure constants of H and the action on A.

It is worth to mention that it has already been outlined in [13, p.2] that these methods

could be used to establish more general results on semisimple Hopf actions on quantized

algebras. In particular it has been announced in [13, p.2] that their methods will apply to

29
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actions on module algebras A such that the resulting algebra Ap, when passing to a field of

characteristic p, for large p, is PI and their PI-degree is a power of p. Such algebras include

universal enveloping algebras of finite-dimensional Lie algebras and algebras of differential

operators of smooth irreducible affine varieties.

3.1 Inner faithful Hopf actions

We start this section with the definition of inner faithful actions. Let H be a finite-

dimensional Hopf algebra over F . A representation of H on an algebra A is an algebra

homomorphism π : H → A. The following definition was given by Banica and Bichon.

Definition 3.1.1 ([7, Definition 2.7]). Let π : H → A be a representation of a Hopf algebra

H on an algebra A. We say that π is inner faithful if Ker(π) does not contain any non-zero

Hopf ideal.

Let M be a left H-module, then, if we consider the endomorphism algebra EndF (M), we

have a representation π : H → EndF (M) due to M be a H-module. In this case, to say that

π is inner faithful is to say that I ·M ̸= 0 for any non-zero Hopf ideal I of H. This leads to

the definition below.

Definition 3.1.2 ([11, Definition 1.2]). Let M be a left H-module. We say that M is an

inner faithful H-module (or H acts inner faithfully on M) if I ·M ̸= 0 for any non-zero Hopf

ideal I of H. Given a Hopf action of H on an algebra A (i.e., A is a left H-module algebra),

we say that this action is inner faithful if the left H-module A is inner faithful.

For a ring R and a left R-module M , we denote AnnR(M) = {r ∈ R | rm = 0,∀m ∈ M}.

For a Hopf algebra H acting on an algebra A, AnnH(A) = {h ∈ H | h · a = 0, ∀a ∈ A}. Then

H acts inner faithfully on A if and only if AnnH(A) does not contain any non-zero Hopf ideal.

Remark 3.1.3. The first thing to note is that any Hopf action factors through an inner

faithful action. For if H is a Hopf algebra and A is a left H-module algebra, then we can

consider the Hopf ideal I =
∑

J⊆AnnH(A)
J , which is the largest Hopf ideal of H such that I ·A = 0.

Then H/I acts inner faithfully on A.
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Indeed, let B ⊆ H/I be a Hopf ideal such that B · A = 0. By Lemma 2.2.12 B = J ′/I

for some Hopf ideal J ′ of H with I ⊆ J ′. Since B ·A = 0, we must have that J ′ ·A = 0, i.e.,

J ′ ⊆ AnnH(A). Hence, J ′ ⊆ I and thus B = 0.

In what follows, we will collect some results about inner faithful actions.

Proposition 3.1.4. Let G be any finite group, A be an algebra, and ψ : G → Aut(A) be a

group homomorphism. Then ψ is injective if and only if F [G] acts inner faithfully on A.

Before we prove this Proposition, we will review here some results which can be found in

[41, Lemma 1.3, Lemma 1.8]. We start with a definition.

Definition 3.1.5. Let N be a subgroup of a group G. A left transversal of N in G is a

complete subset of left coset representatives for N in G, i.e., G =
⋃

y∈Y

yN as disjoint union. A

right transversal is defined similarly.

Let G be a group and N be a subgroup of G, to prove the following lemma, we define

πN : F [G] → F [N ] the natural projection given by

πN

∑
g∈G

αgg

 =
∑
g∈N

αgg.

πN is an F -linear map and satisfies πN (ba) = bπN (a) and πN (ab) = πN (a)b, for all

a ∈ F [G] and b ∈ F [N ] by [41, Lemma 1.2].

Lemma 3.1.6 ([41, Lemma 1.3]). Let N be a subgroup of a group G and Y be a left transversal

for N in G. Then every element α ∈ F [G] can be written uniquely as a finite sum of the form

α =
∑
y∈Y

yαy

with αy ∈ F [N ].

Proof. Let α ∈ F [G] be a non-zero element and write α =
∑
g∈G

αgg. Let X = {g ∈ G : αg ̸= 0}.

Since |X| < ∞, there exists a finite number of left cosets of N , say y1N, . . . , ynN , with yi ∈ Y ,

whose union contains X. Then, we can write α =
n∑

i=1
αi, where αi is the partial sum of those

αgg with g ∈ yiN . But g ∈ yiN implies that y−1
i g ∈ N . So y−1

i αi ∈ F [N ] for all i ∈ {1, . . . , n}.

Therefore, since α =
n∑

i=1
yi(y−1

i αi), α =
∑
y∈Y

yαy, with αy ∈ F [N ].
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To prove the uniqueness, if
∑
y∈Y

yay =
∑
y∈Y

yby, with ay, by ∈ F [N ], are two finite sums,

then, for every y0 ∈ Y and y ∈ Y , since y−1
0 y ∈ N if and only if y = y0, we must have

πN

∑
y∈Y

y−1
0 yay

 = y−1
0 y0ay0 = ay0 and πN

∑
y∈Y

y−1
0 yby

 = y−1
0 y0by0 = by0 .

Therefore, since πN

∑
y∈Y

y−1
0 yay

 = πN

∑
y∈Y

y−1
0 yby

, the uniqueness is proved.

Note that if Y is a right transversal, then we have a similar Lemma. But instead of

writing α =
∑
y∈Y

yαy with αy ∈ F [N ], we write α =
∑
y∈Y

αyy with αy ∈ F [N ].

Before we continue, we note a Hopf algebra fact for group algebras. Let G be a group

and N a normal subgroup of G. Then, as we noticed before, F [N ] is a Hopf subalgebra of

F [G]. Furthermore, F [N ] is a normal Hopf subalgebra (Definition 2.2.16) of F [G]. Indeed,

since N is a normal subgroup of G, then gng−1 ∈ N for all n ∈ N , and g ∈ G. This implies

that (adlF [G])(F [N ]) ⊆ F [N ] and (adrF [G])(F [N ]) ⊆ F [N ]. The next lemma is due to Rolf

Farnsteiner.

Lemma 3.1.7. Let H = F [G] be the group algebra of a finite group G and I ( H be a Hopf

ideal. Then there exists a normal subgroup N ▹G such that I = (F [G])(F [N ])+.

Proof. Let I ( H be a Hopf ideal and consider the projection map π : H → H/I, which

is a homomorphism of Hopf algebras. H/I is generated, as vector space, by π(G(H)) ⊆

G (H/I), since G(H) = G, span(π(G)) = H/I. Since span(π(G)) ⊆ span(G(H/I)) ⊆ H/I =

span(π(G)), and since the distinct grouplike elements of a Hopf algebra are linearly independent

(Lemma 2.1.7), we conclude that π(G) = G(H/I) and dim(H/I) = |G(H/I)|.

Consider N := Ker (π|G), which is a normal subgroup of G. Then, |π(G)| = |G/N | and

therefore dim(H/I) = |G/N |. The normality of N in G implies that F [N ] is a normal Hopf

subalgebra of F [G]. Then, JN := (F [G])(F [N ])+ is a Hopf ideal of H and JN ⊂ I. Thus, π

induces a surjection ψ : F [G]/JN → F [G]/I of Hopf algebras.

Claim: F [G]/JN
∼= F [G/N ]

In fact, let Y be a right transversal for N in G. By Lemma 3.1.6, for α ∈ F [G], we can

write α =
∑
y∈Y

αyy with αy ∈ F [N ]. Now, consider the natural projection p : G → G/N , which

is a group homomorphism, and then the induced Hopf algebras homomorphism pN : F [G] →
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F [G/N ]. So pN (α) =
∑
y∈Y

pN (αy)pN (y). Since αy ∈ F [N ], pN (αy) ∈ F 1̄ and since Y is a right

transversal for N in G, {pN (y)}y∈Y is a basis for F [G/N ]. Thus,

pN (α) = 0 ⇔ pN (αy) = 0 ∀y ∈ Y ⇔ ϵ(αy) = 0 ∀y ∈ Y ⇔ αy ∈ F [N ]+,∀y ∈ Y.

Hence, α ∈ Ker pN ⇔ α ∈ (F [N ])+F [G] = F [G](F [N ])+, i.e., Ker pN = JN . Also, pN is

clearly surjective. Therefore, (F [G])/JN
∼= F [G/N ] and the claim is proved.

Thus, dim((F [G])/JN ) = dim((F [G])/I) = |G/N |. Hence, JN = I as claimed.

Now we are able to prove Proposition 3.1.4.

Proof of Proposition 3.1.4. (⇐)

Let N = Ker(ψ) be the kernel of ψ. Since N is a normal subgroup of G, then R = F [N ]

is a normal Hopf subalgebra of H. Therefore, J = HR+ is a Hopf ideal of H.

Note that for all x ∈ R, since N is the kernel of ψ, the action of x on A is trivial, i.e.,

x · a = ϵ(x)a ∀a ∈ A. So J · A = {0} and thus, since the action is inner faithful, J = {0},

which implies R+ = {0}. Let y ∈ N . Then y − e ∈ R+. Hence, N = {e}, i.e., ψ is injective.

(⇒)

Let I ▹ F [G] be a Hopf ideal such that I ·A = 0. By Lemma 3.1.7, I = (F [G])(F [N ])+

for some normal subgroup N ▹G. Let x ∈ N , thus x− e ∈ (F [N ])+ and so x− e ∈ I. Then,

(x− e) · a = 0 for all a ∈ A, i.e., x · a = a for all a ∈ A. This implies ψ(x) = ψ(e) and thus

x = e as ψ is injective. Therefore, N = {e} and so (F [N ])+ = 0. Hence, I = 0. Thus, F [G]

acts inner faithfully on A.

Let H be a Hopf algebra acting on an algebra A. Let also I ⊆ AnnH(A) be a Hopf ideal

of H such that H/I is a group algebra. Since I ⊆ AnnH(A), we have an action of H/I ∼= F [G],

for some group G, on A. Consider the induced group homomorphism ψ : G → Aut(A). As a

consequence of Lemma 3.1.7, we have the following corollary.

Corollary 3.1.8. Let I be a Hopf ideal contained in AnnH(A) such that H/I ∼= F [G] is

a group algebra and denote by ψ the induced homomorphism ψ : G → Aut(A). Then ψ is

injective if and only if I is the largest Hopf ideal contained in AnnH(A).
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Proof. Assume that I is the largest Hopf ideal contained in AnnH(A). Let B be a Hopf ideal

of H/I with B ·A = 0. By Lemma 2.2.12, there exists a Hopf ideal J of H containing I such

that B = J/I. But (J/I) ·A = 0 implies that J ·A = 0. So J = I. Therefore, the action of

H/I is inner faithful and thus, by Proposition 3.1.4, ψ is injective.

Conversely, if ψ is injective, then by Proposition 3.1.4 H/I ∼= F [G] acts inner faithfully

on A. Now, consider the Hopf ideal J ′ =
∑

I′⊆AnnH(A)
I ′, for I ′ Hopf ideals. Then, I ⊆ J ′ and

J ′/I is a Hopf ideal of H/I such that J ′/I ·A = 0. Since the action is inner faithful, it follows

that J ′/I = 0, i.e., J ′ = I and hence the Corollary is proved.

Remark 3.1.9. If A ⊆ B is an extension of left H-modules, for H a Hopf algebra, and H acts

inner faithfully on A, then H also acts inner faithfully on B, because AnnH(B) ⊆ AnnH(A).

Inner faithful actions can be extended to rings of quotients of a ring. For instance, in [13,

Lemma 3.1], the authors showed that if a PI domain B admits an inner faithful action of a

Hopf algebra H, then so does its quotient division algebra QB.

We are going to prove a similar result for the Martindale ring of quotients. To do so, we

recall some results and constructions about Hopf algebra actions and Martindale quotient

rings.

Let R be a ring and let F be the filter of ideals of R which have zero annihilator. Let

S =
⋃

I∈F
Hom(RI,RR) with the equivalence relation define as f ∼ g if and only if f = g on

some K ∈ F , K ⊆ Dom(f)∩Dom(g). The left Martindale ring of quotients of R is the quotient

set Ql(R) = S/ ∼. Denoting the equivalent classes of Ql(R) by (I, f), where f : I → R, then

for (I, f) and (J, g), (I ∩ J, f + g) defines the addition and (IJ, f ◦ g) the multiplication and

so Ql(R) becomes a ring (see [31, Proposition 14.9]). Also, R embeds into Ql(R) as right

multiplications on I = R. Using right R-module maps, the right Martindale quotient ring

Qr(R) is defined analogously.

For R = A an H-module algebra, we consider FH , the filter of H-stable ideals of A with

zero annihilator instead of F . With the same constructions as before, we obtain a ring denoted

by Ql
H(A). And the same is true for the right Martindale quotient ring, denoted by Qr

H(A).

Suppose that H has a bijective antipode, in [12], Cohen showed that Ql
H(A) and Qr

H(A)

are H-module algebras, i.e., the action of H on A can be extended to the Martindale ring

of quotients Ql
H(A) and Qr

H(A). For (I, f) an element of Ql
H(A), and h ∈ H, the action
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h · f : I → A is defined by

(a)(h · f) =
∑

h2 · [(S−1(h1) · a)f ] ∀a ∈ I,

where we write the arguments on the left side. For g : I → A, I ∈ FH , an element of Qr
H(A),

and h ∈ H, the action h · g : I → A is defined by

(h · g)(a) =
∑

h1 · [g(S(h2) · a)] ∀a ∈ I.

Proposition 3.1.10. Let H be a Hopf algebra acting on an algebra A. Then, H acts inner

faithfully on A if and only if H acts inner faithfully on Ql
H(A).

Proof. (⇒) Since A ⊆ Ql
H(A) is an extension of H-modules, it follows from Remark 3.1.9 that

H acts inner faithfully on Ql
H(A).

(⇐) Suppose the action of H on A is not inner faithful. Then, there exists 0 ̸= I ⊂

AnnH(A) a Hopf ideal. Let h ∈ I and write ∆(h) =
∑

h′
i ⊗ hi + gi ⊗ g′

i, where h′
i, g

′
i ∈ I.

Then, for any (J, f) ∈ Ql
H(A) and a ∈ J

(a)(h · f) =
∑

hi · [(S−1(h′
i) · a)f ] + g′

i · [(S−1(gi) · a)f ] = 0.

So h · f = 0 on J , i.e., I ·Ql
H(A) = 0. Hence H does not act inner faithfully on Ql

H(A).

Therefore, H acting inner faithfully on Ql
H(A) implies that H acts inner faithfully on A.

A similar result for Qr
H(A) is proved analogously.

To end this section, we present a Lemma which is essentially contained in the proof of

[13, Proposition 2.4].

Lemma 3.1.11 (Cuadra-Etingof-Walton). A finite-dimensional Hopf algebra H acts inner

faithfully on an algebra A if and only if A⊗n is a faithful left H-module for some n > 0.

Proof. The statement follows from the proof of [13, Proposition 2.4]. Let AnnH(M) denote

the annihilator of a left H-module M . For any m > 0, we set Km = AnnH(A⊗m), where A⊗m

is a left H-module via the diagonal H-action, i.e., h · (a1 ⊗ · · · ⊗am) =
∑
h1 ·a1 ⊗ · · · ⊗hm ·am,

for all h ∈ H and a1, . . . , am ∈ A.



36 Semisimple Hopf actions factoring through group actions

For m ≤ n, A⊗m embeds into A⊗n as left H-module via a1 ⊗ · · · ⊗ am 7→ a1 ⊗ · · · ⊗ am ⊗

1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n−m times

, for all a1, . . . , am ∈ A. Hence, we can conclude that Km ⊇ Kn. Clearly, since

H is finite-dimensional, the descending chain of ideals Km stabilises at some index n. Thus,

Km = Kn = K2n := K for all m ≥ n.

Considering the componentwise action of H ⊗H on A⊗n ⊗A⊗n, by [17, Lemma 1.4.8],

the annihilator of A⊗n ⊗A⊗n is equal to H ⊗K +K ⊗H . Since

0 = K ·A⊗2n = ∆(K) · (A⊗n ⊗A⊗n),

we get ∆(K) ⊆ H ⊗K +K ⊗H. As ϵ(K)1A = K · 1A = 0, we conclude that K is a coideal.

Thus K is a bi-ideal and (H/K)∗ is a sub-bialgebra of the finite-dimensional Hopf algebra H∗.

By Proposition 2.2.15, (H/K)∗ is a Hopf subalgebra and hence K is a Hopf ideal of H. As H

acts inner faithfully on A, K = 0, i.e., A⊗n is a faithful H-module.

For the converse, we just have to note that if I is a Hopf ideal that annihilates A, then it

would also annihilate A⊗n. Hence I = 0.

3.2 Reduction process to positive characteristic

In order to prove that actions of semisimple Hopf algebras on Weyl algebras over an

algebraically closed field of characteristic zero factor through a group action, in [13], Cuadra,

Etingof and Walton used a reduction process to positive characteristic. The goal of this section

is to present this reduction process and, in addition, to give an alternative proof for the

reduction step in Proposition 3.2.9.

3.2.1 Ring of structure constants of an action

We start this subsection by recalling that an ideal p of a ring R is called completely

prime if R/p is a domain ([30, p. 206]). Let H be a semisimple Hopf algebra over a field F of

characteristic zero. By Theorem 2.2.42, H is also cosemisimple. Suppose that H acts on a

domain A which is finitely presented as an F -algebra, i.e.,

A ≃ F ⟨x1, . . . , xn⟩/P,
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with P a finitely generated completely prime ideal of the free algebra F ⟨x1, . . . , xn⟩. The

action of H on A is given by an F -linear map

H −→ EndF (A), h 7→ [a 7→ h · a].

We want to consider only the “essential” ingredients of the interplay between H and A,

or, in other words, we will look at the “skeleton” of the situation.

The structure constants of H are the constants that define the Hopf algebra structure

of H. First of all, H is finite-dimensional, say of dimension d and hence has an F -basis

{b1, . . . , bd}. We may assume that 1H is one of the basis vectors. The Hopf algebra structure

of H is determined by a set of constants µi,j
k , ηk

i,j , ν
i
j and ϵ(bi) such that for all 1 ≤ i, j, k ≤ d:

bi · bj =
d∑

k=1
µi,j

k bk, ∆(bk) =
d∑

i,j=1
ηk

i,j bi ⊗ bj , S(bi) =
d∑

j=1
νi

j bj .

As H is semisimple, by Theorem 2.2.36, there exists a left integral t =
∑d

i=1 τibi in H

with ϵ(t) = 1, and as H is cosemisimple, by Theorem 2.2.41, there exists a left integral

t∗ =
∑d

i=1 τ
∗
i b

∗
i in H∗ with t∗(1) = 1 for some τi, τ

∗
i ∈ F , where {b∗

1, . . . , b
∗
d} denotes the dual

basis of H. Moreover, the action of H on A is determined by the images of the action of the

basis elements bi on the algebra generators xj = xj + P of A, i.e.,

bi · xj = fij(x1, . . . , xn),

where fij are non-commutative polynomials in F ⟨x1, . . . , xn⟩. Since P is finitely generated,

there are non-commutative polynomials p1, . . . , pm such that P = ⟨p1, . . . , pm⟩.

We consider now the subring R of F generated as Z-algebra by all constants

µi,j
k , ηk

i,j , ν
i
j , ϵ(bi), τi, τ

∗
i , coefficients of fij , coefficients of p1, . . . , pm. (⋆)

We call R the ring of structure constants of the action of H on A.

As it was mentioned at the beginning of the previous chapter, Hopf algebras can be

constructed over rings. For more on this, see [9, Chapter 2].
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Let HR =
⊕d

i=1Rbi. Then HR is a R-Hopf algebra with structure constants (⋆). Let

AR = R⟨x1, . . . , xn⟩/P ′, where P ′ is the ideal of R⟨x1, . . . , xn⟩ generated by p1, . . . , pm. The

action of H on A yields now an action of HR on AR, i.e., we have a ring homomorphism

HR → EndR(AR). Since t ∈ HR still satisfies ϵ(t) = 1, HR is separable over R. Analogously

as t∗ ∈ H∗
R satisfies t∗(1) = 1, H∗

R is separable over R (see [24] or [34, Section 3]).

Note also that H ≃ HR⊗RF and A ≃ AR⊗RF as algebras via h ⊗R α 7→ αh and

a⊗R β 7→ βa, for all h ∈ HR, a ∈ AR, and α, β ∈ F . Hence AR is again a domain. Moreover,

AR is finitely presented.

Before we continue, we recall the definition of Hilbert rings (see [20, 29] or [45, Chapter

11]) and some results which will be useful to show that R is a Hilbert ring.

Definition 3.2.1 ([45, 11.67]). A commutative ring R is a Hilbert ring (or Jacobson ring) if

every prime ideal in R is an intersection of maximal ideals.

The next three theorems will be used in the sequel and their proofs can be found in [20]

or [45, Chapter 11].

Theorem 3.2.2 ([20, Theorem 2]). If R is a Hilbert ring, and I an ideal of R, then R/I is

also a Hilbert ring.

Theorem 3.2.3 ([45, Theorem 11.69]). A commutative ring R is a Hilbert ring if and only if

R[x] is a Hilbert ring.

Theorem 3.2.4 ([20, Theorem 5]). A ring R is a Hilbert ring if and only if every maximal

ideal in R[x] contracts in R to a maximal ideal.

Since F is a field of characteristic 0, R is an integral domain that contains the integers Z.

Moreover, we have a finite number of generators for R as a ring and therefore we can consider

R as finitely generated Z-algebra. Let a1, . . . , as be a set of generators of R as Z-algebra and

consider the surjective ring homomorphism

ϕ : Z[y1, . . . , ys] → R, yi 7→ ai.

Therefore, R ∼= Z[y1, . . . , ys]/Ker(ϕ) as rings. Since Z is a Hilbert ring (every prime ideal

in Z is maximal), then, by Theorem 3.2.2 and Theorem 3.2.3, R is a Hilbert ring as well. In

particular, the prime ideal 0 of R is equal to Jac(R), the intersection of maximal ideals of R.



3.2 Reduction process to positive characteristic 39

If m is any maximal ideal of R, then π ◦ϕ : Z[y1, . . . , ys] → R/m, where π is the canonical

projection, is a surjective ring homomorphism. Hence, from the first isomorphism theorem

for rings, Z[y1, . . . , ys]/Ker(π ◦ ϕ) ∼= R/m. Therefore, Z[y1, . . . , ys]/Ker(π ◦ ϕ) is a field and

Ker(π ◦ϕ) = ϕ−1(m) is a maximal ideal of Z[y1, . . . , ys]. Hence, by Theorem 3.2.4, ϕ−1(m) ∩Z

is a maximal ideal of Z, i.e., there exists a prime number p such that ϕ−1(m) ∩ Z = pZ. In

particular, R/m has positive characteristic p. By the Weak Nullstellensatz ([44, §4.10]), R/m

is a finite field extension of the prime subfield Z/pZ, i.e. R/m is a finite field.

3.2.2 Reduction to positive characteristic

In this subsection, we shall give a new proof of [13, Lemma 2.3], which will be used in

the next section.

In order to prove the main proposition, Proposition 3.2.9, we will need some lemmas first.

Lemma 3.2.5. Let R be an integral domain of characteristic 0 with Jac(R) = 0 such that

char(R/m) > 0 for all maximal ideals m of R. For any 0 ̸= a ∈ R and integer q > 1, set

Xa,q = {m ∈ MaxSpec(R) | char(R/m) > q and a ̸∈ m}. Then
⋂

m∈Xa,q

m = 0.

Proof. Let 0 ̸= a ∈ R and q > 1 an integer. Set X = MaxSpec(R), the set of all maximal

ideals of R. For each m ∈ X, let pm = char(R/m). Set B = {m ∈ X | a ̸∈ m and pm ≤ q}.

Now, if B = ∅, then we can conclude that a ∈
⋂

m∈X\Xa,q

m and so, since by hypothesis a ̸= 0

and

0 = Jac(R) =

 ⋂
m∈X\Xa,q

m

 ∩

 ⋂
m∈Xa,q

m

 ,
R being a domain implies that

⋂
m∈Xa,q

m = 0 as we want. If B ̸= ∅, then for any m ∈ B, we

have 1 < pm ≤ q. Therefore, pm ∈ {pm1 , . . . , pmn}, for some m1, . . . ,mn ∈ B. We can define

the non-zero element

b =
n∏

i=1
pmi

and conclude that b ∈
⋂
m∈B

m. So, ab ∈
⋂

m∈X\Xa,q

m, because if a ̸∈ m ∈ X \Xa,q, then pm ≤ q.

Hence pm divides b and, as pm ∈ m, we have ab ∈ m. By hypothesis, a ≠ 0 and R being a
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domain implies
⋂

m∈X\Xa,q

m ̸= 0. However, 0 = Jac(R) =

 ⋂
m∈X\Xa,q

m

 ∩

 ⋂
m∈Xa,q

m

 and R

being a domain shows
⋂

m∈Xa,q

m = 0.

The next two lemmas are linear algebra lemmas. The first one will be used to prove the

second one, which in turn will be useful in the proof of the main proposition of this subsection.

Lemma 3.2.6. Let V be a vector space and h1, . . . , hd be linearly independent endomorphisms

of V . Then, there exists a finite-dimensional subspace Ud ⊆ V such that the restrictions of

h1, . . . , hd to Ud are linearly independent.

Proof. Indeed, by induction on d we show this statement. For d = 1, since h1 must be non-zero,

there exists v1 ∈ V such that h1(v1) ̸= 0. We define U1 = span{v1}.

Now we assume that the claim is true for d ≥ 1 and we show that it is also true for d+ 1.

By induction hypothesis, we have that there exists a finite-dimensional subspace Ud of V such

that the restrictions of h1, . . . , hd to Ud are linearly independent. We consider the restriction

of hd+1 to Ud. If the restrictions of h1, . . . , hd, hd+1 to Ud are linearly independent, then we

set Ud+1 = Ud and we are done. Otherwise, if the restrictions of h1, . . . , hd, hd+1 to Ud are

linearly dependent, then we should have

hd+1 = α1h1 + · · · + αdhd on Ud, for some (α1, . . . , αd) ∈ F d (3.1)

Since the restriction of h1, . . . , hd to Ud are linearly independent, we have that the

representation given in (3.1) is unique. Now let N = Ker(hd+1 − α1h1 − · · · − αnhn) on

V . Since h1, . . . , hd+1, by hypothesis, are linearly independent on V , we have that N ̸= V .

Therefore, there exists vd+1 ∈ V such that vd+1 ̸∈ N . Now we define Ud+1 to be the span of

Ud and vd+1, which is finite-dimensional. We claim that the restrictions of h1, . . . , hd+1 to

Ud+1 are linearly independent. In fact, if β1h1 + · · · + βd+1hd+1 = 0 on Ud+1, then, on Ud,

using (3.1), we have that

β1h1 + · · ·+βdhd +βd+1(α1h1 + · · ·+αdhd) = 0 ⇔ (β1 +βd+1α1)h1 + · · ·+(βd +βd+1αd)hd = 0

and that implies, since h1, . . . , hd are linearly independent on Ud, that βi = −βd+1αi for all

i ∈ {1, . . . , d}. So, we get that βd+1(hd+1 − α1h1 − α2h2 − · · · − αdhd) = 0 on Ud+1, which
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implies that βd+1 = 0 (because vd+1 ̸∈ N). Therefore, we have β1h1 + · · · + βdhd = 0 on Ud+1.

In particular, β1h1 + · · · + βdhd = 0 on Ud, which implies that βi = 0 for all i ∈ {1, . . . , d}.

Therefore, we get that the restrictions of h1, . . . , hd+1 to Ud+1 are linearly independent.

Finally, the following lemma characterizes when endomorphisms h1, . . . , hn of a vector

space V are linearly independent.

Lemma 3.2.7. Let V be a vector space and let h1, . . . , hn be endomorphisms of V . Then

h1, . . . , hn are linearly independent if and only if there exist v1, . . . , vm ∈ V and fjk ∈ V ∗ for

1 ≤ j ≤ n and 1 ≤ k ≤ m such that the matrix

(
m∑

k=1
fjk(hi(vk))

)
1≤i,j≤n

has non-zero determinant.

Proof. Let V be a vector space and let h1, . . . , hn be linearly independent endomorphisms of

V . Then, by Lemma 3.2.6, there exists a finite-dimensional subspace U of V of dimension

q ≤ n such that h1, . . . , hn restricted to U are linearly independent. Let {v1, . . . , vq} be a basis

for U . For each 1 ≤ i ≤ n we define ϕi ∈ ((V ∗)q)∗ as follows:

ϕi(f) :=
q∑

j=1
fj(hi(vj)), ∀f = (f1, . . . , fq) ∈ (V ∗)q.

Since h1, . . . , hn are linearly independent, we must have that also ϕ1, . . . , ϕn are linearly

independent. That is because if λ1, . . . , λn ∈ F are such that
n∑

i=1
λiϕi = 0, then for all

1 ≤ j ≤ q and g ∈ V ∗ we set f = (f1, . . . , fq) ∈ (V ∗)q with fj = g and fk = 0 if k ̸= j. Then

0 =
n∑

i=1
λiϕi(f) =

n∑
i=1

λi

q∑
j=1

fj(hi(vj)) =
q∑

j=1
fj

(
n∑

i=1
λihi(vj)

)
= g

(
n∑

i=1
λihi(vj)

)
.

That is to say that g
(

n∑
i=1

λihi(vj)
)

= 0 for all g ∈ V ∗. Therefore, we have
n∑

i=1
λihi(vj) = 0

for all 1 ≤ j ≤ q, and thus
n∑

i=1
λihi = 0. So, since h1, . . . , hn are linearly independent, λi = 0

for all i. Hence, ϕ1, . . . , ϕn are linearly independent elements of ((V ∗)q)∗.

Let W be the intersection of all kernels of ϕi, i.e., W =
n⋂

i=1
Ker(ϕi), and consider the

function:
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Φ: (V ∗)q/W → Fn

f +W 7→ (ϕ1(f), · · · , ϕn(f)).

Φ is clearly injective and hence dim((V ∗)q/W ) ≤ n. Moreover, as ϕi are linearly

independent in ((V ∗)q)∗ they are also linearly independent in ((V ∗)q/W )∗. Then,

dim((V ∗)q/W ) = dim(((V ∗)q/W )∗) = n.

In particular Φ is an isomorphism and there are elements f1, . . . , fn ∈ (V ∗)q with

fl = (fl1, . . . , flq) for all 1 ≤ l ≤ n, such that the matrix

(ϕi(fl))1≤i,l≤n =

 q∑
j=1

flj(hi(vj))


1≤i,l≤n

has non-zero determinant.

The converse is clear, since if there exist elements v1, . . . , vm in V and linear functionals

fjk ∈ V ∗ for 1 ≤ j ≤ n and 1 ≤ k ≤ m such that the matrix

M =
(

m∑
k=1

fjk(hi(vk))
)

1≤i,j≤n

has non-zero determinant, then for any λ = (λ1, . . . , λn) ∈ Fn with
n∑

i=1
λihi = 0 one has that

λM = 0. By the non-singularity of M , λ = 0 and then h1, . . . , hn are linearly independent.

Remark 3.2.8. Let R be an integral domain. Let H be an R-algebra and M a left H-module.

Then, for any maximal ideal m of R, mM is an R-submodule of M and mH is an ideal of H.

Now, using Lemmas 3.2.5 and 3.2.7, we are able to give a different proof of [13, Lemma

2.3].

Proposition 3.2.9. Let R be an integral domain of characteristic 0 with Jac(R) = 0 such

that char(R/m) > 0 for all maximal ideals m of R. Let H be an R-algebra that is free of finite
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rank over R. For any faithful left H-module M that is free as an R-module and number q > 1,

there exists a set of maximal ideals Y such that

1. M/mM is a faithful H/mH-module for any m ∈ Y ;

2. char(R/m) > q for any m ∈ Y ;

3. the canonical homomorphism of R-algebras Ψ : HR −→
∏
m∈Y

H/mH is injective.

Proof. Let R,H and M as in the statement of the Proposition. Since H is free of finte rank

over R, say of rank n, then the H-action of H on M is given by n endomorphisms hi : M → M ,

for i = 1, . . . , n (if {b1, . . . , bn} is a basis for H, then we just set hi(m) := bim, for all m ∈ M).

Since M is faithful, the elements h1, . . . , hn are independent over R, in the sense that if
n∑

i=1
rihi = 0 for some r1, . . . , rn ∈ R, then r1 = · · · = rn = 0.

Let Q be the field of fractions of R and consider M ′ = M ⊗R Q. Also, consider the

Q-endomorphisms h′
i = hi ⊗ idQ : M ′ → M ′, providing that the elements h1, . . . , hn are

independent over R, the elements h′
1, . . . , h

′
n are linearly independent over Q. By Lemma

3.2.7, there exist elements vk ∈ M ′ and linear functions fjk : M ′ → Q such that

0 ̸= d = det
(

m∑
k=1

fjk(h′
i(vk))

)
1≤i,j≤n

.

Since Q is the field of fractions of R, it is possible to find C ∈ R such that wk :=

Cvk ∈ M = M ⊗ 1 for all k. Let {bλ | λ ∈ Λ} be a basis for M as an R-module, then, since

{hi(wk) | 1 ≤ i ≤ n and 1 ≤ k ≤ m} is a finite set, there exists a finite subset Λ′ ⊆ Λ such that

all elements hi(wk) belong to the submodule spanned freely by bλ for λ ∈ Λ′. Again, since Q

is the field of fractions of R, there must exist a common denominator D ∈ R of fjk(hi(wk))

for all i, j, k. Define the R-linear maps gjk : M → R by gjk(bλ) = Dfjk(bλ) for λ ∈ Λ′ and

gjk(bλ) = 0 for λ ∈ Λ \ Λ′. Then

a := det
(

m∑
k=1

gjk(hi(wk))
)

1≤i,j≤n

= Cndet
(

m∑
k=1

gjk(h′
i(vk))

)
1≤i,j≤n

= CnDnd ̸= 0.

By Lemma 3.2.5, for any q > 1, the set Y := Xa,q satisfies
⋂
m∈Y

m = 0.
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(1) Let m ∈ Y and π : R → R/m be the canonical projection. Consider M/mM = M ⊗R R/m

and H/mH = H ⊗R R/m. Set m = m+mM for all m ∈ M . By the induced R/m-linear maps

hi : M/mM → M/mM given by m 7→ hi(m),

H/mH acts on M/mM . Define gjk = π ◦ gjk for all j, k, where gjk are the R-linear maps from

above.

Then a = det
(

m∑
k=1

gjk(hi(wk))
)

1≤i,j≤n

is non-zero as a ̸∈ m. By Lemma 3.2.7, M/mM

is a faithful H/mH-module.

(2) By definition, for any m ∈ Y , we have char(R/m) > q.

(3) Since
⋂
m∈Y

m = 0, the canonical homomorphism πY : R ↪→
∏
m∈Y

R/m is injective [51, 3.12].

Tensoring with the free finite rank R-module H yields an injective (ring) homomorphism

1 ⊗ πY : HR ↪−→
∏
m∈Y

HR ⊗R R/m =
∏
m∈Y

H/mH.

3.3 Semisimple Hopf actions on Lie algebras and iterated Ore

extensions

In this section we show that any action of a semisimple Hopf algebra on an enveloping

algebra of a finite dimensional Lie algebra or on an interated Ore extension of derivation type

factors through a group action. In a first step we will reduce our study of Hopf algebra over

fields of characteristic zero to fields of positive characteristic.

3.3.1 Reduction to Hopf algebras over finite fields

Let R be an integral domain in characteristic 0 that is a Hilbert ring and with zero

Jacobson radical.

Let H be a separable and coseparable Hopf algebra over R that is free of finite rank as

an R-module. For any maximal ideal m of R, consider the ideal mH of H (Remark 3.2.8).

Consider H/mH = HR ⊗R Fm, where Fm = R/m is the finite field as in the previous section,
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then, since H/mH⊗FmH/mH = (HR ⊗RFm)⊗Fm (HR ⊗RFm) ∼= HR ⊗RHR ⊗RFm, by defining

∆: H/mH → H/mH ⊗Fm H/mH via h⊗ 1Fm 7→ ∆R(h) ⊗ 1Fm ,

ϵ : H/mH → Fm via ϵ(h ⊗ 1Fm) = ϵR(h)1Fm , and S : H/mH → H/mH by S(h ⊗ 1Fm) =

SR(h) ⊗ 1Fm , where ∆R, ϵR and SR are the comultiplication, counity and antipode of HR

respectively, H/mH becomes a Hopf algebra over the finite field Fm.

Denote by x and h the elements in R/m respectively H/mH. Since H is separable, by [34,

3.3], there exists a left integral t ∈ H with ϵ(t) = 1, which yields an integral t ∈ H/mH with

ϵ(t) = ϵ(1) = 1. Hence, H/mH is semisimple over Fm. Analogously, (H/mH)∗ is semisimple.

Given a left H-module algebra A that is free as an R-module, we extend the H-action

on A to A/mA by h · a = h · a, for all a ∈ A, h ∈ H. With this action, A/mA becomes a left

H/mH-module algebra over a finite field Fm. This reduction from semisimple Hopf actions on

a finitely presented algebra over a field of characteristic zero to an action of a semisimple and

cosemisimple Hopf algebra over a finite field is the key step in [13]. In some cases, the algebras

A/mA over Fm become finitely generated over their center. Extending the Hopf action to the

skew-field of fractions of A/mA, when the degree of the skew-field of fractions and dim(H)!

are coprime, Cuadra, Etingof and Walton showed that H/mH has to be cocommutative. By

Proposition 3.2.9(3), one concludes that H has to be cocommutative, and hence, by Corollary

2.2.39(ii), a group algebra if F is algebraically closed and so the action must factor through a

group action.

As it was mentioned at the beginning of this chapter, in [18], Etingof and Walton showed

that any semisimple Hopf action on a commutative domain A over an algebraically closed field

must factor through a group action. In [18], Cuadra, Etingof and Walton extended this result

in the following way:

Proposition 3.3.1 (Cuadra-Etingof-Walton, [13, Proposition 3.3]). Let F be an algebraically

closed field, H a semisimple, cosemisimple Hopf algebra over F acting inner faithfully on a

division algebra D which is a finite module over its centre Z. If [D : Z] and dim(H)! are

coprime, then H is a group algebra.

As a consequence of this Proposition and the reduction process to fields of positive

characteristic, as described in section 3.2, one deduces:
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Theorem 3.3.2 (Cuadra-Etingof-Walton). Let H be a semisimple Hopf algebra over an

algebraically closed field F of characteristic 0 acting on a finitely presented algebra A that is a

Noetherian domain. Let R be the ring of structure constants of H and A as defined by (⋆)

and let HR and AR be the corresponding R-algebras. Suppose that there exists q ≥ 1 such that

for all maximal ideals m of R with char(R/m) > q one has:

• the induced algebra Am = AR ⊗R R/m is a Noetherian domain;

• the skew-field of fractions Dm of Am is finite over its center Zm;

• [Dm : Zm] is coprime with dim(H)!.

Then the action of H on A factors through a group action.

Proof. Suppose that H acts inner faithfully on A. By Lemma 3.1.11, H acts faithfully on

A⊗F n for some n. Passing from F to R, the faithfulness of the action is preserved, i.e., we also

have that HR acts faithfully on A⊗Rn
R . By Proposition 3.2.9, there exists a set Y of maximal

ideals of R with char(R/m) > q and A⊗Rn
R ⊗R R/m = (AR ⊗R R/m)⊗R/mn being a faithful

Hm := HR ⊗R R/m-module for all m ∈ Y . Again, by Lemma 3.1.11, Hm acts inner faithfully

on Am := AR ⊗R R/m.

By assumption, the skew-field of fractions Dm of Am is finite over its center and its

dimension is coprime with dim(H)! = dim(Hm)!. By [47, Theorem 2.2], the action of Hm on

Am extends to an action on Dm, which must be also inner faithful by Remark 3.1.9. It is easy

to see that the same is true if we pass to the algebraic closure R/m of R/m and tensor up

Hm, Am and Dm.

By Proposition 3.3.1, Hm ⊗R/m R/m is cocommutative and thus Hm is cocommutative.

By Proposition 3.2.9(3), the canonical R-algebra homomorphism

HR ↪−→
∏
m∈Y

Hm =
∏
m∈Y

HR ⊗R R/m

is injective. Since all Hm are cocommutative, also HR is cocommutative, and therefore H is

as well. So H is a group algebra, by Corollary 2.2.39(ii), and then the theorem is proved.
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3.3.2 Semisimple Hopf action on enveloping algebras of finite dimensional

Lie algebras

As it was mentioned at the beginning of this chapter, it has already been outlined in

[13, p.2] that the methods presented in Section 3.2 could be used to establish more general

results on semisimple Hopf actions on quantized algebras. In these last two subsections

of this chapter, we will show that that actions of semisimple Hopf algebras on enveloping

algebras of finite-dimensional Lie algebras or on iterated differential operator rings over a

field F of characteristic 0 factor through a group action. We start, in this subsection, by

showing that this is the case for actions of semisimple Hopf algebras on enveloping algebras of

finite-dimensional Lie algebras.

We recall that a modular Lie algebra is a Lie algebra over a field of positive characteristic

(see [48]). For modular Lie algebras one has the following result from Farnsteiner and Strade’s

book [48, Chapter 6, Theorem 6.3(1)]:

Theorem 3.3.3 (Farnsteiner-Strade). Let U(g) be the enveloping algebra of a finite-dimensional

Lie algebra g over a field of characteristic p. Then the dimension of Frac(U(g)) over its center

is a power of p.

This Theorem leads to the following corollary:

Corollary 3.3.4. Any action of a semisimple Hopf algebra over an algebraically closed field

F of characteristic zero on the enveloping algebra of a finite-dimensional Lie algebra factors

through a group action.

Proof. Let H be a semisimple Hopf algebra over a field F of characteristic 0. Let g be a

finite-dimensional Lie algebra over F and A := U(g) its universal enveloping algebra.

Suppose that H acts on A and denote by R the ring of structure constants of the action

as in (⋆). Using the structure constants of g, respectively H, define the Lie algebra gR over

R of finite rank and the Hopf algebra HR over R. Moreover, AR is U(gR), the enveloping

algebra of gR over the integral domain R.

Let m be any maximal ideal of R, set Fm = R/m and p = char(Fm). Then

Am := AR⊗RFm = U(gR)⊗RFm ≃ U(gR⊗RFm)
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is the enveloping algebra of the finite-dimensional Lie algebra gm := gR⊗RFm over the finite

field Fm. By Theorem 3.3.3, one has [Dm : Zm] = pm, where Dm = Frac(Am) and Zm = Z(Dm)

for some m ≥ 0. Hence for q = dim(H)! the assumptions of Theorem 3.3.2 are fulfilled and

thus the Hopf algebra action of H on A factors through a group action.

3.3.3 Iterated differential operator rings

In this last subsection, we will show that any action of semisimple Hopf algebras on

the iterated Ore extensions of derivation type over polynomial rings factors through a group

action.

Before we continue, we recall the definition of an Ore extension.

Definition 3.3.5. Let S be a ring, α an automorphism of S, and δ an α-derivation on S.

i.e., δ : S → S is an additive map such that δ(rs) = α(r)δ(s) + δ(r)s, for all r, s ∈ S (if

α = id, then δ is a derivation on S). We shall write S′ = S[x;α, δ] provided

i) S′ is a ring containing S as a subring;

ii) x is an element of S′;

iii) S′ is a free left S-module with basis {1, x, x2, . . .};

iv) xr = α(r)x+ δ(r), for all r ∈ S.

We call S′ a skew polynomial ring over S, or an Ore extension of S.

Given a commutative domain S, we say that an Ore extension of S is of derivation type if

α = id. By iterated Ore extension, we just mean that for an Ore extension of a ring S, say S′ =

S[x1;α1, δ1], we consider the Ore extension of S′ and, via an iteration process of this type, for

any natural number n, we get an iterated Ore extension S[x1;α1, d1][x2;α2, d2][· · · ][xn;αn, dn].

We call S[x1;α1, d1][x2;α2, d2][· · · ][xn;αn, dn] an iterated Ore extension of derivation type over

a commutative domain S, if all automorphisms αi are the identity. For more on Ore extensions,

see [21].

The Proposition below is the crucial step to show that the center of such iterated

extensions of derivation type over a field of characteristic p is large.

Proposition 3.3.6. Let A be a Noetherian domain over a field F of characteristic p. Suppose

that A contains central elements t1, . . . , tn, with n ≥ 1, such that
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1. B := F [t1, . . . , tn] is a polynomial ring, and

2. A is a free B-module of rank pm, for some m ≥ 0.

Let d be any F -linear derivation of A. Then A[x; d] contains n+1 central elements t̃1, . . . , t̃n+1

such that B̃ := F [t̃1, . . . , t̃n+1] is a polynomial ring and A[x; d] is free over B̃ of rank pm+k

for some k ≥ 0 depending on d.

Proof. If d = 0, then B̃ = F [t1, . . . , tn, x] is a central subring of A[x] and A[x] has rank pm

over B̃. Thus, assume that d ̸= 0. For any a ∈ A we have d(ap) = 0 as char(F ) = p (see [21,

p. 27] for a formula for a derivation on a ring). Thus B′ = F [tp1, . . . , tpn] is a central subring of

A[x; d].

Using the hypothesis (2) we have that A has rank pn+m over B′. Moreover, the derivation

d is a B′-linear endomorphism of A and by the Cayley-Hamilton Theorem [6, 2.4], d will

satisfy a monic polynomial f ∈ B′[z], i.e., f(d) ≡ 0. For each number i, we divide zpi by the

monic polynomial f . Then there are polynomials qi, ri ∈ B′[z] such that zpi = qif + ri and

ri = 0 or deg(ri) < deg(f).

Since B′ is Noetherian and rk belongs to B′ ⊕ · · · ⊕ B′zm, for m = deg(f), there

must exist k > 0 such that rk ∈
k−1∑
i=0

B′ri. Thus there are ak−1, . . . , a1 ∈ B′ such that

rk = a0r0 + · · · + ak−1rk−1. Hence define

g := zpk −
k−1∑
i=0

aiz
pi =

(
qk −

k−1∑
i=0

aiqi

)
f.

As f is a factor of g, we also have g(d) ≡ 0. Set Θ := xpk −
k−1∑
i=0

aix
pi ∈ B′[x] ⊂ A[x; d].

Note that Θ commutes with powers of x, since the coefficients of Θ are central in A[x; d].

Furthermore, let a ∈ A, then

Θa− aΘ = dpk(a) −
k−1∑
i=0

aid
pi(a) = g(d)(a) = 0.

Hence Θ is central in A[x; d]. Since Θ is monic and of positive degree in x, we have

that Θ and tp1, . . . , t
p
n are algebraically independent over F . Thus they form a central subring

B′[Θ] = F [tp1, . . . , tpn,Θ] of A[x; d]. As A[x; d] has rank pk over A[Θ] and since A[Θ] has rank
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pn+m over B′[Θ], we conclude that A[x; d] has rank pn+m+k over B′[Θ], and the proposition

is proved.

Note that if B is a Noetherian central subring of a Noetherian domain A such that A

is finitely generated over B, then D := Frac(A) can be obtained by inverting the elements

of B (see [38, Theorem 13.6.5] or [8, I.13.3]). Hence if A is free of rank pn over B, then

[D : Frac(B)] = pn. In particular, [D : Z] is a power of p, where Z denotes the center of D.

Finally, we get the following corollary.

Corollary 3.3.7. Any action of a semisimple Hopf algebra H over an algebraically closed

field F of characteristic zero on an iterated Ore extension of derivation type over a polynomial

ring in finitely many variables factors through a group action.

Proof. Let H be a semisimple Hopf algebra over F . Let A = S[x1; d1][x2; d2][· · · ][xn; dn] be an

iterated Ore extension of derivation type over a polynomial ring S in finitely many variables.

We may assume S = F . Suppose that H acts on A and let R be the ring of structure constants

of H and A as in (⋆). Then we can consider the R-Hopf algebra HR acting on the R-algebra

AR = R[x1; d1][x2; d2][· · · ][xn; dn].

For any maximal ideal m of R we set Fm = R/m and p = char(Fm). Then Am =

AR⊗RFm = Fm[x1; d1][x2; d2][· · · ][xn; dn] is an iterated Ore extension of derivation type over

Fm, a field of positive characteristic. By Proposition 3.3.6, Am contains a central subring

B, which is a polynomial ring, such that Am is free over B with rank a power of p. By the

argument right before this corollary, Dm = Frac(Am) has a p-power as dimension over its

center. Thus, for q = dim(H)!, by Theorem 3.3.2, we have that the Hopf algebra action of H

on A factors through a group action.

Corollary 3.3.7 covers the case of the nth Weyl algebra over a polynomial ring, i.e. [13,

Proposition 4.3], but also other examples like the Jordan plane A = C[x][y;x2 ∂
∂x ], which is a

generalization of [10, Theorem 0.1] as the assumption that the H-action preserves the filtration

of A can be removed.

During all this chapter, the assumption of H being a semisimple Hopf algebra was needed.

It is worth to mention that recently, in [14], the authors proved a similar result with the

assumption of H being only finite-dimensional and not necessarily semisimple.
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3.4 A remark on smash and crossed products

In this section, we shall make a brief comment on smash and crossed products.

Recall the definitions of smash and crossed products, Definitions 2.3.8 and 2.3.10. Before

we continue, we present the following definition and theorems.

Definition 3.4.1 ([39, Definition 7.2.1]). Let A ⊂ B be algebras, and H be a Hopf algebra.

1) A ⊂ B is a (right) H-extension if B is a right H-comodule algebra with BcoH = A.

2) The H-extension A ⊂ B is H-cleft if there exists a right H-comodule map γ : H → B

which is convolution invertible.

Theorem 3.4.2 ([39, Theorem 7.2.2]). An H-extension A ⊂ B is H-cleft if and only if

B ∼= A#σH.

Theorem 3.4.3 ([17, Theorem 7.2.11]). Let H be a finite dimensional Hopf algebra, R a

normal Hopf subalgebra of H, and H = H/HR+ the associated factor Hopf algebra. Then H

is isomorphic to a certain crossed product R#σH as algebras.

Having in mind these two theorems, we are able to prove the following one.

Theorem 3.4.4. Let H be a semisimple Hopf algebra, A an algebra, and R a normal Hopf

subalgebra of H. Suppose also that H acts on A. Then A#H is isomorphic to a certain

crossed product (A#R)#σH as algebras, where H = H/HR+.

Proof. Let R ⊆ H be a normal Hopf subalgebra of H. Then I = HR+ = R+H is a Hopf ideal

of H. Also, it is not difficult to see that H becomes a right H = H/I-comodule algebra via

(id⊗ π)∆ : H → H ⊗H, where π is the projection map from H to H.

Define ρ : A#H → (A#H) ⊗ H via a#h 7→
∑

(a#h1) ⊗ h2. This makes A#H an

H-comodule algebra. Moreover, for any r ∈ R, π(r) = ϵ(r)1H ,

ρ(a#r) =
∑

(a#r1) ⊗ r2 =
∑

(a#r1) ⊗ ϵ(r2)1H = (a#r) ⊗ 1H .

That is, A#R ⊆ (A#H)coH . Since RR is injective (R is a Frobenius Algebra since

dim(R) < ∞), the inclusion map i : R ↪−→ H splits, i.e., there exists a left R-module map
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θ : H → R, with θi = idR. We call the composition iθ = ϕ. Let Q : H → H be defined as

h 7→
∑

S(h1)ϕ(h2). So, for all r ∈ R and h ∈ H,

Q(rh) =
∑

S(h1)S(r1)(ϕ(r2h2))

=
∑

S(h1)S(r1)r2ϕ(h2)

= ϵ(r)
∑

S(h1)ϕ(h2) = ϵ(r)Q(h).

Thus, Q(R+H) = 0 and then, by the isomorphism theorem for vector spaces, there exists

a linear map Q : H → H such that Qπ = Q. Since
∑

h1Q(h2) =
∑

h1S(h2)ϕ(h3) = ϕ(h), we

deduce that
∑

h1Qπ(h2) = ϕ(h). Let a#h ∈ (A#H)coH . Then,
∑

(a#h1)⊗h2 = (a#h)⊗1H

and so

a#ϕ(h) =
∑

a#h1Qπ(h2) = a#hQ(1H) = a#h.

Therefore, identifying i(R) with its image in H, we have A#R = (A#H)coH . This entails

that A#R ⊆ A#H is a (right) H-extension.

By Theorems 3.4.3 and 3.4.2, we conclude that R ⊆ H is an H-extension and H-cleft.

Hence, there exists a convolution invertible morphism of H-comodules γ : H → H.

Define γ : H → A#H via h 7→ 1A#γ(h). Then γ is an H-comodule morphism. Indeed,

since γ is a morphism of H-comodules, the following diagram is commutative:

H H

H ⊗H H ⊗H.

γ

∆ (id⊗π)∆

γ⊗Id

	

Then, ρ(γ(h)) =
∑

(1A#γ(h)1) ⊗ γ(h)2 =
∑

(1A#γ(h1)) ⊗ h2 = (γ ⊗ id)∆(h), i.e., the

diagram

H A#H

H ⊗H (A#H) ⊗H

γ

∆ ρ

γ⊗Id

	

is commutative and so γ is an H-comodule morphism.
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Also, define ψ : H → A#H via h 7→ 1A#γ−1(h), where γ−1 is the convolution inverse of

γ. For the same reasons as before, ψ is an H-comodule map. Moreover, for all h ∈ H,

(γ ∗ ψ)(h) =
∑

γ(h1)ψ(h2)

=
∑

(1A#γ(h1))(1A#γ−1(h2))

=
∑

1A#γ(h1)γ−1(h2)

= ϵ(h)1A#1H

and

(ψ ∗ γ)(h) =
∑

ψ(h1)γ(h2)

=
∑

(1A#γ−1(h1))(1A#γ(h2))

=
∑

1A#γ−1(h1)γ(h2)

= ϵ(h)1A#1H .

This entails that γ is a convolution invertible H-comodule map. So, A#R ⊆ A#H is

H-cleft. Then, by Theorem 3.4.2, A#H ∼= (A#R)#σH.

Suppose that I is a Hopf ideal of the form I = HR+ for some normal Hopf subalgebra R

of H. If I is contained in AnnH(A), then the action of R on A is trivial, since ϵ(r)1H − r ∈ I

for all r ∈ R. Hence, A#H ∼= (A ⊗ R)#σH/I. In particular, if H is semisimple, then R

and H/I are semisimple [45, Corollary 8.43]. If, moreover, A is semiprime and char(F ) = 0,

then A⊗R is semiprime (see [28, Theorem 3.1]). Thus if H/I is strongly semiprime (i.e, it

answers Cohen’s question in the affirmative, see [35]), e.g. if H/I is a group ring, then A#H

is semiprime.





Chapter 4

Semisimple Hopf actions which do

not factor through group actions

In the last chapter, we mentioned that Etingof and Walton, in [18], have shown that

any semisimple Hopf action over an algebraically closed field on a commutative domain must

factor through a group action. Also in the last chapter, we extend their result by showing that

any action of a semisimple Hopf algebra H on an enveloping algebra of a finite-dimensional

Lie algebra or on an iterated Ore extension of derivation type factors through a group action.

Let the ground field F be of characteristic zero. In this chapter, we will present actions of

semisimple Hopf algebras over an algebraically closed field of characteristic zero which do not

factor through group actions.

In order to do that, we will construct a class of semisimple Hopf algebras H2n2 , which

are not group algebras, and show that there exist inner faithful actions of those algebras on

the quantum polynomial algebras.

4.1 Twisting of a Hopf algebra and skew polynomial rings

In Chapter 2, Example 2.2.21, we presented the Hopf algebra H8, which was discovered

by Kac and Paljutkin in the 1960’s. It is a non-commutative, non-cocommutative and, since

S2 = id, by Theorem 2.2.37, a semisimple Hopf algebra of dimension 8. Later, in 1995,

Masouka has shown that there is only one (up to isomorphisms) semisimple Hopf algebra of

dimension 8 that is neither commutative nor cocommutative (see [37]). Although Masouka

55



56 Semisimple Hopf actions which do not factor through group actions

presents H8 under the perspective of biproducts and bicrossed products, H8 can also be

presented as a quotient of a certain skew polynomial ring.

In this section, in order to justify this mentioned presentation of H8, and to construct a

family of Hopf algebras, we will give conditions to extend the structure of a given Hopf algebra

R to the quotient R[z, σ]/I, where R[z;σ] is the skew polynomial ring of automorphism type

of R and I is a bi-ideal of R[z, σ]. We start with the definition of a twist for a bialgebra.

Definition 4.1.1 ([42, Definition 7.8.1]). Let R be a bialgebra and J be an invertible element

in R⊗R. J is called a right twist (or a Drinfel’d twist) for R if J satisfies:

(i) (id⊗ ∆)(J)(1 ⊗ J) = (∆ ⊗ id)(J)(J ⊗ 1);

(ii) (id⊗ ϵ)(J) = 1 = (ϵ⊗ id)(J).

J is called a left twist for R if it satisfies (ii) and (1⊗J)(id⊗∆)(J) = (J⊗1)(∆⊗ id)(J).

If J is a left twist for R, then J−1 is a right twist for R ([42, Lemma 7.8.2]).

Definition 4.1.2 ([15, 2.1]). Let R be a bialgebra. Let J be a right twist for R and σ ∈ End(R).

We say that the pair (σ, J) is a twisted homomorphism for R if σ satisfies:

(i) J(σ ⊗ σ)∆(h) = ∆(σ(h))J for all h ∈ R;

(ii) ϵ ◦ σ = ϵ.

Note that, for any homomorphism of coalgebras σ ∈ End(R), the pair (σ, 1 ⊗ 1) is a

twisted homomorphism for R.

Remark 4.1.3. Let R be a bialgebra, (σ, J) a twist homomorphism for R and a ∈ R.

1. If σ is an automorphism, then (σ ⊗ σ)∆(σ−1(a)) = J−1∆(a)J := ∆J(a);

2. Since J is invertible, (σ ⊗ σ)∆(a) = J−1∆(σ(a))J = ∆J(σ(a));

3. σ is an homomorphism of coalgebras if and only if J commutes with ∆(σ(a)), for all

a ∈ R.

Recalling the Definition 3.3.5, given a ring S we say that the skew polynomial ring

(Ore extension) S[x;α, δ] is of automorphism type if δ = 0. Also, we will need the following

proposition.
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Proposition 4.1.4 ([21, Proposition 2.4]). Let S = R[x;α, δ] be a skew polynomial ring.

Suppose that we have a ring T , a ring homomorphism φ : R → T , and an element y ∈ T such

that yφ(r) = φ(α(r))y + φ(δ(r)) for all r ∈ R. Then there is a unique ring homomorphism

ψ : S → T such that ψ|R = φ and ψ(x) = y.

Note that, for an Ore extension of automorphism type, the condition to extend the

homomorphism φ is given by the existence of an element y ∈ T such that

yφ(r) = φ(α(r))y, (4.1)

for all r ∈ R.

Now, using these notions, we shall extend the bialgebra structure of a bialgebra R to its

Ore extension of automorphism type R[z;σ], for some specific σ ∈ End(R).

Theorem 4.1.5. Let R be a bialgebra and (σ, J) be a twisted homomorphism for R. Let

H = R[z;σ] be the skew polynomial ring of automorphism type. Then the bialgebra structure

of R can be extended to H such that ∆(z) = J(z ⊗ z) and ϵ(z) = 1F . Conversely, if there

exist an invertible element J ∈ R ⊗ R and σ ∈ Aut(R) such that R[z, σ] is a bialgebra with

∆(z) = J(z ⊗ z) and ϵ(z) = 1, then (σ, J) is a twisted homomorphism for R.

Proof. Let (σ, J) be a twisted homomorphism for the bialgebra R, and let H = R[z;σ] be

the Ore extension of automorphism type of R. Since R is a bialgebra, ∆ : R → R ⊗ R

is a homomorphism of algebras. As R ↪−→ H, then we have a homomorphism of algebras

∆ : R → H⊗H. Consider the element J(z⊗ z) ∈ H⊗H. Then, by condition (i) on Definition

4.1.2, for all h ∈ R, we have

J(z ⊗ z)∆(h) = J(σ ⊗ σ)∆(h)(z ⊗ z) = ∆(σ(h))J(z ⊗ z).

Thus ∆ satisfies the Ore condition as in 4.1. So, by Proposition 4.1.4, there exists a

unique algebra homomorphism ∆ : H → H ⊗ H such that ∆|R = ∆ and ∆(z) = J(z ⊗ z).

While it may be an abuse of notation, we just write ∆ = ∆.

Furthermore,



58 Semisimple Hopf actions which do not factor through group actions

(id⊗ ∆)∆(z) = (id⊗ ∆)(J)(z ⊗ ∆(z))

= (id⊗ ∆)(J)(1 ⊗ J)(z ⊗ z ⊗ z)
(⋆)= (∆ ⊗ id)(J)(J ⊗ 1)(z ⊗ z ⊗ z)

= (∆ ⊗ id)(J)(∆(z) ⊗ z)

= (∆ ⊗ id)∆(z);

where in (⋆) we are using the condition (i) of Definition 4.1.1. Note that the extension in

Proposition 4.1.4 is unique. Hence the two maps (∆ ⊗ id)∆ and (id⊗ ∆)∆ have to coincide,

since z has the same image under both of them. Therefore, ∆ : H → H ⊗H is a coassociative

map.

Now, since ϵ : R → F is a homomorphism of algebras, then, using the condition (ii) of

Definition 4.1.2, for all h ∈ R, we have

1F ϵ(h) = 1F ϵ(σ(h)) = ϵ(σ(h))1F .

Thus ϵ satisfies the Ore condition as in 4.1. So, by Proposition 4.1.4, there exists a unique

algebra homomorphism ϵ : H → F such that ϵ|R = ϵ and ϵ(z) = 1F . Again, while it may be

an abuse of notation, we just write ϵ = ϵ. Moreover, using the condition (ii) of the Definition

4.1.1, we have

(id⊗ ϵ)∆(z) = (id⊗ ϵ)(J)z = z = (ϵ⊗ id)(J)z = (ϵ⊗ id)∆(z).

Here, again, note that the extension in Proposition 4.1.4 is unique and then the two maps

(id ⊗ ϵ)∆ and (ϵ ⊗ id)∆ have to coincide, since z has the same image under both of them.

Thus ϵ satisfies the counity property in H. Therefore, the bialgebra structure of R extends to

H as stated in the lemma.

Now, to prove the converse, suppose that there exist an invertible element J ∈ R ⊗ R

and σ ∈ Aut(R) such that R[z, σ] is a bialgebra with ∆(z) = J(z⊗ z) and ϵ(z) = 1. Note that

since (id⊗ ϵ)∆(z) = z = (ϵ⊗ id)∆(z), we must have that (id⊗ ϵ)(J) = 1 = (ϵ⊗ id)(J). Also,
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note that

(id⊗ ∆)∆(z) = (id⊗ ∆)(J)(z ⊗ ∆(z)) = (id⊗ ∆)(J)(1 ⊗ J)(z ⊗ z ⊗ z)

and

(∆ ⊗ id)∆(z) = (∆ ⊗ id)(J)(∆(z) ⊗ z) = (∆ ⊗ id)(J)(J ⊗ 1)(z ⊗ z ⊗ z).

Since R[z, σ] is a bialgebra, we have that (id ⊗ ∆)∆(z) = (∆ ⊗ id)∆(z) and hence (id ⊗

∆)(J)(1 ⊗ J) = (∆ ⊗ id)(J)(J ⊗ 1), that is, J is a right twist for R. Moreover, for all h ∈ R,

zh = σ(h)z. This implies that

ϵ(h) = ϵ(zh) = ϵ(σ(h)z) = ϵ(σ(h)),

i.e., ϵ ◦ σ = ϵ. Also, note that

J(σ ⊗ σ)∆(h)(z ⊗ z) = J(z ⊗ z)∆(h) = ∆(zh) = ∆(σ(h)z) = ∆(σ(h))J(z ⊗ z), ∀h ∈ R.

Thus, J(σ ⊗ σ)∆(h) = ∆(σ(h))J and hence the pair (σ, J) is a twisted homomorphism for

R.

As it was said at the beginning of this section, given a Hopf algebra R, we will find

conditions to define a Hopf algebra structure on the quotient R[z, σ]/I, for some bi-ideal I of

R[z, σ]. The following lemma gives us certain conditions to find the bi-ideal on the bialgebra

R[z;σ] which will be used to define such Hopf algebra structure.

Lemma 4.1.6. Let R be a bialgebra and (σ, J) be a twisted homomorphism for R. Suppose

that there exists 0 ̸= t ∈ R such that ∆(t) = J(σ ⊗ σ)(J)(t⊗ t). Then, for H = R[z;σ] with

the bialgebra structure as in Theorem 4.1.5, I = ⟨z2 − t⟩ is a bi-ideal of H.

Proof. Let R be a bialgebra and (σ, J) be a twisted homomorphism for R. By Theorem 4.1.5,

H = R[z;σ] is also a bialgebra. Let 0 ̸= t ∈ R as in the hypothesis and let I be the ideal in

H generated by z2 − t. We have to prove that I = ⟨z2 − t⟩ is coideal of H. We note that t
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necessarily satisfies

t = (ϵ⊗ id)∆(t)

= (ϵ⊗ id)(J)(ϵ⊗ id)(σ ⊗ σ)(J)ϵ(t)t

= (ϵ⊗ id)(σ ⊗ σ)(J)ϵ(t)t

= (ϵ⊗ σ)(J)ϵ(t)t

= σ((ϵ⊗ id)(J))ϵ(t)t

= σ(1)ϵ(t)t = ϵ(t)t,

which implies ϵ(t) = 1. So, ϵ(z2 − t) = ϵ(z)2 − ϵ(t) = 0. That is, I = ⟨z2 − t⟩ ⊆ Ker(ϵ).

Furthermore,

∆(z2 − t) = ∆(z)2 − ∆(t)

= J(z ⊗ z)J(z ⊗ z) − ∆(t)

= J(σ ⊗ σ)(J)(z2 ⊗ z2) − ∆(t)

= J(σ ⊗ σ)(J)(z2 − t⊗ z2) + J(σ ⊗ σ)(J)(t⊗ z2 − t) + J(σ ⊗ σ)(J)(t⊗ t) − ∆(t)

= J(σ ⊗ σ)(J)(z2 − t⊗ z2) + J(σ ⊗ σ)(J)(t⊗ z2 − t),

which belongs to I ⊗H +H ⊗ I. Therefore, I is a bi-ideal of H.

Remark 4.1.7. Note that, conversely, if I = ⟨z2 − t⟩ is a bi-ideal of H, then ∆(t) − J(σ ⊗

σ)(J)(t⊗ t) ∈ H ⊗ I + I ⊗H.

Hence, given a bialgebra R and (σ, J) a twisted homomorphism for R and an element t

that satisfies the hypothesis of Lemma 4.1.6, we have that H/I is a bialgebra, for H = R[z;σ]

and I = ⟨z2 − t⟩. The next lemma presents conditions to extend a Hopf algebra structure

from R to the quotient bialgebra H/I.

Lemma 4.1.8. Let R be a Hopf algebra with antipode S, (σ, J) be a twisted homomorphism,

and σ◦S = S◦σ with the additional condition that σ2 = id. Suppose that there exists 0 ̸= t ∈ R

such that ∆(t) = J(σ ⊗ σ)(J)(t⊗ t). If S(t) = t and

(i) tJ1S(J2) = 1;
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(ii) tσ(S(J1)J2) = 1,

where J = J1 ⊗ J2 with the summation omitted, then there exists a Hopf algebra structure on

H/I with S(z) = z. Conversely, if there exists a Hopf algebra structure on H/I with S(z) = z,

then tJ1S(J2) = 1 = tσ(S(J1)J2).

Proof. Let R be a Hopf algebra with antipode S and (σ, J) a twisted homomorphism for R

such that σ2 = id. By Theorem 4.1.5, R[z, σ] is a bialgebra, and by Lemma 4.1.6, I = ⟨z2 − t⟩

is a bi-ideal of R[z, σ].

By abuse of notation, we just write h for the element h + I of H/I. And to define

the antipode, we just extend the antipode S of R to H/I defining S(z) = z. We note that

S : H/I → H/I is well defined, since S(z2 − t) = S(z)2 − S(t) = z2 − t ∈ I and, using that

S ◦ σ = σ ◦ S, S(a)z = zS(σ(a)) for all a ∈ R. Also, we have that

µ(id⊗ S)∆(z) = µ(id⊗ S)(J(z ⊗ z)) = J1zS(z)S(J2) = z2σ2(J1)S(J2) = tJ1S(J2) = 1,

and

µ(S⊗ id)∆(z) = µ(S⊗ id)(J(z⊗z)) = S(z)S(J1)J2z = z2σ(S(J1))σ(J2) = tσ(S(J1)J2) = 1.

Since S is an antipode for R, the antipode property is verified for R as well. Therefore,

S is an antipode of H/I and so H/I is a Hopf algebra. The converse follows from the two

equations above.

In this setting, for R a semisimple Hopf algebra, we have the following corollary.

Corollary 4.1.9. Under the conditions of Lemma 4.1.8, if R is a semisimple Hopf algebra,

then H/I is semisimple.

Proof. Note that since R is semisimple, by Remark 2.2.38, R is finite-dimensional. Hence,

H/I is finite-dimensional. Also, by Theorem 2.2.37, S2 = id on R. Now, since S(z) = z, we

conclude that S2 = id on H/I. Thus, again by Theorem 2.2.37, H/I is semisimple.
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4.2 Semisimple Hopf algebras of dimension 2n2

In this section, using what we have done in the last section, we shall construct semisimple

Hopf algebras of dimension 2n2, which, in the sequel, will be used to define actions on the

quantum plane which do not factor through group actions. From now on, we let the ground

field F be algebraically closed.

Before we properly start this section, we recall that for an algebra A, an element e ∈ A

is called idempotent if e2 = e. If e1, e2 ∈ A are idempotents we call them orthogonal if

e1e2 = 0 = e2e1. A finite set of orthogonal idempotents {e1, · · · , em} is called complete if

e1 + · · · + em = 1A.

Let Γ = ⟨x | xn = 1⟩ be the cyclic group of order n > 1. Let q ∈ F be a primitive nth

root of unity. For every integer j, we set

ej = 1
n

n−1∑
i=0

q−ijxi.

Observe that if j ≡ j′(mod n), then qj = qj′ and xj = xj′ , and therefore ej = ej′ . This

means that e0, . . . , en−1 lists the distinct e′
is. Moreover, for 0 ≤ j, k < n, we have

ejx
k = 1

n

n−1∑
i=0

q−ijxi+k = qjk

(
1
n

n−1∑
i=0

q−(i+k)jxi+k

)
= qjkej . (4.2)

For the next lemma, recall that for any nth root of unity q ̸= 1, we have
n−1∑
i=0

qi = 0, since

0 = qn − 1 = (q − 1)
n−1∑
i=0

qi.

Lemma 4.2.1. {e0, · · · , en−1} is a complete set of orthogonal idempotents of F [Γ].

Proof. Since q−j is also an nth root of unity different from 1 if j ̸= 0, we get

n−1∑
i=0

ei = 1
n

n−1∑
i=0

n−1∑
j=0

q−ijxj = 1
n

n−1∑
j=0

(
n−1∑
i=0

(
q−j

)i
)
xj = 1,

Also, using (4.2), for 0 ≤ l, j < n:

ejel = 1
n

n−1∑
k=0

q−lkejx
k = 1

n

n−1∑
k=0

q−lk+jkej = 1
n

n−1∑
k=0

(
qj−l

)k
ej =

 ej if l = j

0 if l ̸= j
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Hence, {e0, · · · , en−1} is a complete set of orthogonal idempotents of F [Γ].

We denote the elements of G = Γ × Γ by xiys for 0 ≤ i, s < n. Let {e0, · · · , en−1}

be the complete set of idempotents of F [Γ] as in Lemma 4.2.1. Let σ ∈ Aut(F [G]) be the

automorphism of F [G] induced by the group isomorphism

xiys 7→ xsyi, ∀1 ≤ i, s ≤ n.

Set ei := σ(ei), i.e., ei = 1
n

n−1∑
j=0

q−ijyj . As in equation (4.2) one has eiy
k = qikei.

Now, in F [G] ⊗ F [G] consider the element

J :=
n−1∑
i=0

ei ⊗ yi.

Note that we can also write J in terms of the elements ei’s as

J = 1
n

n−1∑
i,j=0

q−ijxj ⊗ yi =
n−1∑
i=0

xi ⊗ ei. (4.3)

With this setting, we have the following lemma.

Lemma 4.2.2. The pair (σ, J) is a twisted homomorphism for F [G].

Proof. First we note that J is invertible with inverse J−1 =
n−1∑
j=0

ej ⊗ y−j . Using (4.2) and

(4.3), we get

(∆ ⊗ 1)(J)(J ⊗ 1) =
(

n−1∑
i=0

∆(xi) ⊗ ei

)n−1∑
j=0

ej ⊗ yj ⊗ 1


=

n−1∑
i,j=0

xiej ⊗ xiyj ⊗ ei

=
n−1∑
i,j=0

qijej ⊗ yjxi ⊗ ei

=
n−1∑
i,j=0

ej ⊗ yjxi ⊗ yjei

=

n−1∑
j=0

ej ⊗ ∆(yj)

n−1∑
j=0

1 ⊗ xi ⊗ ei

 = (1 ⊗ ∆)(J)(1 ⊗ J).
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Moreover, we have

(1 ⊗ ϵ)(J) =
n−1∑
i=0

ei = 1 =
n−1∑
i=0

ei = (ϵ⊗ 1)(J).

That is, J is a right twist as in Definition 4.1.1. For xkys ∈ G, note that

(σ ⊗ σ)∆(xkys) = (σ ⊗ σ)(xkys ⊗ xkys) = xsyk ⊗ xsyk = ∆(σ(xkys)).

Thus, since F [G] is commutative, we have that J(σ ⊗ σ)∆(xkys) = ∆(σ(xkys))J . Moreover,

clearly ϵ ◦ σ = ϵ. Therefore, the pair (σ, J) is a twisted homomorphism as in Definition

4.1.2.

Hence, by Theorem 4.1.5, H = F [G][z;σ] is bialgebra with ∆(z) = J(z ⊗ z) and ϵ(z) = 1.

Now, consider the element t =
n−1∑
i=0

eiy
i which satisfies

σ(t) =
n−1∑
i=0

eix
i = 1

n

n−1∑
i=0

n−1∑
j=0

q−ijyjxi =
n−1∑
j=0

(
1
n

n−1∑
i=0

q−ijxi

)
yj =

n−1∑
j=0

ejy
j = t.

Moreover, t has an inverse in F [G], t−1 =
n−1∑
i=0

eiy
−i, because

(
n−1∑
i=0

eiy
i

)(
n−1∑
k=0

eky
−k

)
=

n−1∑
i,k=0

eieky
i−k =

n−1∑
i=0

eiy
0 = 1, since the e′

is form a complete set of orthogonal idempotents.

Lemma 4.2.3. The element t satisfies ∆(t) = J(σ ⊗ σ)(J)(t⊗ t).

Proof. Since
n−1∑
k=0

(q(l−j))k = 0 for l ̸= j, note that for any i

n−1∑
k=0

ek ⊗ e(i−k) = 1
n2

n−1∑
k,j,l=0

q−jkq−l(i−k)xj ⊗ xl

= 1
n2

n−1∑
k,j,l=0

q(l−j)kq−lixj ⊗ xl

= 1
n2

n−1∑
j,l=0

(
n−1∑
k=0

(q(l−j))k

)
q−lixj ⊗ xl

= 1
n

n−1∑
j=0

q−ijxj ⊗ xj = ∆(ei).
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So, it follows that ∆(t) =
n−1∑

i,m=0
eiy

m ⊗ e(m−i)y
m. Then, by (4.3), we get

J(σ ⊗ σ)(J)(t⊗ t) =
n−1∑
i,j=0

eiy
jt⊗ yiejt

=
n−1∑

i,j,k,l=0
eieky

j+k ⊗ ejely
i+l

=
n−1∑
i,j=0

eiy
i+j ⊗ ejy

i+j

=
n−1∑

i,m=0
eiy

m ⊗ e(m−i)y
m = ∆(t).

So, t satisfies the hypothesis of Lemma 4.1.6 and hence I = ⟨z2 − t⟩ is a bi-ideal of

F [G][z;σ]. Thus H = F [G][z;σ]/⟨z2 − t⟩ is also a bialgebra.

Note that σ2 = id and

S(t) = 1
n

n−1∑
i,j=0

q−ijx−iy−j = 1
n

n−1∑
k,s=0

q−ksxkys =
n−1∑
s=0

esy
s = t.

Since σ(S(xkys)) = x−sy−k = S(σ(xkys)) and

tJ (1)S(J (2)) =
n−1∑
i,j=0

eiejy
i−j =

n−1∑
i=0

ei = 1,

and

tσ(S(J (1))J (2)) = tσ

 1
n

n−1∑
i,j=0

q−ijx−jyi

 = t
n−1∑
j=0

y−j 1
n

n−1∑
i=0

q−ijxi = t

n−1∑
j=0

ejy
−j

 = tt−1 = 1,

by Lemma 4.1.8, H = F [G][z;σ]/⟨z2 − t⟩ is a Hopf algebra.

Note that these Hopf algebras have dimension 2n2 and we shall denote them by H2n2 .

Also, we note that since F has characteristic zero, by the comment made right after

Theorem 2.2.36, F [G] is semisimple, and then, by Corollary 4.1.9, H2n2 is also semisimple.

Moreover, H2n2 is non-commutative and non-cocommutative, since ∆(z) ̸= τ(∆(z)), where

τ(
∑
h1 ⊗ h2) =

∑
h2 ⊗ h1.
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Before we continue, we establish the following lemma, which will be useful in the sequel.

Lemma 4.2.4. Let I be a Hopf ideal of H2n2 and consider R = F [G]. If I ∩ R = 0, then

I = 0.

Proof. Let I be a Hopf ideal of H2n2 such that I ∩ R = 0. Consider the restriction of the

projection map π|R : R → H2n2/I. Clearly, Kerπ|R = I ∩ R. Hence, we can look at R as a

Hopf subalgebra of H2n2/I. Then, by Corollary 2.2.44, dim(R) divides dim(H2n2/I).

Since dim(H2n2) = 2 dim(R), we must have that dim(H2n2/I) = 2 dim(R) or dim(H2n2/I) =

dim(R). If dim(H2n2/I) = 2 dim(R), then I = 0.

If dim(H2n2/I) = dim(R), then H2n2/I ∼= R and thus H2n2/I is commutative. Hence, we

must have that x̄z̄ = z̄x̄ = ȳz̄, which implies that (x− y)z ∈ I. So, (x− y)z(zt−1) = (x− y) ∈

I ∩R = 0, which is absurd.

4.2.1 Non-cocommutative extensions of finite abelian groups

The construction we have made for H2n2 can also be made for G a finite abelian group.

In order to justify this, we expose the following about the tensor product of extensions we

considered in Section 4.1.

Let A and B be bialgebras. Suppose that we can find (α,W ) and (β, L) twisted homo-

morphisms of A and B respectively. Then, by Theorem 4.1.5, the Ore extensions A[z1;α] and

B[z2;β] become bialgebras with ∆A(z1) = W (z1 ⊗ z1) and ϵ(z1) = 1, and ∆B(z2) = L(z2 ⊗ z2)

and ϵ(z2) = 1 respectively.

From now until the end of this exposition for tensor products, consider R = A⊗B with

the usual tensor product bialgebra structure. Define J = (id⊗ τA,B ⊗ id)(W ⊗L), where τA,B

is the twist map. Let σ : R → R be defined as σ = α⊗ β.

With this setting, we have the following lemma.

Lemma 4.2.5. (σ, J) as defined above is a twisted homomorphism for the tensor product

bialgebra R = A⊗B.

Proof. Write J = (W (1) ⊗L(1)) ⊗ (W (2) ⊗L(2)), where W = W (1) ⊗W (2) and L = L(1) ⊗L(2)

with the summation omitted. Since (α,W ) and (β, L) are twisted homomorphism, the relations

of Definitions 4.1.1 and 4.1.2 are satisfied for (α,W ) and (β, L). That is to say that we have
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the following equations

∑
W (1) ⊗W

(2)
1 W (1)′ ⊗W

(2)
2 W (2)′ =

∑
W

(1)
1 W (1)′ ⊗W

(1)
2 W (2)′ ⊗W (2), (4.4)

W (1)ϵA(W (2)) = 1A = ϵA(W (1))(W (2)), (4.5)

∑
W (1)α(h1) ⊗W (2)α(h2) =

∑
(α(h))1W

(1) ⊗ (α(h))2W
(2), ∀h ∈ A, (4.6)

ϵA ◦ α = ϵA. (4.7)

For L the equations are analogous. Then, using these relations, we get

(idR ⊗ ∆R)(J)(1 ⊗ J) =
∑

W (1) ⊗ L(1) ⊗W
(2)
1 W (1)′ ⊗ L

(2)
1 L(1)′ ⊗W

(2)
2 W (2)′ ⊗ L

(2)
2 L(2)′

(⋆)=
∑

W
(1)
1 W (1)′ ⊗ L

(1)
1 L(1)′ ⊗W

(1)
2 W (2)′ ⊗ L

(1)
2 L(2)′ ⊗W (2) ⊗ L(2)

= (∆R ⊗ idR)(J)(J ⊗ 1),

where in (⋆) we are using (4.4). Moreover, by (4.5), we have that (idR⊗ϵR)(J) = W (1)ϵA(W (2))⊗

L(1)ϵB(L(2)) = 1A ⊗ 1B. By the same reasons, (ϵR ⊗ idR)(J) = 1A ⊗ 1B.

Now, for h ∈ A and g ∈ B, using (4.6), we have

J(σ ⊗ σ)∆R(h⊗ g) =
∑

W (1)α(h1) ⊗ L(1)β(g1) ⊗W (2)α(h2) ⊗ L(2)β(g2)

=
∑

(α(h))1W
(1) ⊗ (β(g))1L

(1) ⊗ (α(h))2W
(2) ⊗ (β(g))2L

(2)

= ∆R(σ(h⊗ g))J.

Clearly, because of (4.7), we have that ϵR ◦ σ = ϵR. Therefore, (σ, J) is a twisted

homomorphism for R.

Hence, by Lemma 4.2.5 and Theorem 4.1.5, the Ore extension R[z, σ] is a bialgebra with

∆(z) = J(z ⊗ z) and ϵ(z) = 1.
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Now, suppose that there exist elements a ∈ A and b ∈ B satisfying the hypothesis of

Lemma 4.1.6, i.e.,

∆A(a) = W (α⊗ α)(W )(a⊗ a) and ∆B(b) = L(β ⊗ β)(L)(b⊗ b). (4.8)

Lemma 4.2.6. Let t = a⊗ b ∈ R. Then ∆R(t) = J(σ ⊗ σ)(J)(t⊗ t).

Proof. Indeed, by (4.8), we have

∆R(t) =
∑

a1 ⊗ b1 ⊗ a2 ⊗ b2

= W (1)α(W (1)′)a⊗ L(1)β(L(1)′)b⊗W (2)α(W (2)′)a⊗ L(2)β(L(2)′)b

= J(σ ⊗ σ)(J)(t⊗ t).

Therefore, by Lemma 4.1.6, ⟨z2 − t⟩ is a bi-ideal of R[z;σ].

Suppose now that A and B are Hopf algebras, with antipode SA and SB respectively.

So the tensor product Hopf algebra R = A ⊗ B has antipode S = SA ⊗ SB. Suppose also

that A and B satisfy the hypothesis of Lemma 4.1.8. That is to say that SA(a) = a, α2 = id,

SA ◦ α = α ◦ SA,

aW (1)SA(W (2)) = 1, aα(SA(W (1))W (2)) = 1, (4.9)

SB(b) = b, β2 = id, SB ◦ β = β ◦ SB,

bL(1)SB(L(2)) = 1 and bβ(SB(L(1))L(2)) = 1. (4.10)

Clearly, S(t) = t. Moreover, σ2 = id. Also, by (4.9) and by (4.10), we have

tJ1S(J2) = (a⊗ b)(W (1) ⊗ L(1))(SA(W (2)) ⊗ SB(L(2)))

= aW (1)SA(W (2)) ⊗ bL(1)SB(L(2))

= 1 ⊗ 1
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and

tσ(S(J1)J2) = (a⊗ b)(α⊗ β)((SA(W (1)) ⊗ SB(L(1)))(W (2) ⊗ L(2)))

= aα(SA(W (1))W (2)) ⊗ bβ(SB(L(1))L(2))

= 1 ⊗ 1.

So, by Lemma 4.1.8, R[z;σ]/⟨z2 − t⟩ is a Hopf algebra.

By an induction argument, we have the following proposition.

Proposition 4.2.7. Let A1, . . . , An, for some positive integer n, be bialgebras with twisted

homomorphisms (αi, Ji) and elements ai satisfying all the conditions necessary to make

Ai[zi, αi]/⟨z2
i −ai⟩ a Hopf algebra. Then R[z;σ]/⟨z2−t⟩ is a Hopf algebra, for R = A1⊗· · ·⊗An.

Remark 4.2.8. Let G be a finite abelian group of order n and q ∈ F be a primitive nth root

of unity. The construction of H2n2 can be made not only for cyclic groups. It can also be made

for abelian groups and in this remark we first justify this by using what we have done above.

Since G is a finite abelian group, then G ∼= G1 × · · · × Gs, where, for 1 ≤ j ≤ s,

Gj = ⟨gj | gnj

j = 1⟩ is a cyclic group of order nj.

Let Γ = G×G ∼= (G1 ×G1) × (G2 ×G2) × · · · × (Gs ×Gs). Then,

F [Γ] ∼= F [G1 ×G1] ⊗ F [G2 ×G2] ⊗ · · · ⊗ F [Gs ×Gs].

For each Hopf algebra F [Gi ×Gi], for 1 ≤ i ≤ s, we can apply the construction we have

made for H2n2 and conclude that there exists (σi, Ji) a twisted homomorphism for F [Gi ×Gi]

and an element ti ∈ F [Gi ×Gi] such that F [Gi ×Gi][zi, σi]/⟨z2
i − ti⟩ is a Hopf algebra. Hence,

by Proposition 4.2.7, for R = F [G1 ×G1] ⊗ F [G2 ×G2] ⊗ · · · ⊗ F [Gs ×Gs], we can construct

a twisted homomorphism (σ, J) for R and an element t ∈ R such that R[z, σ]/⟨z2 − t⟩ is a

Hopf algebra.

Explicitly, using a set of complete orthogonal idempotents for F [G] constructed by Radford

in [43, Section 4], the Hopf algebra structure can be obtained as follows. Let q be a primitive

nth root of unity and set qi = qn/ni.
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Let Λ = Zn1 ⊕ · · · ⊕ Zns. For m ∈ Λ, m = (m1, · · · ,ms), we define

gm := (gm1
1 , · · · , gms

s ) and qm := qm1
1 · · · qms

s

Λ is isomorphic to G via m 7→ gm. Then, for all m ∈ Λ, we define

em = 1
n

∑
r∈Λ

q−rmgr,

where (qr)m = qrm.

One verifies that the set {em}m∈Λ is a complete set of orthogonal idempotents of F [G].

Despite the abuse of notation, denote the elements of G × G by grhs for r, s ∈ Λ. The

automorphism σ ∈ Aut(F [G × G]) is given by grhs 7→ gshr and the element J is equal to

J :=
∑
r∈Λ

er ⊗ hr. Then (σ, J) is a twisted homomorphism and so, by Theorem 4.1.5, the

bialgebra structure of F [G × G] can be extended to the Ore extension F [G × G][z;σ] with

∆(z) = J(z ⊗ z) and ϵ(z) = 1.

The element t =
∑
r∈Λ

erh
r satisfies σ(t) = t, t−1 =

∑
r∈Λ

erh
−r, and, as in Lemma 4.2.3,

∆(t) = J(σ ⊗ σ)(J)(t⊗ t). So, by Lemma 4.1.6, I = ⟨z2 − t⟩ is a bi-ideal of F [G×G][z;σ]

and thus H = F [G×G][z;σ]/⟨z2 − t⟩ is also a bialgebra.

Also, note that σ2 = id, S(t) = t, tJ1S(J2) = 1, and tσ(S(J1)J2) = 1. Moreover,

σ ◦ S = S ◦ σ holds. Hence, by Lemma 4.1.8, H = F [G×G][z;σ]/⟨z2 − t⟩ is a Hopf algebra

with S(z) = z.

4.3 Semisimple Hopf algebra of dimension 8

In the Example 2.2.21, we presented the Kac and Paljutkin’s Hopf algebra of dimension

8 as the algebra generated by x, y, and z subject to some relations. In this section, we will

present H8 as the Hopf algebra H2n2 , for n = 2. Also, using such a presentation of H8, we

shall classify its Hopf ideals.



4.3 Semisimple Hopf algebra of dimension 8 71

4.3.1 H8 as a quotient of an Ore extension

First, we recall that in Example 2.2.21, H8 was introduced as the algebra generated by

x, y, and z subject to the following relations

x2 = 1, y2 = 1, xy = yx

z2 = 1
2 (1 + x+ y − xy) , zx = yz, zy = xz,

and with coalgebra structure given by

∆(x) = x⊗ x, ϵ(x) = 1

∆(y) = y ⊗ y, ϵ(y) = 1

∆(z) = 1
2 (1 ⊗ 1 + x⊗ 1 + 1 ⊗ y − x⊗ y) (z ⊗ z), ϵ(z) = 1.

And the antipode is given by S(x) = x, S(y) = y, and S(z) = z.

Now, H8 can also be viewed as a Hopf algebra as the ones constructed in Section 4.2. For

the Hopf algebras constructed in that Section, we take n = 2 and q = −1. The group Γ, then,

is the cyclic group of order 2, Z2 = {x | x2 = 1}. In this setting, we have that the orthogonal

idempotents of F [Z2] as in Lemma 4.2.1 are given by:

e0 = 1
2(1 + x) and e1 = 1

2(1 − x).

Then, for G = ⟨x, y | x2 = 1 = y2, xy = yx⟩ = Γ × Γ, the automorphism σ swaps x and y,

i.e., σ(x) = y and σ(y) = x. And the element J is given by

J = 1
2((1 + x) ⊗ 1 + (1 − x) ⊗ y) = 1

2(1 ⊗ 1 + x⊗ 1 + 1 ⊗ y − x⊗ y).

Let R = F [G]. So, R[z;σ] becomes a bialgebra with

∆(z) = J(z ⊗ z) = 1
2 (1 ⊗ 1 + x⊗ 1 + 1 ⊗ y − x⊗ y) (z ⊗ z),

and ϵ(z) = 1. Also, note that zx = σ(x)z = yz. Since t is given by

t = e0 + e1y = 1
2(1 + x+ y − xy),
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we get that z2 = 1
2(1 + x+ y − xy) in the Hopf algebra R[z;σ]/⟨z2 − t⟩, where S(z) = z.

So, H2n2 , for n = 2, is precisely the Hopf algebra H8 as introduced in Example 2.2.21.

Then, from now on, every time we refer to H8, we keep in mind its presentation as the one

presented in this section, i.e., as a quotient of an Ore extension: H8 = R[z;σ]/⟨z2 − t⟩.

4.3.2 Hopf ideals of H8

Hereafter, let F = C, the field of complex numbers. Let G = Z2 × Z2 be the Klein

four group. Keeping in mind the presentation of H8 as in the last subsection, i.e., H8 =

R[z;σ]/⟨z2 − t⟩, for R = C[G], our goal in this subsection is to classify the Hopf ideals of H8.

Let J be a Hopf ideal of H8. Consider I = J ∩R. By Lemma 2.2.13, I is a Hopf ideal of

R. Since R = C[G] is a group algebra, by Lemma 3.1.7, there exists a normal subgroup N of

G = ⟨x, y : x2 = 1 = y2, xy = yx⟩, such that I = RC[N ]+. Since G is abelian, all subgroups of

G are normal and the list of subgroups of G is the following one:

⟨x⟩, ⟨y⟩, ⟨xy⟩, {1} and G.

So, in order to classify all the Hopf ideals J of H8, we can separate in cases for N ∈

{⟨x⟩, ⟨y⟩, ⟨xy⟩, {1}, G} and I = RC[N ]+.

Theorem 4.3.1. Any Hopf ideal of H8 is one of the following: (0), H8 ker(ϵ|R), ker(ϵ),

H8(x− y), H8(x− y) +H8(1 − (λxz+ λ̄z))H8, J = H8(x− y) +H8(1 − (λz+ λ̄xz))H8, where

λ = 1+i
2 and λ is its complex conjugate.

In the sequel, we will prove this theorem in a chain of lemmas. We start with the case

N = G.

Lemma 4.3.2. If N = G, then J = H8 ker(ϵ|R) or J = ker(ϵ).

Proof. If N = G, then I = ker(ϵ|R). Note that for a ∈ I, az = zσ(a) and so ϵ(σ(a)) = 0, i.e.,

σ(a) ∈ ker(ϵ|R) and so, az ∈ H8I for all a ∈ I. This implies that H8I is a Hopf ideal of H8

and then, since H8I ⊆ J , we have that J/H8I is a Hopf ideal of H8/H8I.

Note that (1−x), (1−y), (1−xy) ∈ H8I, so, every element h̄ ∈ H8/H8I, for h̄ = h+H8I,

can be written as h = α1 + βz, for some α, β ∈ C. We conclude that H8/H8I is generated

as vector space by 1 and z. Therefore, dim (H8/H8I) ≤ 2 and hence dim (J/H8I) ≤ 2. This

gives us three options, or dim (J/H8I) = 0, or dim (J/H8I) = 1, or dim (J/H8I) = 2.
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If dim (J/H8I) = 0, then J = H8I.

Now, in order to argue for the two remain cases, note that {1 − x, 1 − y, 1 − xy, z −

xz, z − yz, z − xyz} is a linearly independent set in H8I and so, dim(H8I) ≥ 6. Thus, if

dim (J/H8I) = 1, then dim(J) ≥ 7. But J ̸= H8 and then we get that J has codimension

1. This and the fact that J ⊆ ker(ϵ) and ker(ϵ) has codimension 1 lead us to conclude that

J = ker(ϵ).

Finally, dim (J/H8I) cannot be 2. Otherwise J = H8, and then R = ker(ϵ|R), which is

absurd.

Therefore, for N = G, either J = H8 ker(ϵ|R) or J = ker(ϵ).

Corollary 4.3.3. If x belongs to N , then J = H8 ker(ϵ|R) or J = ker(ϵ).

Proof. Suppose that x ∈ N . Then, 1 − x ∈ RC[N ]+ = I ⊆ J . Since t2 = 1 in H8 and J is an

ideal,

z(1 − x)zt = (1 − y)z2t = (1 − y)t2 = (1 − y) ∈ J.

Thus 1 − y ∈ J ∩ R = RC[N ]+. Hence, y must belong to N , otherwise we would have that

N = ⟨x⟩ and then every h ∈ C[N ]+ is written as h = β1 − βx, for some β ∈ C. Thus, since

(1 − y) ∈ RC[N ]+, we should have that

(1 − y) = (α11 + α2x+ α3y + α4xy)(β1 − βx),

for some α1, α2, α3, α4, β ∈ C. But this leads to a contradiction. Therefore, y ∈ N and hence

N = G. By Lemma 4.3.2, J = H8 ker(ϵ|R) or J = ker(ϵ).

The case y ∈ N is analogous.

This corollary is saying that N cannot be ⟨x⟩ or ⟨y⟩. So, it remains the cases where

N = ⟨1⟩ or N = ⟨xy⟩.

Lemma 4.3.4. If N = ⟨1⟩, then J = 0.

Proof. If N = ⟨1⟩, then C[N ]+ = 0, i.e., 0 = I = R ∩ J . By Lemma 4.2.4, J = 0.
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Lemma 4.3.5. If N = ⟨xy⟩, then J = H8(x− y) or J = H8(x− y) +H8(1 − (λxz + λ̄z))H8

or J = H8(x− y) +H8(1 − (λz + λ̄xz))H8, for λ = 1 + i

2 and λ̄ its complex conjugate.

Proof. Note that if N = ⟨xy⟩, then C(x−y) = I = RC[N ]+. Also, since (x−y)z = −z(x−y) ∈

H8I, we can conclude that H8I is a Hopf ideal of H8.

Note that, in the quotient H8/H8I, every element r of R can be written as r̄ = α1̄ + βx̄,

for some α, β ∈ C, and then, since every element of H8 can be written as h = a + bz, for

a, b ∈ R, in the quotient we have that h̄ = α11̄ +α2x̄+α3z̄+α4x̄z̄, for some α1, α2, α3, α4 ∈ C.

So, for H = H8/H8I, we have that dim(H) ≤ 4. Now, consider the elements 1̄, x̄, ḡ, and

h̄, where ḡ = λx̄z̄+ λ̄z̄, and h̄ = λ̄x̄z̄+λz̄, for λ = 1 + i

2 and λ̄ = 1 − i

2 . We claim that 1̄, x̄, ḡ, h̄

are distinct group-likes elements. Indeed, ∆(1̄) = 1̄⊗1̄ and ∆(x̄) = x̄⊗x̄. For ḡ and h̄, note first

that ∆(z̄) = 1
2(z̄⊗ z̄+ x̄z̄⊗ z̄+ z̄⊗ x̄z̄− x̄z̄⊗ x̄z̄) and ∆(x̄z̄) = 1

2(x̄z̄⊗ x̄z̄+ z̄⊗ x̄z̄+ x̄z̄⊗ z̄− z̄⊗ z̄).

Hence,

∆(ḡ) = λ∆(x̄z̄) + λ̄∆(z̄)

= 1
2
(
(λ̄− λ)z̄ ⊗ z̄ + (λ̄+ λ)x̄z̄ ⊗ z̄ + (λ̄+ λ)z̄ ⊗ x̄z̄ + (λ− λ̄)x̄z̄ ⊗ x̄z̄

)
= 1

2 (−iz̄ ⊗ z̄ + x̄z̄ ⊗ z̄ + z̄ ⊗ x̄z̄ + ix̄z̄ ⊗ x̄z̄)

= λ̄z̄ ⊗ λ̄z̄ + λx̄z̄ ⊗ λ̄z̄ + λ̄z̄ ⊗ λx̄z̄ + λx̄z̄ ⊗ λx̄z̄

= λx̄z̄ + λ̄z̄ ⊗ λx̄z̄ + λ̄z̄ = ḡ ⊗ ḡ,

and, analogously, ∆(h̄) = h̄ ⊗ h̄. Hence, 1̄, x̄, ḡ, h̄ are distinct group-likes elements. So, by

Lemma 2.1.7, they are linearly independent, we can conclude that H is in fact a group algebra

C[Ḡ], where Ḡ = {1̄, x̄, ḡ, h̄}. Note that each element of Ḡ has order two and, moreover, Ḡ is

an abelian group. That is to say that Ḡ is the Klein group Z2 × Z2, i.e., H ∼= R. Hence the

Hopf ideals of H are of the form (0), H(1̄ − x̄), H(1̄ − ḡ), H(1̄ − h̄).

Now, noting that H8I ⊆ J , we get that J/H8I is a Hopf ideal of H and thus is equal

to one of the Hopf ideals described above. Hence, J = H8I, or J = H8(1 − g)H8 +H8I, or

J = H8(1 − h)H8 +H8I, or J = H8(1 − x)H8 +H8I. The latter case cannot happen because

otherwise 1 − x ∈ I. So the only cases are J = H8I, or J = H8(1 − (λxz + λ̄z))H8 +H8I, or

J = H8(1 − (λ̄xz + λz))H8 +H8I.
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These chains of lemmas prove Theorem 4.3.1, i.e., we conclude that the Hopf ideals of H8

are (0), H8 ker(ϵ|R), ker(ϵ), H8⟨x−y⟩, H8⟨x−y, 1−(λxz+λ̄z)⟩ or J = H8⟨x−y, 1−(λz+λ̄xz)⟩.

4.4 Action on the quantum polynomial algebras

Let M = (mij) ∈ Mr×r(F×) be a square matrix of size r such that mii = mijmji = 1.

Let AM = FM [u1, . . . , ur] be the quantum polynomial algebra, i.e., the associative C-algebra

generated by u1, . . . , ur subject to the relations

uiuj = mijujui, 1 ≤ i, j ≤ r.

For more on quantum polynomial algebras, see [5] and [8, Appendix I.14 and Chapter I.2].

Alternatively, quantum polynomial algebras can be constructed as iterated Ore extension of

automorphism type

AM = F [u1][u2, τ2] · · · [ur, τr],

where τi(uj) = mijuj for all i, j with 1 ≤ j < i ≤ r.

Let F = C, the field of complex numbers. In this section, we will present inner faithful

actions of H2n2 on AM . Recall that the Hopf algebras H2n2 constructed in Section 4.2 are of

the form

H2n2 = R[z;σ]/⟨z2 − t⟩,

where R = C[Zn × Zn] with generators x and y. Recall also that for a nth primitive root of

unity q,

∆(z) = J(z ⊗ z) = 1
n

n−1∑
i,j=0

q−ijxiz ⊗ yjz

Let τ ∈ Sr be a permutation. We define de following action of H2n2 on AM :

x · ui = λiui; y · ui = µiui; z · ui = uτ(i),

where λi, µi ∈ C. In order for these relations to define an action of H2n2 on AM , the first thing

to note is that since xn = yn = 1, we must have that λi and µi are roots of unity of order n,

for all i ∈ {1, . . . , r}. Moreover, since zy = xz in H2n2 , we should have that (zy) ·ui = (xz) ·ui,

for all i ∈ {1, . . . , r}. This happens if and only if µi = λτ(i) for all i ∈ {1, . . . , r}.
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We also must have that z · (ukul) = mklz · (uluk). This is equivalent to the following

equivalent equations:

n−1∑
i,j=0

q−ij(λj
τ(k)uτ(k))(µi

τ(l)uτ(l)) = mkl

n−1∑
i,j=0

q−ij(λj
τ(l)uτ(l))(µi

τ(k)uτ(k))

mτ(k)τ(l)

n−1∑
i,j=0

q−ij(λj
τ(k)µ

i
τ(l))uτ(l)uτ(k) = mkl

n−1∑
i,j=0

q−ij(λj
τ(l)µ

i
τ(k))uτ(l)uτ(k)

mτ(k)τ(l)

n−1∑
i,j=0

q−ijλj
τ(k)µ

i
τ(l) = mkl

n−1∑
i,j=0

q−ijλj
τ(l)µ

i
τ(k).

Writing C(k, l) :=
n−1∑
i,j=0

q−ijλj
τ(k)µ

i
τ(l), we get z ·(ukul) = mklz ·(uluk) ⇔ C(k, l)mτ(k)τ(l) =

C(l, k)mkl.

Since λi and µi must be nth roots of unity for all i ∈ {1, . . . , r}, and q is a primitive nth

root of unit, there must be ai, bi ∈ {0, . . . , n− 1} such that λi = qai and µi = qbi . Hence, we

must have

C(k, l) =
n−1∑
i,j=0

q−ijλj
τ(k)µ

i
τ(l)

=
n−1∑
i,j=0

q−ijqaτ(k)jqbτ(l)i

=
n−1∑
i=0

qbτ(l)i

n−1∑
j=0

q(aτ(k)−i)j


= nqaτ(k)bτ(l) .

Therefore,

z · (ukul) = mklz · (uluk) ⇔ qaτ(k)bτ(l)mτ(k)τ(l) = qaτ(l)bτ(k)mkl

⇔ mτ(k)τ(l) = qaτ(l)bτ(k)−aτ(k)bτ(l)mkl.

From the discussion above, we state the following lemma.

Lemma 4.4.1. For any n, r > 1, primitive nth root of unity q, integers 0 ≤ ai, bi ≤ n − 1,

for i ∈ {1, . . . , r}, permutation τ ∈ Sr, and matrix M = (mij) ∈ Mr×r(C) such that mij =
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mijmji = 1 and mτ(i)τ(j) = qaτ(j)bτ(i)−aτ(i)bτ(j)mij, for all i, j, there exists an action of H2n2

on the quantum polynomial algebra AM with x · ui = qaiui, y · ui = qbiui and z · ui = uτ(i).

Consider the equation mτ(i)τ(j) = qaτ(j)bτ(i)−aτ(i)bτ(j)mij . For k = l, this only says that

mτ(k)τ(k) = mkk, which has to be equal to 1. For each pair (k, l) ∈ {1 . . . , r}2 denote its orbit

by

Dkl = {(τ s(k), τ s(l)) : s ∈ N}.

Fix (k, l) with k ̸= l and let d be the size of Dkl. Using d-times the relation mτ(k)τ(l) =

qaτ(l)bτ(k)−aτ(k)bτ(l)mkl, we get

mkl = q
∑d−1

s=0 aτs(l)bτs(k)−aτs(k)bτs(k)mkl.

As mkl is invertible and q is a primitive nth root of unity we have an equality in Zn:

d−1∑
l=0

aτ l(j)bτ l(i) =
d−1∑
l=0

aτ l(i)bτ l(j). (4.11)

Example 4.4.2. Let r = 2, and τ = (12). Then equation (4.11) says for (i, j) = (1, 2):

a2b1 + a1b2 = a1b2 + a2b1

which is always true. Nevertheless, since

m−1
12 = m21 = qa2b1−a1b2m12 ⇒ m2

12 = qa1b2−a2b1 .

Thus if p = √
q is a square root of q, then m12 = pa1b2−a2b1 is completely determined up to a

sign.

Example 4.4.3. r = 3, τ = (123). Then equation (4.11) says for (k, l) = (1, 2):

a2b1 + a3b2 + a1b3 = a1b2 + a2b3 + a3b1 ∈ Zn

In other words

(a1, a2, a3) · (b3 − b2, b1 − b3, b2 − b1)t = 0.
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Hence, for any vector a = (a1, a2, a3) ∈ Z3
n, we need to find a vector c = (c1, c2, c3) that is

orthogonal to a and satisfies c1+c2+c3 = 0, because then one can choose b = (b, b+c3, c1+c3+b)

for any b.

For instance, if a = (1, 1, 1) and c = (1, 1,−2), then b = (b, b − 2, b − 1) satisfies the

conditions for any b and hence for any c one could define m12 = c,m23 = q2c,m31 = qc, i.e.

the matrix entries are 
1 c q−1c−1

c−1 1 q2c

qc q−2c−1 1


while the action is defined as x · ui = qui for all i = 1, 2, 3 and

y · u1 = qbu1, y · u2 = qb−2u2, y · u3 = qb−1u3

z · u1 = u2, z · u2 = u3, z · u3 = u1.

In the sequel, we present some condition to determine whether the action given by Lemma

4.4.1 is inner faithful.

Lemma 4.4.4. Suppose that there is an action of H2n2 on AM as in Lemma 4.4.1. If for

all i, j ∈ {0, . . . , n− 1}, with (i, j) ̸= (0, 0), there exists k ∈ {1, . . . , r} such that iak + jbk ̸≡

0 (mod n), then the action is inner faithful.

Proof. Let I be a Hopf ideal of H2n2 such that I · AM = 0. Suppose that I ∩ R ̸= 0. Since,

by Lemma 2.2.13, I ∩R is a Hopf ideal of the group algebra R, we can apply Lemma 3.1.7

and conclude that there exists a normal subgroup N of Zn × Zn such that I ∩R = RF [N ]+.

Suppose I ∩R ̸= 0, N ̸= ⟨e⟩. Hence, there exist i, j ∈ {0, . . . , n− 1}, with (i, j) ̸= (0, 0), such

that xiyj ∈ N . This implies that 1 − xiyj ∈ I. Thus, for all k ∈ {1, . . . , r}, we have

0 = (1 − xiyj) · uk = (1 − qaki+bkj)uk,

which implies that qaki+bkj = 1 for all k ∈ {1, . . . , r}, i.e., aki + bkj ≡ 0 (mod n) for all

k ∈ {1, . . . , r}. But this is a contradiction to the hypothesis. Therefore, I ∩R = 0, and thus,

by Lemma 4.2.4, I = 0. So, the action must be inner faithful.
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Now, this lemma can be viewed from a different perspective. Suppose we are in the

context of Lemma 4.4.1. Consider the matrix

B =

 a1 · · · ar

b1 · · · br

 ∈ M2×r(Zn)

as a Zn-linear map from f : Z2
n → Zr

n with f(i, j) = (i, j)B. Then f is injective if and only if

∀(i, j) ̸= (0, 0), ∃1 ≤ k ≤ r : iak ̸≡ jbk (mod n).

So, in order to apply Lemma 4.4.4, we just need to check when f is injective. And the

following lemma gives a condition on the matrix B in order to check that f is injective.

Lemma 4.4.5. If B has an invertible 2 × 2-minor, then f is injective. The converse holds if

n is a prime number.

Proof. Let (i, j) ∈ Z2
n, such that f(i, j) = (0, . . . , 0). Then for any k ̸= l one has iak + jbk =

ial + jbl = 0 in Zn, i.e.

(i, j)

 ak al

bk al

 = (0, 0).

If B has an invertible 2 × 2 minor, then (i, j) = (0, 0), i.e. f is injective.

If n is a prime number, then f is a linear map over the field Zn. Hence B must have rank

2 and therefore must contain an invertible 2 × 2-minor.

Example 4.4.6. Let n = 6 and consider the map f associated to the matrix B =

 1 0 0

0 2 3


then f is injective, but none of its 2 × 2 minors is invertible as their determinant is either 0, 2

or 3 which are all zero divisors in Z6.

An action of H8 on AM

The example that we will introduce in this subsection is due to Kirkman, Kuzmanovich,

and Zhang [27, Example 7.5]. We will show that the action defined by them is in fact inner

faithful.
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Consider r = 4 for the quantum polynomial algebra AM and M = (mij) be a matrix

with elements satisfying:

m12 = m−1
34 , m13 = m−1

24 , m2
14 = 1, m2

23 = −1.

Consider also n = 2 for the Hopf algebras H2n2 . That is, we are just considering the

Hopf algebra H8. Hence, q = −1 here. Define the following relations:

x · u1 = u1, x · u2 = u2, x · u3 = −u3, x · u4 = u4

y · u1 = u1, y · u2 = −u2, y · u3 = u3, y · u4 = u4

z · u1 = u4, z · u2 = u3, z · u3 = u2, z · u4 = u1.

So, here we have τ = (14)(23) ∈ S4 and a1 = a2 = a4 = 0, a3 = 1, b1 = b3 = b4 = 0, and

b2 = 1.

Since the matrix

B =

 0 0 1 0

0 1 0 0



contains the invertible minor

 0 1

1 0

, by Lemma 4.4.5, the map f : Z2
2 → Z4

2 with

f(i, j) = (i, j)B is injective. Hence, by Lemma 4.4.4, the action is inner faithful.

Another argument to show the inner faithfulness of this is action can be done by considering

the classification of the Hopf ideals of H8 that we have done. Since (x− y) belongs to all of

them which are non-zero, we just note that

(x− y) · u2 = 2u2 ̸= 0.

Therefore, the only Hopf ideal in AnnH8(AM ) is the zero one. Hence, the action is inner

faithful.
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4.5 Actions on the quantum plane

For a moment, let F be an arbitrary field. Let 0 ̸= p ∈ F and consider the matrix

M =

 1 p−1

p 1

 ∈ M2×2(F )

The quantum plane is the quantum polynomial algebra AM = FM [u, v] with two genera-

tors. We denote the quantum plane FM [u, v] by Fp[u, v] and we call p a parameter. When

p ̸= 1 the algebra Fp[u, v] is non-commutative.

In this section we shall use what we have done in the last section in order to investigate

inner faithful actions of H2n2 on the quantum plane. For the case n = 2, we shall classify the

actions under a certain condition.

4.5.1 An inner faithful action of H2n2 on the quantum plane

Consider the Hopf algebras H2n2 as constructed in Section 4.2. For each n, these Hopf

algebras act on A = Cp[u, v] with p2 = q, where q is the primitive nth root of unity used to

construct H2n2 . The action is given by:

x · u = qu, y · u = u, z · u = v,

x · v = v, y · v = qv, z · v = u,

which corresponds to τ = (12) ∈ S2 and the matrix

B =

 a1 a2

b1 b2

 =

 1 0

0 1

 ∈ M2×2(Z2)

in the Section 4.4. By Example 4.4.2, condition (4.11) is satisfied, i.e., H2n2 acts on A.

Furthermore, since the matrix B is invertible in Z2, by Lemma 4.4.4, this action is inner

faithful.
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4.5.2 Actions of H8 on the quantum plane

Let F = C and A = Cp[u, v] be the quantum plane with parameter p ∈ C×, i.e., vu = puv.

Let H8 be the Hopf algebra as presented in Section 4.3. Recall that z ∈ H8 is such that

∆(z) = J(z ⊗ z) where J = 1
2(1 ⊗ 1 + x⊗ 1 + 1 ⊗ y − x⊗ y), and x, y are a pair of generators

of Z2 × Z2.

In the following theorem we classify the possibles inner faithful actions of H8 on A under

a certain assumption.

Theorem 4.5.1. Let 1 ̸= p ∈ C×. If there is a Hopf action of H8 on the quantum plane

A = Cp[u, v] such that z · u = v and z · v = u, then this action is inner faithful and p2 = −1.

Proof. If there is an action of H8 on A, since x and y are group-like elements, they act as

automorphisms of A (Remark 2.3.2). Hence there exist α, β ∈ Aut(A) such that x · a = α(a)

and y · a = β(a) for all a ∈ A. Also, since x2 = 1 = y2, α2 = id = β2.

Under the assumption that z acts by interchanging u and v, we must have z·(vu) = pz·(uv)

or equivalently

uv + α(u)v + uβ(v) − α(u)β(v) = p(vu+ α(v)u+ vβ(u) − α(v)β(u)). (4.12)

Moreover, since xz = zy, it follows that (xz) · u = (zy) · u and (xz) · v = (zy) · v, which

implies that

α(u) = z · β(v) and α(v) = z · β(u). (4.13)

Now, we separate the proof in cases.

CASE I: p ≠ −1: In this case Alev and Chamarie showed in [2, 1.4.4] that the

automorphisms of A are given by a torus action, i.e., x and y act as scalars on u and v. Hence

we are in the situation of Section 4.4. Suppose

x · u = (−1)a1u, x · v = (−1)a2v, y · u = (−1)b1u, y · v = (−1)b2v,

and let B =

 a1 a2

b1 b2

 ∈ M2×2(Z2). By Lemma 4.4.1 and Example 4.4.2, H acts on A if

and only if

p2 = (−1)a1b2−a2b1 = (−1)det(B).
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Since p ̸= −1, we must have det(B) = 1 and so p2 = −1. Hence, by Lemma 4.4.5 the action is

inner faithful.

CASE II: p = −1: In this case Alev and Chamarie showed in [2, 1.4.4] that Aut(A) is a

semidirect product of (C×)2 with the cyclic group of order 2 given by the automorphism τ

that flips u and v. Hence any automorphism of A is either an element of (C×)2 or a product of

an element (α0, α1) ∈ (C×)2 and τ . By 4.13, if β is just given by a torus action, then α has to

be also given by a torus action, and if β is given by a torus action and τ , then α has to be also

given by a torus action and τ . Therefore, these are the only two possible cases for α and β.

CASE II.a: If β is given only by a torus action, then we are in the same situation as

CASE I and hence, by what we have done for CASE I, necessarily p2 = −1, which contradicts

p = −1. So, β cannot be given by a torus action.

CASE II.b: Suppose that both α and β are compositions of a torus action and τ , then

there are (α0, α1), (β0, β1) ∈ (C×)2 such that

x · u = α(u) = α0v, x · v = α(v) = α1u, y · u = β(u) = β0v, y · v = β(v) = β1u.

Then equation (4.12) yields

uv + α0v
2 + β1u

2 + β1α0uv = uv − α1u
2 − β0v

2 + β0α1uv,

which is equivalent to

(α1 + β1)u2 + (α0 + β0)v2 + (β1α0 − β0α1)uv = 0

and implies βi = −αi, for i = 0, 1, and β1α0 = β0α1. Now, since α2 = id = β2, we must have

that α0α1 = 1 and β0β1 = 1. Also, by 4.13, we must have that α1 = β0 and α0 = β1. Hence,

α2
0 = −α0α1 = −1. And so α0 = ±i. Therefore, for α0 ∈ {−i, i}, the options are β1 = α0,

β0 = −α0, α1 = −α0. But note that

xz · (vu) = (vu− α0u
2 − α0v

2 − vu) and zy · (vu) = (−uv − α0u
2 − α0v

2 − uv).

This leads to a contradiction, since xz = yz. Therefore, there can be no action at all for the

case where p = −1.
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Remark 4.5.2. If p = 1, then A = C[u, v] is the commutative polynomial ring, which is a

commutative domain. Therefore, Etingof and Walton’s result [18, Theorem 1.3] guarantee that

there cannot be any inner faithful action of H2n2 on A, since it is not a group algebra.

The following example is due to Kirkman, Kuzmanovich, and Zhang [27].

Example 4.5.3 ([27, Example 7.4]). Let A = Cp[u, v] be the quantum plane with parameter p

with p2 = −1. Then H8 acts on A as follow:

x · u = −u, y · u = u, z · u = v,

x · v = v, y · v = −v, z · v = u.

Here we are in CASE I as in the proof of Theorem 4.5.1. Hence, by the same Theorem, this

action is inner faithful.

Theorem 4.5.1 says that it is not possible to define an inner faithful action on C−1[u, v]

for z interchanging u and v. But when that is not the case, it is possible to define an inner

faithful Hopf action as in the following example, which is also due to Kirkman, Kuzmanovich,

and Zhang [27].

Example 4.5.4 ([27, Example 7.6]). Let A = C−1[u, v] be the quantum plane. Then H8 acts

on A as follow:

x · u = u, y · u = −u, z · u = u,

x · v = v, y · v = −v, z · v = −v.

We claim that this action is inner faithful. Recall the classification of the Hopf ideals of

H8 that we have done in 4.3.2. Note that (x− y) · u = 2u ̸= 0 and then, since (x− y) belongs

to all Hopf ideals of H8, it follows that the action is inner faithful.

Also, due to Allman [3], where all the details are checked, we present another inner

faithful actions of H8 on A when the action of z is not given simply by interchanging u and v.
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Example 4.5.5 ([3, Example 4.2.6]). Let A = C−1[u, v] be the quantum plane. Then H8 acts

on A as follow:

x · u = v, y · u = −v, z · u = iv,

x · v = u, y · v = −u, z · v = iu.

We claim that this action is inner faithful. The argument is the same we have applied in

Example 4.5.4, i.e., (x− y) · u = 2v ̸= 0 and then, since (x− y) belongs to all Hopf ideals of

H8, it follows that the action is inner faithful.
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